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Abstract—Dual-energy (DE) CT scans provide two sets of
measurements at two different source energies. In principle, two
materials can be accurately decomposed from DECT measure-
ments. For triple-material decomposition, a third constraint, such
as volume or mass conservation, is required to solve three sets of
unknowns from two sets of measurements. An image-domain (ID)
method [1] has been proposed recently to reconstruct multiple
materials using DECT. This method assumes each pixel contains
at most three materials out of several possible materials and
decomposes a mixture pixel by pixel. We propose a penalized-
likelihood (PL) method with edge-preserving regularizers for
each material to reconstruct multi-material images using a
similar constraint. Comparing with the image-domain method the
PL method greatly reduced noise, streak and cross-talk artifacts,
and achieved much smaller root-mean-square (RMS) errors.

Index Terms—Computed tomography, dual energy, multi-
material decomposition, statistical image reconstruction

I. INTRODUCTION

Dual-energy (DE) CT reconstruction methods typically re-

construct images of two basis materials (e.g., soft-tissue and

bone) from two sets of measurements at two different X-

ray source potential. However, some applications desire three

or more component images [1], [2]. When quantifying the

concentration of iron in a fatty liver, images of three constitute

materials, iron, fat and tissue, are required [2]. For the purpose

of radiotherapy, in addition to soft-tissue and bone it is also

useful to know the distribution(s) of other materials, such as

calcium, metal (e.g., gold) and iodine.

A third criteria, such as volume conservation [1] or mass

conservation [2], can enable reconstructing three basis mate-

rials from DECT measurements. Volume (mass) conservation

assumes the sum of the volumes (masses) of the three con-

stituent materials is equivalent to the volume (mass) of the

mixture.

Mendonca et al. [1] proposed an image-domain method to

reconstruct multiple materials pixel by pixel from a DECT

scan. In addition to volume conservation assumption, this

method assumes that each pixel contains a mixture of at

most three materials and the material types can vary between

pixels. It establishes a material library containing all the

possible triplets of basis materials for a specific application. It

obtains a dual-material-density pair through projection-based

decomposition approach from DECT measurements, and then

generates a linear-attenuation-coefficient (LAC) pair for each

pixel at two selected distinct energies. Given a LAC pair, a
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material triplet and the volume conservation assumption, triple

material decomposition is solvable for each pixel. This method

sequentially decompose each pixel into different triplets in the

material library, and collects solutions of volume fractions that

satisfy a box constraint ([0 1]). If there are multiple solutions,

it determines the optimal triplet as the one which has the

smallest sum of distances between the original LAC pair and

three LAC pairs of its constituent materials at the two selected

distinct energies. If there is no feasible solution, it finds

a unique multi-material decomposition by solving a mixed

least-square optimization problem with volume conservation

constraint.

Inspired by the image-domain method [1], we propose a

penalized-likelihood (PL) method with edge-preserving regu-

larizers for each material to reconstruct multi-material images.

It is well known that statistical image reconstruction methods

based on physical models of the CT system and a statistical

model can obtain lower noise images. The proposed PL

method considers each material image as a whole, instead

of pixel by pixel, so prior knowledge, such as piecewise

smoothness, can be used to help solve the reconstruction

problem.

We evaluated the proposed PL method on a simulated object

containing fat, blood, omnipaque300 (a common contrast

agent), cortical bone and air. Comparing with the image-

domain method, the PL method was able to reconstruct

component images with lower noise, greatly reduce streak

artifacts, and effectively alleviate the cross-talk phenomenon

where a component of one material appearing in the image

of another material. The RMS errors of the PL method were

about 40% lower for fat, blood, omnipaque300 and cortical

bone compared to the image-domain method.

The organization of this paper is as follows, Section 2

introduces the physical model and the PL method, Section 3

shows the results and Section 4 presents conclusions.

II. METHOD

A. Physical Models

1) Measurement Model: We use the following general

model to describe the measurement physics for X-ray CT.

The detector measures X-ray photon emerging from the object

at M0 ≥ 1 different incident spectra. Let Yim denote the

measurement for the ray Lim which is the ith ray for the mth

energy scan, where m = 1, . . . ,M0, i = 1, . . . , Nd, and Nd

is the number of rays. For a ray Lim of infinitesimal width,

the mean of the projection measurements could be expressed
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as:

ȳim
△

=

∫

Iim(E) exp

(

−

∫

Lim

µ(~x, E) dℓ

)

dE +rim, (1)

where µ(~x, E) denotes the 3D unknown spatially- and energy-
dependent attenuation distribution,

∫

Lim
· dℓ denotes the “line

integral” function along line Lim, the incident X-ray intensity

Iim(E) incorporates the source spectrum and the detector gain,
and rim denotes the ensemble mean of background signals. We

treat each Iim(E) and rim as known nonnegative quantities.

2) Object Model: Assuming volume conservation [1] that

volume of a mixture equals to the sum of volumes of its

constituent parts, the volume fraction of the lth material at

the jth pixel is xlj = Vlj/
∑L0

l=1 Vlj , where Vlj denotes the

volume of the lth material at the jth pixel and L0 denotes

the number of materials of interest. We also assume that each

pixel contains no more than three materials and the material

types can be different among pixels. Let Θ be the triplet library
containing all physically meaningful triplets formed from L0

pre-selected materials of interest.

We describe the object model as

µ(~x, E) =

L0
∑

l=1

Np
∑

j=1

µl(E) bj(~x) xlj , (2)

subject to






∑L0
l=1 xlj = 1, ∀j,

∑L0
l=1 1{xlj 6=0} ≤ 3, ∀j

0 ≤ xlj ≤ 1, ∀l, j

(3)

where µl(E) is the energy-dependent LAC of the lth material
type and bj(~x) denotes spatial basis functions (e.g., pixels).

Let x denote the image vector x = (x1, . . . ,xl, . . . ,xL0) ∈
R

Np×L0 for xl = (xl1, . . . , xlj , . . . , xlNp) of the lth material.
Combining the general measurement model (1) and the object

model (2), the mean of the projection measurements ȳim(x)
is a function of x. The goal of the proposed reconstruction

method is to estimate x for L0 > 3 subject to (3) from noisy
measurements Yim with M0 = 2.

B. Penalized-Likelihood (PL) Reconstruction

For the case of normal clinical exposures, the X-ray CT

measurements are often modeled as independently Poisson

random variables with means (1), i.e.

Yim ∼ Poisson{ȳim(x)} .

The corresponding negative log-likelihood for independent

measurements Yim has the form

− L(x) ≡

M0
∑

m=1

Nd
∑

i=1

ȳim(x) − Yim log ȳim(x), (4)

where ≡ means “equal to within irrelevant constants indepen-
dent of x.”

Component images are estimated from the noisy measure-

ments Yim by minimizing a Penalized-Likelihood (PL) cost

function subject to constraints given in (3) on the elements of

x as follows:

x̂ = argmin
x subject to (3)

Ψ(x) (5)

Ψ(x)
△

= −L(x) +R(x). (6)

The edge-preserving regularization term R(x) is

R(x) =

L0
∑

l=1

βlRl(xl), (7)

where the regularizer for the lth material is

Rl(xl) =

Np
∑

j=1

∑

k∈Nlj

κljκlkψl(xlj − xlk) (8)

ψl(t) =
δ2l
3





√

1 + 3

(

t

δl

)2

− 1



 , (9)

where κlj and κlk are parameters encouraging uniform spatial

resolution [3] and Nlj is some neighborhood of voxel xlj . The

regularization parameters βl and δl can be chosen differently

for different materials according to their properties.

Because the cost function Ψ(x) in (6) is difficult to
minimize directly, we apply optimization transfer principles

to develop an algorithm that monotonically decreases Ψ(x)
each iteration [4]. We first find pixel-wise separable quadratic

surrogates of the cost function, and then minimize them under

constraints given in (3). We loop over all triplets in the pre-

determined material library, minimize the surrogates under box

and sum-to-one constraints in (3), and determine the optimal

triplet for each pixel as the one making the surrogate of that

pixel smallest. To obtain a good initialization for the iterative

optimization, we use the images reconstructed by the image-

domain method [1]. We use the ordered subsets approach to

accelerate the “convergence” to a good local minimum [4].

III. RESULTS

To evaluate the proposed PL method for multi-material de-

composition purpose, we reconstructed volume fractions of a

NCAT chest phantom [5] containing fat, blood, omnipaque300,

cortical bone and air from a simulated DECT scan.

Fig. 1 shows true volume fractions and monoenergetic

image at 70 keV of the simulated NCAT chest phantom.

We simulated the geometry of a GE LightSpeed X-ray CT

fan-beam system with an arc detector of 888 detector chan-

nels by 984 views over 360◦. The size of each detector
cell was 1.0239 mm. The source to detector distance was

Dsd = 949.075mm, and the source to rotation center distance
was Ds0 = 541mm. We included a quarter detector offset to
reduce aliasing. We used the distance-driven (DD) projector

[6] to generate projections of the true object. We simulated

two incident spectra of the X-ray tube voltages at 140 kVp and

80 kVp. Their corresponding effective energies were 69 keV

and 47 keV. We generated noiseless measurements ȳim of

the simulated NCAT phantom using (1) and the simulated

spectra. The simulated true images were 1024× 1024 and the
pixel size was 0.49 mm, while the reconstructed images were
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512 × 512 and the pixel size was 0.98 mm. We introduced
this model mismatch deliberately to test the multi-material

decomposition methods. To the noiseless measurements ȳim,

we added Poisson distributed noise corresponding to 2 × 105

incident photons per ray for rays corresponding to the 140 kVp

spectrum. For the 80 kVp spectrum, we added Poisson noise

corresponding to 2× 105 · Ii2/Ii1 = 6× 104 incident photons

per ray where Ii1 and Ii2 denote the total intensity of the ith

ray for the 140 kVp and 80 kVp spectrum respectively.

For this simulation we let the triplet material library Θ
contain seven triplets which formed from pre-selected five

materials: fat, blood, omnipaque300, cortical bone and air, and

which exclude the combination of omnipaque300 and cortical

bone (This is based on the fact that contrast agent does not

spread into the cortical bone area). We implemented the image-

domain method as described in [1] to initialize the PL method.

We used the conventional DE projection-based method with

polynomial approximation [7] followed by FBP to recon-

struct water-iodine density images and chose 70 keV and

140 keV to yield LAC pairs for the image-domain method. We

also tried a more sophisticated dual-material decomposition

method, the statistical sinogram restoration method proposed

in [8], but the final reconstructed component images were

very similar to those of using polynominal approximation.

For the PL method we chose βl = 28, 211, 211, 28, 24 and

δl = 0.01, 0.01, 0.005, 0.01, 0.1 for fat, blood, omnipaque300,
cortical bone and air, respectively. We ran 1000 iterations

of the optimization transfer algorithm with 41 subsets to

accelerate the convergence. Note that (5) is a nonconvex

problem so the algorithm finds a local minimum.

Fig. 2, Fig. 3, Fig. 4, Fig. 5 and Fig. 6 show estimated

volume fractions of the five materials reconstructed by the PL

method and the image-domain method. The grayscale values

represent volume fractions of each material. The big white

disks Fig. 6 were due to the elliptical reconstruction support.

The streak-like artifacts in the reconstructed images by the

image-domain method were very similar to those in Figure

4 in [1]. The PL method greatly reduces these streak-like

artifacts. The cross-talk phenomenon is evident in the image-

domain results. Fat went into the cortical bone image Fig. 5,

while cortical bone presented in the blood image Fig. 3.

The PL method alleviated this cross-talk phenomenon very

effectively. Fig. 4 shows the horizontal profiles through the

upper disk of the reconstructed omnipaque300 images on the

right. The PL method corrected the positive bias introduced

by the image-domain method. In addition, the PL method

reconstruct component images with lower noise.

We down-sampled the simulated true component images to

the sizes of the reconstructed images by linearly averaging,

and then calculated the root-mean-square (RMS) error of

the component fractions,

√

1
Np

∑Np
j=1(x̂lj − xlj) within the

reconstruct support for each material based on the down-

sampled images. Table I shows RMS errors of the component

images reconstructed by the image-domain method and the PL

method. The errors were scaled by 103 for easy comparison.

Comparing with the image-domain method, the PL method

lowered the RMS errors by about 40% for fat, blood, omni-

paque300 and cortical bone.
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Fig. 1. True volume fractions and monoenergetic image at 70 keV.

 

 

1 512

1

512 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

PL

 

 

1 512

1

512 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ID

Fig. 2. Fat component results.

Method fat blood omnipaque bone air

ID 93 73 4.4 36 46

PL 60 40 2.9 22 46

TABLE I
RMS ERROR COMPARISON OF THE RECONSTRUCTED IMAGES BY THE

IMAGE-DOMAIN (ID) METHOD AND THE PL METHOD. THE ERRORS WERE
UNITLESS AND ENLARGED BY 103 .

IV. CONCLUSIONS

We proposed a statistical image reconstruction method with

a PL cost function containing a negative log-likelihood term

and edge-preserving regularizers for each material to decom-

pose a mixture into multiple materials using DECT mea-

surements. We adopted the volume conservation assumption

and assumed each pixel contains no more than three materi-

als to help solve the multi-material reconstruction problem.
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(a) Field of view (FOV) images
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(b) Region of interest (ROI) images

Fig. 3. Bone component results.
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Fig. 4. Omnipaque300 component results. The right figure shows the
horizontal profiles through the upper disk. The red, black and blue line denote
the true, PL and ID image respectively.
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(a) Display window [0, 1]
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Fig. 5. Cortical bone component results.
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Fig. 6. Air component results.

Comparing with the image-domain method [1] that makes

the same assumptions, the proposed PL method reconstructed

component images with reduced noise, streak artifacts and

cross-talk. The PL method was able to lower the RMS error

by about 40% for fat, blood, omnipaque300 and cortical bone,

compared to the image-domain method.

The PL cost function has two parameters, one regularizer

coefficient βl and one edge-preserving parameter δl for each

material. We found that the choice of parameters for one

material component influenced the reconstructed image of

another component. An appropriate combination of parameters

needs to be carefully determined for each application. It is

also desirable for the regularizer to provide approximately

uniform, isotropic and material-independent spatial resolution.

Choosing regularizers for the PL method and optimizing there

parameters needs further investigation.

Future work also includes applying the PL method to real

data to decompose materials as many as the application needs.

Since the PL cost function is non-convex, a good initialization

is very important for the PL method. Future work would

investigate image domain “statistica” method which is more

practical than the PL method in terms of computation.
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