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ABSTRACT

Conventional ordered-subset3S) methods for regularized image reconstruction involve potimg the gradient of the
regularizer for every subset update. When dealing with largblems with many subsets, such as in 3D X-ray CT, com-
puting the gradient for each subset update can be very catiqmally expensive. To mitigate this issue, some investics
use unregularized iterations followed by a denoising dpmraafter updating all subsetsAlthough such methods save
computation, their convergence properties are uncedanhsince they may not be minimizing any particular costfionc

it becomes more difficult to design regularization paramseteurthermore, it is known that inserting filtering stem®iun-
regularized algorithms can lead to undesirable spatialuéen propertie€. Our goal here is to reduce the computational
cost without inducing such problems. We propose a new O8-&gorithm that is derived using optimization transfer
principles. The proposed method allows the gradient ofég@larizer to be updated less frequently, and thus redbees t
computational expense when many subsets are used. Ouatderileads to a correction term that accounts for the fact
that the regularizer gradient is updated less frequentekiary sub-iteration. Simulations and a phantom experirsieoi
that the proposed method reconstructed images with cobipatiage quality within reduced computation time.
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1. INTRODUCTION

Model-based image reconstructiddBIR) methods, also known as statistical image reconstructiethods, can incor-
porate accurate system models and take the stochastictdréstics of noise into account, and thus have the potentia
to improve CT image quality and reduce patient dose comparednventional methods such as filtered back-projection
(FBP). However, iterative algorithms for penalized-likelitb@PL) image reconstruction require considerable computa-
tions, and the computational expense is one of the grededigals for practical utilization of MBIR methods.
Ordered-subset©g) algorithms, also known as block-iterative or incremegtaldient methods, are popular in the field of
statistical image reconstruction due to their significantiederation in initial iterations. The basic idea of OS noelis to
group the measurement data into an ordered sequence ofsabséocks and utilize only one subset of the data for each
update instead of using the entire measurements. Unregpda®S reconstruction methods are used routinely for PET an
SPECT scand.For regularized image reconstruction problems, conveati®S algorithms calculate the gradient of the
regularizer for every subset updétésor large problems with large number of subsets, such asloeam or helical CT
image reconstruction, calculating the gradient for eatfssuupdate can be very computationally expensive.

In this paper, we propose a new OS algorithm that is derivewh foptimization transfer principles and that allows us to
compute the gradient of the regularizer less frequentlye pitoposed method reduces computational cost with littke im
pact on the convergence rate leading to an overall accieleratVe apply the proposed algorithm to penalized weighted
least squaredP\VLS) image reconstruction for cone-beam X-ray computed toaqutgy CT). The method easily could be
adapted for other statistical models.
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2. METHODS
2.1 Ordered-Subsets (OS) algorithms

For most penalized-likelihood image reconstruction peais, the objective function and its gradient can be rewrit®
the following partially separable fornfs:

M M
U(m) =Y Un(@), Vol(m)= ) Volp(a)

m=1 m=1

where typically¥,, (x) corresponds to a subset of the projection data. Most iteraligorithms use the gradient of the
objective function to obtain a minimizer, and many can betemias the form

() = g anDo(z("))Wm U(z™), Q)

wherea,, > 0 is a relaxation parameter add, is a scaling matrix, which is typically diagonal. For mangaithms, the
empirical findings have suggested that in early iterations, can replace the gradient of the entire objective funatiith

that of only a part of the objective function and still haw@*1) be better tham:(™ but with less computational cost. Such
methods are called incremental gradient methods in thenggttion literatureé®:” The term ordered-subsets has been used
in tomography fields, because only a subset of projections/ere used in the update steps and the ordering of the views
is important>48 For (™) far from the minimizerz, if we select the subsets to be “balanced” in some apprepseanse
then the following conditions hold:

VeUi(x) 2V, Us(x) - 2V, Upy(x),

or equivalently,
VieU(x) = MV, U, (x), VYm. (2

Thus, instead of (1), a typical OS algorithm has the form showTable 1.

Table 1. Ordered-subsets Algorithm

Initialize z©
forn=0,1,---,
(M) - = p(m0)

form=1,--- M
w(n,m) — w(n,m—l) . an]\/[D(w(nm—l))Wm v, (w(n,m—l)>7

end
w(n+1) - = w(n,M)

end

We refer to each update in Table 1 as théh subset update, onth sub-iteration of theuth iteration. One complete
iteration is performed by cycling through all the subsetieied bym so that all data is utilized. In tomography problems,
the subsets are selected so that projections within eadesabrrespond to angularly downsampled projections. & wa
suggested that the ordering of the subsets that makes poojgcorresponding to one subset as “orthogonal” as plessib
to previously used projections is preferabi¥. Despite their success in speeding up the initial convergeainary
OS algorithms are not convergent in general but rather agpra suboptimal limit-cycle without relaxation, i.e., whe
a, = a. To address this issue, several families of convergent @Sajgorithms have been proposéd;*although those
modifications tend to slow down convergence. In this paperfaeus on the initial convergence characteristics of OS
algorithms rather than their final convergence properties.

Consider a PWLS objective function of the form

(@) =4(@) +R@), @)= ly - Azlly, Ri) =5 w(Caly), ©



where A is the system matrixg is the discretized version of the object being imagBd,= diag{w; } is a statistical
weighting matrix,3 is the regularization coefficient that controls the resohthoise tradeoffy, is the potential function,
and C is a matrix performs finite differences between neighboringels. The data-fit term can be rewritten as the
following separable form:

M
L) =) k(@)

wherel,, is the data-fit term associated with theh subset. OS algorithm for PWLS objective function is shown i
Table 2. Forseparable quadratic surrogates method, we can define the scaling matfxas follows:

D(z) = [Dr(z) + Dr(x)] .

Typical choice$ for D;, and Dy are D;, = diag(A’'W A1) and Dg(z) = diag (|C| diag(jw(Cz)|) |C|1) where
w(t) = 1(t)/t is Huber's curvaturé® Notice that we need to calculate the regularization gradeg R (z("™~1), for
every sub-iteration, which may cause each update to be eenpugtationally expensive when dealing with large problems
with many subsets.

Table 2. Ordered-subsets Algorithm for PWLS problem

Initialize z©
forn=0,1,---,
() - = x(n.0)

form=1,--- M
m(n,m) _ m(n,mfl) . OLHD(m(n,mfl)) (Mvm l'—nL (m(n,mfl)) +Wm R<m(n,m71)>) ,

end
w(nJrl) - = m(n,]\/[)

end

2.2 Ordered-subsetswith Double Surrogates
Consider a general PL objective function of the form

U(z) = t(x) +R(=), (4)

wherek (x) is the data-fit term anR(x) is the regularizer. We assume that the data-fit tefm) has a quadratic surrogate
of the form:

b(z) < ¢p(a; @) = L(&) +V £(2)(z — &) + %(a} — &) Dy (&)(x — &), Vi,

with an appropriate diagonal matri2;,. We also assume the regulariZ@r(x) has a quadratic surrogate of the form:

1
R(@) < ¢r(z;2) = R(2) +VR(@)(z — 2) + 5 (¢ — 2)'Dr(z)(z — 2), V,
with an appropriate diagonal matri®z. Then we define the following double-surrogate function:
O(x;&,2) = dr(2; &) + Pr(2; T). ®)

By construction, this quadratic surrogate has the follgwroperties:

U(x) = o(zz )
U(x) < o¢(z;x,2), VI,

These properties generalize those of usual optimizatarster method& 17 For subsequent use, note that from (5):

Ved(x;Z2,Z2) = VL(Z)+Dr(Z)(x — &) + VR(Z) +Dg(Z)(x — &),



so the minimizer of the double surrogate function is givefodews:

argmmin ¢(x; &, &) = [D(Z) + Dr(z)] ™ (DL(2)Z + Dp(2)E — V(&) —VR(Z)).

A standard optimization transfer algorithm works as fokow

™D = argmin ¢(xz; ™, x™)

x

= 2™ — Dy (™) + Dp(x™)] " (VL(x™) +V R(z™)).

One can show this also decreagesnonotonically, i.e. ¥ (x(™*+) < ¥(2(™). Furthermore, this algorithm converges
under suitable condition’$. For the case odeparable quadratic surrogates (SQS), usually this type of algorithm converges
undesirably slowly. The conventionabrdered-subsets (OS) approach to accelerate convergence is to make the folipwin
approximation:

V(&) = D, Vi, (z),

wheret,, is the data-fit term corresponding to theh subset of the projection views, add,, is a suitable diagonal
matrix, which often simply iS\/ I for M subsets as suggested in (2). Using this approximation, fieedine following
approximate surrogate function:

O ,2) 2 L&) + Dy Vb (@)@ — &) + 5 (@ — &) Du(@)(@ — #) + on(w: D).

For a conventional regularized ordered-subsets methednthimization step for each subset is given as follows:
™™ = argminfbm(w;:n("””_l),:v("”m_b) (6)
x
_ w(n,m—l) _ [DL(iL'("’m_l)) + DR(J’(”’m_l)ﬂ -1 (DmWL(QZ(”’m_D) _,'_W R(:L'(”’m_l))> ,
m(n,0> ‘= w(n), w(n-‘rl) c = w(mM)’

form=1,..., M.
This iteration is undesirably slow because it computes dgeilarization gradien¥ R for every subset. To reduce this
expense, we propose to exploit the generality of the doubtegate (5) by using the following novel update:

™™ = argmin ¢y, (x;x™" D, 2™) (7)
@

Dy(x™m b ™) (DL(m(”’mfl’)ac("’mfl) + Dg(z™)x™ — DmVL(m("’m*D) ~VR(z"™))

= M = Dy (@D ™) | D, V(@™ D) £V R@™) + Dy (x™)(@™m D — z™)

new term

whereDy (z™™~ b, &™) = [Dg(x™™™ D) + DR(gc””)]_l. This new iteration (7) utilizes thgame regularizer gradi-
ent for all subsets. Compared to (6), the updates in (7) dte gmilar except for an extra term that compensates for not
updating the regularizer gradient. Table 3 summarizesiegsed algorithm. It requires storing the previous imalg .

In above description, we updated the regularizer gradiehyt after all subsets were updated. Obviously, the regularizer
gradient can be updated as frequently as needed and we deaaipdate frequency d$; (see algorithm in Table 3).
Updating the regularizer gradient less often will reduae ¢bmputational cost at the expense of the convergencenrate i
early iterations.

The proposed algorithm was evaluated on a PWLS image recotistr problem for cone-beam X-ray CT. We have
investigated the trade-off between the update frequendyr@computational expense per iteration.



Table 3. General PL Ordered Subsets Method with Double Surrogate

Initialize ()
forn=0,1,---,
w(n) c = m(n,0)7 mlast f = m(n)

form=1,--- M
if mod(m —1,Uy) =0
wlast — m(n,m—l))

end
(™™ = arg min ¢,, (m; b, mlaSt)
X

end
m(n—i—l) - = w(n,]\/l)

end
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Figure 1. Images of (a) XCAT phantom and (b) FBP reconstructiorC@r)verged Imagex(>) from cone-beam CT data with 164
projection views.

3. RESULTS

The proposed algorithm was investigated on a 3D cone-beaim@ge reconstruction problem with limited view angles.
The XCAT phanton® was used as a static object, and the image was reconstroceili2x 512 x 50 grid with pixel
sizeA, = Ay =0.9766 mm andA, = 0.625 mm.

We simulated a 3rd-generation axial cone-beam CT systamy tisé separable footprint projectSrThe simulated system
hasN, = 888 channels and@V; = 32 detector rows spaced iy, = 1.0239 mm andA,; = 1.09878 mm per view, and 164
evenly spaced view angles over 36Which corresponds to an undersampling factor of 6. Thecsotar detector distance
was 949 mm, and the source to rotation center distance wasB#1We also included a quarter detector offset in the
channel direction to reduce aliasing.

For the edge-preserving regularizer, we used a certaigd penalff to obtain more uniform resolution and a g-
Generalized Gaussian MRF (g-GGMRFjs the penalty function to provide edge-preserving regqaar The regular-
ization parametef was selected such that the target PSF has a full-width anfetimum (FWHM) of approximately 1.4
mm2° We generated the noisy sinogram with Poisson noise, andwesigtitingw; = exp(—[Ax];).

To assess the convergence speed of the proposed methodmpated the normalized mean squared difference between
the image estimate at thgh iteration,z,,, with both the fully converged solution® and true image,%"¢. We calculated

X°° using consecutive steps of ordered-subsets with decgeasmber of subsets. We used 41, 10, and 1 subsets with 100,
100, and 1000 iterations respectively.

This type of “relaxed” OS is guaranteed to converge becawesérial stage uses just 1 subset for which (6) is convergent.
Fig. 1 shows the images of true phantom, Filtered Back Plioje¢FBP) reconstructiof? and fully converged image
(x*°). For the FBP reconstruction, the ramp filter was associaidda Hanning apodization window of 2048-point in
length to attenuate the high frequency noise. Due to limiteet angles, conventional FBP reconstruction, which waslus
as the initial condition for our OS reconstruction, showegese streaking artifacts compared to the true phantom. dlhe f
converged image has much less artifacts, thus illustrdtingoenefits of statistical image reconstruction in limiéelv
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Figure 2. Convergence rates at each iteration for different regatarjgdate frequency. 0S-41-DS-n indicates OS with 41 subsets and
Uy =n, and “n = all” means only updating once after all subset updatesoaee @a)x™ with respect tac> and (b)z™ with respect
tO Xtruc

angle problems.

We divided the projections into 41 subsets, which corredpda 4 views per subset. This is a rather aggressive salectio
compared to conventional choices to try to accelerate egemee significantly.

The regularizer gradient was updated at different freqesrio see its effect to convergence and computation tinge.2Fi

illustrates that our proposed method gives similar rootmequare (RMS) diﬁerence#% Z;—Vd@f;n) — asj‘?o), as the
conventional OS even when we update the regularizer inénettyuper iteration.

On the other hand, Fig. 3 illustrates that the computatierpense required to obtain the same level of RMS differences
was reduced by the proposed method. With = 13, which gives the best result in this case, the proposed rdetho
converges about 3 times faster than the conventional OS bBgrueing the reconstructed image at the same time point,
Fig. 4 clearly shows that the proposed method is convergiatef. There exists tradeoff between convergence rates and
computational expense, and for our case calculating thaaeger gradient for every 13 subset updates gave the most
efficient results. For different problems, the optimal updaequency will differ. However, it is noticeable that egdless

of the update frequency, the proposed method is convergstgrfthan the conventional OS. As the problem gets larger an
the number of subsets increase, the computational expesrpagised to calculate the gradient of the regularizer bexsom
much more dominant. Therefore, we can expect substantigffite from our proposed method for such problems.

4. CONCLUSIONS

We presented a simple modification of the conventional O$iatethat allows the regularizer gradient to be less fredquent
updated. The method provides very significant acceleratioen applied to large problems with many subsets, such as
cone-beam or helical CT image reconstruction, while stiMding good reconstructed images.

Simulations demonstrated that a good reconstruction waithpatible quality was achieved within much less computatio
time. However, the reduction in the computational expenag depend on the size of the problem and the complexity
of updating the regularizer compared to the complexity ofvBrd and back-projection. When implemented on graphics
processing unit (GPU), the trade-offs may differ.

We only focussed on the initial convergence charactesisifcthe ordered-subsets method. Since the conventional OS
algorithm is inherently not globally convergent, neittethie proposed method. We can apply the double surrogatéadea
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Figure 3. Convergence rates versus time for different regularjmate frequency. (&)™ with respect tae> and (b)x™ with respect
to a:true

other block iterative algorithms like incremental optiation transfer (IOT), which is globally convergéft.
Further research will address the systematic way to deterthie optimal update frequency and extension of the idea to
other algorithms.
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Figure 4. Comparing the convergence speed of OSDS with differatgtegrequencies. Left column: Images at the same time point
(4000 sec after initialization). Right column: Absolute difference imagés respect tac(>.





