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ABSTRACT

Cardiac computed tomography (CT) is important for its use

in diagnosing heart disease. Motion artifacts are a signif-

icant issue for cardiac CT image reconstruction. Motion-

compensated image reconstruction (MCIR) has the potential

to overcome the drawbacks of conventional gated recon-

struction methods by exploiting all the measurement data

and using motion information. However, MCIR methods

are computationally expensive: the system matrix has both

the forward-projector and the warp matrices that make it

hard to precondition or to apply block iterative algorithms

such as ordered-subsets (OS). In this study, we propose a

novel approach to solve the image reconstruction part of the

MCIR method more efficiently. We use a variable-splitting

technique to dissociate the original problem into a number

of simpler problems. The proposed method is amenable to

preconditioning, parallelization, and application of block iter-

ative algorithms to sub-problems. We demonstrated through

a phantom simulation that with simple diagonal or circulant

preconditioners, the proposed method shows good conver-

gence rate compared to conjugate gradient (CG) method.

1. INTRODUCTION

Even with the fast acquisition speed of commercial scanners,

motion artifacts such as blurring and streaks are still a signif-

icant issue in CT image reconstruction, especially for cardiac

CT imaging. Various methods have been proposed to address

this problem [1, 2]. Many of these are gated reconstruction

methods that use only the projection data corresponding to

approximately the same motion state. Such methods can pro-

vide promising results in terms of image quality and process-

ing time. However, they suffer from limitations such as dose

inefficiency and limited temporal resolution. Especially for

fast and arhythmic cardiac motion, such methods may be sub-

jected to residual motion artifacts [3].

To overcome the limitations of gated reconstruction, a va-

riety of motion-compensated image reconstruction methods

(MCIR) have been proposed in the literature [3, 4]. MCIR

methods can exploit all collected data and motion information

to obtain reconstructed images with better dose efficiency. In
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general, MCIR methods consist of two main steps: estimating

the motion and reconstructing the image using the estimated

motion. The quality of the reconstructed image is signifi-

cantly affected by the accuracy of the estimated motion, and

thus many researchers have focussed on improving motion es-

timates. However, the image reconstruction part is also very

important for practical use of MCIR methods. Since the sys-

tem model in MCIR methods has both the forward-projector

and the warp matrices, it becomes computationally very ex-

pensive to use iterative algorithms for MCIR. Unlike conven-

tional CT image reconstruction problems, designing a proper

preconditioner for MCIR is not trivial due to the complexity

of the system model. Ordered-subset (OS) type of algorithms

are not efficient for MCIR, especially when when warping is

computationally expensive.

In this paper, we propose a novel approach to solve the

image reconstruction part of MCIR method more efficiently.

We use a variable-splitting technique to dissociate the origi-

nal problem into a number of simpler problems that are then

solved individually.

2. MOTION-COMPENSATED

IMAGE RECONSTRUCTION FOR CT

2.1. Measurement Model

Let x(r, t) denote the time-dependent attenuation coefficient

distribution of the unknown object, where r is the spatial lo-

cation and t is time. Let tm be the time of mth frame at

which the measurements, ym, corresponding to the motion-

free state of the objects are acquired. We assume that the

measurements consist of Nf scans, y = [y1, · · · ,yNf
]. The

measurements were assumed to be linearly related to the ob-

ject xm = x(·, tm) as follows:

ym = Amxm + ǫm, m = 1, · · · , Nf , (1)

where Am is the system model for mth frame and ǫm is the

noise. The goal is to reconstruct {xm} from {ym} using a

motion model. Here we assume xm = Tmx where Tm is a

warp matrix based on motion estimates that are determined

separately.
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2.2. Problem Formulation

Consider a penalized-likelihood least squares (PWLS) formu-

lation of motion-compensated CT image reconstruction:

x̂ = argmin
x

{Ψ(x) , L- (x)+R(Cx)}, (2)

L- (x) =
1

2
‖y −ATx‖2

W
, R(Cx) = β

K
∑

k=1

κk ψk([Cx]k),

A = diag{A1, · · · ,ANf
}, T = [T ′

1
. . .T ′

Nf
]′,

where A is the system matrix, x ∈ R
N is the discretized ver-

sion of the object being reconstructed, W = diag{wi} is a

statistical weighting matrix, β is the regularization parameter,

κk is the user-defined weight for controlling spatial resolution

in the reconstructed image, ψk is the potential function, C is

a matrix that performs finite differences between neighboring

voxels, K is the number of neighbors, and T is the warp ma-

trix. The minimization problem (2) is challenging due to the

warp matrix T in the system model.

3. PROPOSED METHOD

We apply a variable splitting approach to the problem. The

basic idea of variable splitting method is to introduce auxil-

iary constraint variables so that coupled parts in the cost func-

tion can be separated [5]. The original problem is transformed

into an equivalent constrained optimization problem, and then

alternating minimization methods are applied to efficiently

solve the problem. Previous works have focussed on splitting

the regularization term and also the statistical weighting [6].

In this work, in addition to those splittings, we focus on split-

ting the warp matrix from the forward-projector in the system

matrix.

3.1. Equivalent Constrained Optimization Problem

We introduce auxiliary constraint variables u, v, z, and s, and

write (2) as the following equivalent constrained problem:

argmin
x,u,v,z,s

Ψ(x,u,v, z, s) =
1

2
‖y − v‖2

W
+ R(z),

s.t. u = Tx, v = Au, z = Cs, s = x, (3)

where u ∈ R
NNf separates the system matrix from the warp

matrix, v ∈ R
M separates the effect of the weighting matrix,

W , on Ax, z ∈ R
NK and s ∈ R

N detach the warp matrix

from the regularizer.

3.2. Method of Multipliers

We used the framework of method of multipliers [7] to solve

(3), and constructed an augmented Lagrangian function as

follows:

L(x,u,v, z, s) ,
1

2
‖y − v‖2

W
+ R(z)

+
µu

2
‖u− Tx− ηu‖

2
+
µv

2
‖v −Au− ηv‖

2

+
µz

2
‖z −Cs− ηz‖

2
+
µs

2
‖s− x− ηs‖

2
,

(4)

where η’s are Lagrange-multiplier-like vectors and µ’s are the

AL penalty parameters (see [6] for details).

Solving (3) using the AL function would require jointly

minimizing (4) with respect to all variables which is compu-

tationally expensive. So we apply to alternating minimiza-

tion [6].

3.3. Alternating Direction Minimization

At the jth iteration, we update each vector in turn as follows:

x
(j+1) = argmin

x

µu

2

∥

∥

∥
u
(j) − Tx− η(j)

u

∥

∥

∥

2

+
µs

2

∥

∥

∥
s
(j) − x− η(j)

s

∥

∥

∥

2

, (5)

u
(j+1) = argmin

u

µu

2

∥

∥

∥
u− Tx

(j+1) − η(j)
u

∥

∥

∥

2

+
µv

2

∥

∥

∥
v
(j) −Au− η(j)

v

∥

∥

∥

2

, (6)

v
(j+1) = argmin

v

1

2
‖y − v‖2

W

+
µv

2

∥

∥

∥
v −Au

(j+1) − η(j)
v

∥

∥

∥

2

, (7)

s
(j+1) = argmin

s

µz

2

∥

∥

∥
z
(j) −Cs− η(j)

z

∥

∥

∥

2

+
µs

2

∥

∥

∥
s− x

(j+1) − η(j)
s

∥

∥

∥

2

, (8)

z
(j+1) = argmin

z

R(z)

+
µz

2

∥

∥

∥
z −Cs

(j+1) − η(j)
z

∥

∥

∥

2

, (9)

η(j+1)

u
= η(j)

u
− (u(j+1) − Tx

(j+1)), (10)

η(j+1)

v
= η(j)

v
− (v(j+1) −Au

(j+1)), (11)

η(j+1)

s
= η(j)

s
− (s(j+1) − x

(j+1)), (12)

η(j+1)

z
= η(j)

z
− (z(j+1) −Cs

(j+1)), (13)

The sub-problems (5) to (8) are all quadratic problems for

which analytical solutions exist. However, (5) and (6) can-

not be implemented explicitly due to the enormous sizes of

the matrices involved. We employ the iterative CG-solver for

these sub-problems.

Sub-problem (5) is an image-registration-type problem,

which has the following analytical solution:

x
(j+1) = H

−1(µuT
′(u(j)−η(j)

u
)+µs(s

(j)−η(j)
s

)), (14)
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Fig. 1. Images in the ROI of (a) XCAT phantom, (b) FBP reconstruction with Hanning filter (also the initial guess x(0)), (c)

Converged Image x
(∞).

where H = µuT
′
T + µsIN . We accelerate the CG-solver

for (14) by using a suitable preconditioner for H . Since H

is much simpler than the Hessian of the original data term in

(2), it is more amenable to preconditioning.

We now consider (6), which is a tomography problem

with the following solution:

u
(j+1) = G

−1(µu(Tx
(j+1) + η(j)

u
) + µvA

′(v(j) − η(j)
v

)),

where G = µvA
′
A+µuINNf

. We preconditioned this term

with a circulant matrix to obtain faster convergence [6, 8].

This sub-problem can be further parallelized into Nf prob-

lems. Each parallelized problem can be efficiently solved by

preconditioned CG or ordered-subsets type algorithms, which

are less efficient for the original problem.

Sub-problems (7) - (9) can be solved much more easily

compared to above two sub-problems. Sub-problem (7) has

a simple analytical solution, and (8) is exactly solvable with

Fourier transform if we use C with periodic end condition.

Finally, (9) can be solved easily with iterative algorithms or

exactly solved for a variety of potential functions. Here, we

consider one of the edge-preserving regularization using the

Fair potential function. For this regularizer, (9) separates into

1D minimization problems and has an exact solution (See [6]

for details). The AL parameters, µ’s, mainly govern the con-

vergence speed of the proposed splitting method [6]; we se-

lected them empirically to achieve good convergence speed.

4. RESULTS

The proposed algorithm was investigated on a 2D CT im-

age reconstruction problem with cardiac motion for simulated

data. We simulated a 3rd-generation fan-beam CT system us-

ing the separable footprint projector [9]. The simulated sys-

tem has 888 channels per view spaced 1.0239 mm apart, and

984 evenly spaced view angles over 360◦. The image was

reconstructed to a 512 × 512 grid of 0.9766 mm pixels. We

generated seven frames of the XCAT phantom for a heart rate

of 75 bpm. The motion between the frames was estimated di-

rectly from XCAT images using nonrigid image registration.
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Fig. 2. Plot of RMSD versus iteration for various settings

of the proposed method compared to the conventional CG

method. For the proposed method, (N10,P5) indicates 10 iter-

ations for sub-problem (5) without preconditioner for H and

5 iterations for sub-problem (6) with a preconditioner for G.

OS60 indicates that ordered subsets method with 60 subsets

was used instead of CG.

Estimating motion parameters from true images is unrealis-

tic, but our focus is not on obtaining reasonable motion es-

timates. We only focus on the image reconstruction part of

MCIR. For the regularizer, we used a Fair potential function

to provide edge-preservation and a certainty-based penalty to

obtain more uniform resolution. The sinogram was generated

with Poisson noise, and the weights in the data-fit term in (2)

were chosen as wi = exp(−[Ax]i). We selected the regular-

ization parameter β such that the target PSF has a full-width

at half-maximum (FWHM) of approximately 1.3 mm.

For comparison, we used the (nonlinear) conjugate gradi-

ent algorithm to solve the original problem (2). To analyze

the convergence speed of the proposed method we computed
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the root mean squared (RMS) difference between the image

estimate at the nth iteration, x(n), with the “fully” converged

solution, x∞. For the Fair potential, the original MCIR prob-

lem is strictly convex and thus has a unique minimizer, x∞.

We numerically approximated x
∞ as the mean of the images

reconstructed (assuming convergence) by running 1000 itera-

tions of CG and 700 iterations of the proposed method with

(10,10) sub-iterations.

Fig. 1 illustrates that the conventional filtered backprojec-

tion (FBP) method gives a reconstructed image with severe

motion artifacts but the motion-compensated image, on the

contrary, contains much less motion artifacts. Some residual

motion artifacts still exist due to imperfect motion estimates

even though they were obtained directly from the true XCAT

images.

Fig. 2 illustrates that the proposed method converges

much faster in iterations compared to the conventional CG

method when we use enough sub-iterations with obvious

computation overhead. This result suggests that if we have

a proper preconditioner for each sub-problem, we can still

obtain fast convergence. We also investigated different op-

tions for the proposed method summarized in Fig. 2. Using

a preconditioner for sub-problems helped reduce the number

of sub-iterations while achieving fast convergence speed.
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Fig. 3. Plot of RMSD versus wall time for the proposed

method compared to the conventional CG method with 3 line-

search iterations. A diagonal preconditioner and a circulant

preconditioner were used for sub-problems (5) and (6) respec-

tively.

In Fig. 3, we provided the proposed method with sub-

optimal preconditioners. We used a simple diagonal precon-

ditioner for (5) based on the diagonal elements of H and

a circulant preconditioner for (6) using the fact that G con-

tains A′
mAm, which is approximately shift invariant [6]. The

proposed method shows faster convergence speed compared

to CG method. While the proposed method as implemented

in MATLAB provides marginal improvement in convergence

speed over CG, we believe its ability to parallelize some of

the update steps can further improve its efficiency.

5. DISCUSSION

We applied a variable splitting approach to the motion-

compensated image reconstruction problem. The proposed

method has faster convergence speed to conjugate gradient

method, and offers the potential for parallelizabilty and pre-

conditioning of sub-problems. Some of the sub-problems

can be solved simultaneously or further divided into smaller

problems. By using more sophisticated preconditioners for

the sub-problems, the performance of the proposed method

can be further improved. In this study, we focussed on the

image reconstruction part of MCIR, but our method also can

be extended to the joint estimation framework. Our future

work will focus on improving the convergence speed of the

proposed method and on applying it to 3-D CT.
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