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Abstract—Statistical image reconstruction methods for X-ray
CT provide good images even for reduced dose levels but require
substantial compute time. Iterative algorithms that converge
in fewer iterations are preferable. Spatially non-homogeneous
iterative coordinate descent (NH-ICD) accelerates convergence
by updating more frequently the voxels that are predicted to
change the most between the current image and the final image.
However, the sequential update of NH-ICD reduces parallelism
opportunities.

This paper focuses on iterative algorithms that are more
amenable to parallelization, namely the axial block coordinate
descent (ABCD) algorithm and an ordered subsets algorithm
based on separable quadratic surrogates (OS-SQS), because these
have the potential to be faster than ICD in multiprocessor imple-
mentations. We first adapt the “non-homogeneous” approach to
ABCD, which simply requires updating more frequently the axial
blocks that are predicted to change the most during convergence.
More interestingly, we derive a new version of the OS-SQS
algorithm that leads to spatially non-uniform updates with larger
step sizes for the voxels that are predicted to change the most
between the current image and the final image. The single
subset version of this algorithm is still guaranteed to converge
monotonically.

We use a 3D patient CT scan to demonstrate that the proposed
algorithms with spatially non-uniform updates converge faster
than the ordinary algorithms. In particular, the NU approach
accelerated the OS-SQS algorithm by a factor of three.

I. INTRODUCTION

Statistical image reconstruction for X-ray CT can provide

good images even with reduced dose levels [1]. However, the

substantial compute time required for the iterative algorithms

is a drawback. This paper describes acceleration methods for

parallelizable algorithms for penalized weighted least-squares

(PWLS) image reconstruction.

Iterative coordinate descent (ICD) is a convergent method

that can converge to a reconstructed image that is close to

the minimizer of the PWLS cost function in a small number

of iterations when initialized appropriately [1]. However, ICD

updates each voxel sequentially so it is relatively difficult to

parallelize. To accelerate ICD, one can try to predict which

voxels will change the most between the current image and

the final image, and then update those voxels more frequently.

This non-homogeneous (NH) approach to ICD, called NH-

ICD [2], can reduce the number of iterations needed but does

not affect the parallelizability.

Considering the modern parallel computing architecture, we

focus on two parallelizable algorithms: axial block coordinate
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descent (ABCD) [3] and an ordered subsets (OS) algorithm

based on separable quadratic surrogates (SQS) called OS-

SQS [4]. When appropriately parallelized, these algorithms

should require less time per iteration, but need more iterations

to converge than NH-ICD. (ABCD needed a similar number of

iterations as ICD in one preliminary simulation [3], whereas

OS-SQS needed far more iterations than ICD [5].) Inspired

by the success of NH-ICD, in this paper, we develop similar

acceleration methods for ABCD and OS-SQS. Applying the

NH idea to ABCD is straightforward; we simply update more

frequently the axial blocks that we predict will change the

most during convergence. However, the original NH idea is

not directly applicable to OS-SQS because it updates all voxels

simultaneously. In this paper we derived a new version of the

OS-SQS algorithm that leads to spatially non-uniform (NU)

updates. Specifically, we design the surrogate functions so that

the resulting iterations take larger step sizes for voxels that are

predicted to change the most during convergence. Importantly,

the theoretical derivation ensures that the new SQS algorithm

(the one-subset version of the OS-SQS algorithm) is still

guaranteed to converge monotonically. The derivation uses

a modification of De Pierro’s approach [6]. The resulting

algorithm still updates all voxels simultaneously and thus is

amenable to parallelization.

NH-ABCD and NU-OS-SQS are designed to work effi-

ciently with the separable footprint (SF) projector [7]. The

axial/transaxial separability of the SF projector facilitated the

proposed algorithm to be highly efficient and parallelizable.

We examined the performance of the proposed algorithms

using a 3D patient CT scan. The results show that the proposed

spatially non-uniform algorithms converge much faster than

the ordinary algorithms. The proposed NU approach acceler-

ated the OS-SQS algorithm by about a factor of three.

II. PROBLEM

We reconstruct an image x ∈ RN from a noisy CT

measurement data y ∈ RM by finding the minimizer x̂ of

the following PWLS cost function [1]:

Ψ(x) = Q(x) + βR(x) =
1

2
||y −Ax||2W + βR(x)

=
M
∑

i=1

qi([Ax]i)+β
K
∑

r=1

ψr([Cx]r), (1)

where A is a system matrix (projector), C is a finite differ-

encing matrix, W = diag{wi} is a statistical weighting for

measurement data, qi(t) = 1

2
wi(t − yi)

2, each ψr(t) is a

(edge preserving) potential function, and β is a regularization

parameter. Our goal is to find the minimizer x̂ more efficiently.
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III. SPATIALLY NON-HOMOGENEOUS AXIAL BLOCK

COORDINATE DESCENT (NH-ABCD)

A. Algorithm

ABCD sequentially updates each axial block of voxels

[3]. The low coupling between voxels within an axial block

simplifies the update [3]. Traditional ABCD updates the axial

block sequentially, but the update order is flexible so we can

easily adapt the NH idea of NH-ICD for the ABCD algorithm.

Let x
(n)

k denote the vector of voxel values along the kth

axial block at the nth iteration, and let x
(∞)

k denote the

corresponding converged values, where k ranges from 1 to the

number of voxels in one transaxial plane. One way to describe

how much the voxels change between the nth iteration and the

converged image is by this “update-needed factor” [2]:

û
(n)

k =
∣

∣

∣

∣x
(n)

k − x
(∞)

k

∣

∣

∣

∣

1
.

Ideally NH-ICD would order the voxel updates based on û
(n)

k ,

updating more frequently voxels within axial blocks having

larger values of û
(n)

k , accelerating convergence. However, û
(n)

k

is unavailable at the nth iteration in practice, so NH-ICD uses

the following factor instead:

u
(n)

k =
∣

∣

∣

∣x
(n)

k − x
(n−1)

k

∣

∣

∣

∣

1
, (2)

which is the difference between the current and previous kth

axial block. (In addition u
(n)

k is low-pass filtered to try to

improve u
(n)

k .) In practice, the NH-ICD approach uses both

homogeneous update orders and non-homogeneous update

orders based on u
(n)

k for fast convergence overall.

We adapted these NH ideas to the ABCD algorithm, yield-

ing NH-ABCD, by non-uniformly updating axial blocks. We

implemented a SQS version of NH-ABCD (NH-ABCD-SQS)

that we expected to converge faster than ABCD-SQS.

IV. SPATIALLY NON-UNIFORM SEPARABLE QUADRATIC

SURROGATE (NU-SQS) APPROACH

A. SQS Algorithm

SQS for PWLS has the benefit of low computation per

iteration and high parallelizability [4]. However, it needs

many iterations to converge. This section presents a new SQS

algorithm that uses spatially non-uniform updates to accelerate

convergence without reducing parallelizability.

In a simultaneous update algorithm like SQS, the idea of

updating certain voxels more frequently is unnatural. Instead,

we re-derive the algorithm to increase the step size of voxels

that are predicted to need to change more during convergence.

Simply weighting the step size arbitrarily would break the

monotonicity of optimization, so instead we derive an appro-

priate weighting scheme that preserves the monotonicity (in

the one subset version) by adapting De Pierro’s approach [6].

For completeness, we repeat De Pierro’s argument in [4].

We first rewrite forward projection [Ax]i as follows:

[Ax]i =

N
∑

j=1

aijxj =

N
∑

j=1

π
(n)

ij

(

aij

π
(n)

ij

(xj − x
(n)

j ) + [Ax(n)]i

)

,

where
∑N

j=1
π
(n)

ij = 1 and π
(n)

ij is zero only if aij is zero.

Using the convexity of qi(·) and the convexity inequality:

qi([Ax]i) ≤
N
∑

j=1

π
(n)

ij qi

(

aij

π
(n)

ij

(xj − x
(n)

j ) + [Ax(n)]i

)

.

Thus we have the following separable quadratic surrogate

φ
(n)

Q (x) for the data-fit term Q(x):

Q(x) ≤ φ
(n)

Q (x) ,

N
∑

j=1

φ
(n)

Q,j(xj)

=

M
∑

i=1

N
∑

j=1

π
(n)

ij qi

(

aij

π
(n)

ij

(xj − x
(n)

j ) + [Ax(n)]i

)

. (3)

The second derivative of the surrogate φ
(n)

Q,j(xj) is

d
Q,(n)

j ,
∂2

∂x2j
φ
(n)

Q,j(xj) =
M
∑

i=1

wia
2

ij/π
(n)

ij .

Then the step size ∆
(n)

j of SQS [4] has this relationship:

∆
(n)

j , x
(n+1)

j − x
(n)

j ∝
1

d
Q,(n)

j

∝ π
(n)

ij , (4)

where small d
Q,(n)

j and large π
(n)

ij values lead to larger steps.

Therefore we should encourage π
(n)

ij to be large to accelerate

the SQS algorithm, subject to the condition
∑N

j=1
π
(n)

ij = 1.

The standard choice [4], [8] is π
(n)

ij =
aij∑
N
l=1 ail

, leading to

d
Q,(n)

j =

M
∑

i=1

wiaij

(

N
∑

l=1

ail

)

. (5)

This choice does not exploit the relationship (4). Thus, we

propose to choose π
(n)

ij to be larger if the jth voxel is predicted

to need more update based on the following “update-needed

factor” after the nth iteration:

u
(n)

j =
∣

∣x
(n)

j − x
(n−1)

j

∣

∣. (6)

We select π
(n)

ij =
aiju

(n)
j

∑
N
l=1 ailu

(n)
l

which is proportional to u
(n)

j

and satisfies the conditions for π
(n)

ij . This choice for π
(n)

ij leads

to the following NU-based denominator:

d̃
Q,(n)

j =
1

u
(n)

j

M
∑

i=1

wiaij

(

N
∑

l=1

ailu
(n)

l

)

, (7)

which leads to spatially non-uniform updates ∆
(n)

j ∝ u
(n)

j .

Computing (7) requires one forward and back projection

which increases computation, but Sec. IV-B explains how to

minimize this effect. The NU-based denominator (7) reduces

to the standard denominator (5) when u
(n)

j is uniform.

Recall that NH-ICD balanced between the uniform and non-

uniform voxel ordering to provide fast convergence. Likewise,

using values for u
(n)

j with too large of dynamic range that

would focus most of the updates on a few voxels would likely

be undesirable. Therefore we modified the “update needed
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Fig. 1. Dynamic range compression (DRC) applied u
(4)
j

for NU-OS-SQS.

In each case we map u
(n)
j

to 16 for the largest 5% voxels, to [8 4 2] for

next [10% 20% 40%] voxels, and to 1 for the rest of the voxels, followed
by low-pass filtering. NU-OS-SQS updates more the bright voxels, whereas
ordinary OS-SQS updates all voxels equivalently.

factors” u
(n)

j to have a reasonable dynamic range (see Fig. 1),

which we call dynamic range compression (DRC).

Similar to the data-fit term, we derive the denominator of

NU-SQS for the regularizer term to be:

d̃
R,(n)

j =
1

u
(n)

j

K
∑

r=1

ψ̈r(0)|crj |

(

N
∑

l=1

|crl|u
(n)

l

)

, (8)

by using the choice π
(n)

rj =
|crj |u

(n)
j

∑
N
l=1 |crl|u

(n)
l

and using the

maximum curvature ψ̈r(0) = maxt ψ̈r(t) for efficiency [4].

The computation of (8) is negligible compared to that of data-

fit term.

Combining the above derivations leads to the following

simple and parallelizable NU-SQS iteration:

x(n+1) = x(n) − diag

{

1

d̃
Q,(n)

j + βd̃
R,(n)

j

}

∇Ψ(x(n)).

This algorithm monotonically decreases Ψ(x) and is provably

convergent [9]. We can further accelerate NU-SQS by using

ordered subsets (OS) of projection views [4], [10] which we

call NU-OS-SQS.

B. Implementation

The dependence of π
(n)

ij on u
(n)

j increases computation,

but we found two practical way to reduce the burden. First,

we found that it suffices to update u
(n)

j every few iterations

instead of every iteration. Second, in 3D CT we use forward

and back-projectors that compute elements of the system

matrix A on the fly, and as those elements are computed

for gradient of Q(x), which requires one forward and back

projection, we simultaneously compute the forward and back-

projection needed for the NU-based denominator (7). For the

results shown below, we computed u
(n)

j during one iteration

and computed the NU-based denominator (7) during the next

iteration, and then used it for several iterations. For the first

iteration we form u
(0)

j using a combination of edge and

intensity detector. This is reasonable as the initial FBP is a

good low-frequency estimate, so û
(0)

j will be bigger for voxels

near edges.

C. Application of NU-SQS in ABCD algorithm

We also tried to further accelerate the ABCD algorithm by

applying the NU-SQS principle to ABCD using the following

NU-based denominator:

d̃
Q,(n)

j =
1

u
(n)

j

M
∑

i=1

wiaij

(

∑

l∈Bk

ailu
(n)

l

)

, j ∈ Bk, (9)

where Bk denotes the indices of the voxels in the kth axial

block. For a typical multi-slice CT geometry, the set {l : ail >
0, l ∈ Bk} contains at most three (adjacent) voxels with sim-

ilar u
(n)

l values, and the resulting acceleration was minimal.

However, block coordinate descent (BCD) algorithms [11] that

group voxels in transaxial plane could exploit non-uniformity.

V. RESULT

We implemented the proposed algorithms in C and applied

them to a helical patient CT scan. We examined spatially

nonuniform approaches for ABCD and OS-SQS algorithms in

terms of convergence rate and compute time per iteration. Our

implementations are not optimized in terms of run time, so we

show the results of each method separately. Fig. 2 and Fig. 4

show the root mean squared (RMS) difference (in HU) from

the converged image1 versus normalized run time for NH-

ABCD and NU-OS-SQS. The run time of the algorithms are

normalized in time by one iteration of ABCD-SQS and OS-

SQS respectively, and the plot markers show each iteration.

Image reconstruction included the nonnegativity constraint.

In Fig. 2, NH-ABCD converged 3× faster than ABCD,

similar to the acceleration of NH-ICD in [2]. Using the NH

idea in the ABCD algorithm increased compute time per

iteration by only 3%.
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ABCD−SQS

NH−ABCD−SQS

Fig. 2. RMS difference [HU] from converged image vs. normalized compute
time for previous ABCD-SQS [3] and proposed NH-ABCD-SQS. Compute
time is normalized by the elapsed time for one iteration of ABCD-SQS.

1We generated an (almost) converged image by running 100 iterations of
NH-ABCD-SQS followed by 2000 iterations of SQS.
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Fig. 3. FBP image x(0) , converged image x̂, and reconstructed images by ABCD and OS-SQS algorithms. Numbers in parentheses represent normalized
compute time; ABCD and OS-SQS have different normalized compute time. The proposed NH and NU methods each accelerate convergence to x̂.

In Fig. 4, the NU approach accelerated the OS algorithm

by a factor of three. Incorporating the computation of the

NU-based denominator (7) simultaneously with the gradient

increased run time by 25%, but this increase was amortized by

updating the NU-based denominator only every few iterations.

Fig. 4 suggests that every 3-5 iterations is enough.

Compressing the dynamic range of u
(n)

j , as shown in Fig. 1,

was essential to accelerate convergence compared with solely

using (6). The DRC approach in Fig. 1 is just one of many

possibilities, and we expect to find other candidates that will

lead to even faster convergence.

0 5 10 15 20
0

5

10

15

20

25

Normalized run time

R
M

S
 d

if
fe

re
n

c
e

 [
H

U
]

 

 

OS−SQS
NU−3−OS−SQS
NU−5−OS−SQS
NU−10−OS−SQS
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Fig. 4. RMS difference [HU] to converged image vs. normalized compute
time for NU-OS-SQS with 246 subsets. Compute time is normalized by the
elapsed time of one iteration of OS-SQS. Number in the legend indicates how
often we update the NU-based denominator.

Fig. 3 shows the center slice of FBP, the converged image

x̂, and reconstructed images by ABCD and OS-SQS methods.

The quality of x̂ compared to FBP reaffirms the benefits of

statistical image reconstruction. The reconstructed images with

the proposed spatially non-uniform approaches are closer to

the converged image x̂ than the ordinary ABCD and OS-SQS

reconstructed images.

VI. DISCUSSION

We have used spatially non-uniform updates to accelerate

parallelizable iterative algorithms ABCD and OS-SQS. In

particular, we derived a new spatial non-uniformity approach

for SQS, a simultaneous update algorithm, which improved

the convergence rate by about a factor of three. The next step

is to optimize the implementation in terms of compute time

and parallelization, and compare the proposed algorithms with

other algorithms such as NH-ICD.
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