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Abstract—Statistical image reconstruction for X-ray CT can
provide improved image quality at reduced patient doses. An
important component of statistical reconstruction methods is the
regularizer. There has been increased interest in sparsity-based
regularization, typically using ℓ1 norms. The non-smooth nature
of these regularizers is a challenge for iterative optimization
methods and often causes slow convergence. Recently there
has been renewed interest in augmented Lagrangian methods
for such optimization problems, with certain variable splitting
approaches [1] including the alternating direction method of
multipliers (ADMM) [2]. Such algorithms have been applied
successfully to image restoration problems. This paper describes
an ADMM algorithm for iterative CT reconstruction using a
regularized, weighted least-squares (WLS) cost function. Not only
does ADMM accommodate non-smooth regularizers, but also
by choosing an appropriate variable splitting it uses an inner
iteration that is suitable for preconditioning using a circulant
matrix (FFT) based on a kind of cone filter. Simulation results
show that the proposed ADMM converges and that the cone filter
preconditioner accelerates convergence.

I. INTRODUCTION

One approach to statistical image reconstruction in X-ray

CT uses a regularized weighted least-squares (WLS) cost

function of the following form [3]:

P0 : x̂ = argmin
x

J(x),

J(x) =

M∑

i=1

wi

2
(yi − [Ax]i)

2
+ Ψ(x), (1)

where x = (x1, . . . , xN ) denotes the vector of N voxels of

the unknown 3D image, y denotes the X-ray CT projection

data, wi denotes the statistical weighting associated with

the ith ray, for i = 1, . . . , M , M is the number of rays,

A is the M × N system matrix and Ψ(x) is an edge-

preserving regularizer that controls noise while attempting to

preserve spatial resolution. The forward projection operation

is [Ax]i =
∑N

j=1 aijxj . There are two challenges that arise

when developing algorithms for minimizing this cost function.

The first challenge is that the Hessian of the data-fit term,

ATWA, is not shift invariant due to the statistical weighting

W = diag{wi}. The second challenge is that strongly edge

preserving regularizers, such as those based on total variation

(TV) [4] or those based on sparsity [5] are non-smooth,

precluding the use of conventional gradient-based optimization

methods. The algorithm described in this paper overcomes

both of these challenges.
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Many types of iterative algorithms have been proposed for

minimizing cost functions like J , including iterative coordi-

nate descent (ICD) methods [3], block-based coordinate de-

scent [6], ordered-subsets (OS) algorithms based on separable

quadratic surrogates (SQS) [7] and preconditioned conjugate-

gradient (PCG) methods [8]. For fast computation on multi-

processor computers, PCG-type methods appear to be the

most amenable to efficient parallelization because they update

all voxels simultaneously using all measurements. However,

developing suitable preconditioners is challenging for X-ray

CT because of the form of the Hessian:

∇2J(x) = ATWA + ∇2Ψ(x).

The enormous dynamic range of the weights {wi} causes the

Hessian ATWA of the data-fit term to be highly shift variant

[8]. Clinthorne et al. [9] showed that for unweighted least-

squares reconstruction, where W = IM (identity matrix of

size M ), one can precondition ATA using FFTs with a kind of

cone filter. This cone filter amplifies high spatial frequencies,

helping to accelerate convergence. But that cone filter is inef-

fective for PCG in the WLS case [8]. Delaney and Bresler [10]

considered a very special type of shift invariant weighting and

also demonstrated accelerated convergence, but for low-dose

X-ray CT the appropriate statistical weighting does not satisfy

the assumptions in [10]. Shift-variant preconditioners based

on multiple FFTs were proposed in [8] for 2D transmission

tomography, but never became popular due to their complexity

and never were investigated for 3D problems. As described in

the next section, the ADMM approach proposed here uses a

kind of variable splitting that separates the weighting matrix

W from the system matrix A, leading to an inner iteration

step that requires solving a system of equations of the form

ATA + αRTR for some regularization operator R. This

system is nearly shift invariant, so it is well suited to the kind

of circulant preconditioner proposed in [9] based on FFTs and

a type of regularized cone filter.

Another way to introduce a cone filter is the iterative

FBP approach [11], [12]. Initially these algorithms “converge”

rapidly compared to CG methods, but typically they do not

have any theoretical convergence properties and “too many”

iterations lead to undesirably noisy images. Furthermore it

is unclear how include regularization while ensuring con-

vergence. The ADMM proposed in this paper can use cone

filters in the context of regularized cost functions like (1),

while also providing a framework for establishing convergence

theoretically.

The challenges described above apply regardless of the

form of the regularizer. Additional challenges arise when
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one chooses regularizers that are strongly edge preserving.

One popular example includes total variation (TV) regular-

ization [4] Ψ(x) = λ
∑

j

√∑
k∈Nj

(xj − xk)2, where Nj

denotes a neighborhood of the jth voxel. The square root

function is non-differentiable at zero, precluding optimization

by conventional gradient-based methods, unless the square

root is modified by “corner rounding” approximations like√
x2 ≈

√
x2 + ǫ. Even with such modifications the Hessian of

the regularizer Ψ(x) will have very high curvature which can

lead to slow convergence rates for conventional gradient-based

methods. Regularizers based on sparsity are also challenging,

such as Ψ(x) = ‖Rx‖1, where R denotes an analysis operator

such as those based on wavelets. The ℓ1 norm again is

non-differentiable at zero, complicating optimization. Recently

there has been considerable interest in developing optimization

methods for image denoising and image restorations problems

with such regularizers, as well as for under-sampled image

reconstruction problems in MRI [13], [14]. Synthesis formu-

lations have also been studied [5] but recent comparisons

suggest that encouraging sparsity via analysis operators is

preferable [15]. The proposed ADMM approach, adapted to X-

ray CT from [2], accommodates a general class of regularizers

including both analysis and synthesis forms and includes

“conventional” edge-preserving regularizers [3].

II. ALTERNATING DIRECTION METHOD OF MULTIPLIERS

We consider a general regularizer of the form

Ψ(x) = λ

Nr∑

n=1

wnΦn

( L∑

l=1

|[Rl x]n|m
)

, (2)

where λ is the regularization parameter, {Rl}L
l=1, L ≪ Nr,

are Nr × N matrices that represent sparsifying-operators

(e.g., finite-differencing matrices, forward-transform-matrices

corresponding to different sub-bands of a wavelet frame, etc),

R = [RT
1 . . .RT

L]T and the weights wn > 0 ∀ n are chosen

so as to provide (nearly) uniform spatial resolution in the

reconstructed output [16]. The above form of regularization

includes TV, ℓ1-wavelets and edge-preserving regularizers.

To solve (1), we apply a splitting approach with auxiliary

variables that separate the different terms in J . We then refor-

mulate P0 as the following equivalent constrained problem:

P1 : min
x,z

{
f(z) =

1

2
‖y − u‖2

W + Ψ(v)

}
s.t. z = Cx, (3)

where z
△
= [uT vT]T ∈ RN1 represents the vector of auxiliary

constrained variables, N1 = M +NL, v = [vT
1 · · ·vT

L ]T with

vl = Rlx, l = 1, . . . , L, and C
△
= [AT RT]T is a N1 × N

constraint matrix. The specific form of C separates W, A and

R thereby simplifying optimization as explained next.

A. Method of Multipliers—Augmented Lagrangian Formalism

We use the classical framework of the method of multipliers

[17], specifically the augmented Lagragian (AL) formalism,

for handling the constrained problem P1. We first construct

an AL function

L(x, z,γ, µ)
△
= f(z) + γTΛ(z − Cx) +

µ

2
‖z − Cx‖2

Λ2 (4)

1. Select x(0) and µ, ν > 0 and set j = 0
2. Set u(0) = Ax(0), v(0) = Rx(0), η

(0)
u = η

(0)
v = 0

Repeat:

3. Compute u(j+1) = H−1
µ (Wy + µ(Ax(j) + η

(j)
u ))

4. Compute v(j+1) = {v
(j+1)
nl } using (14)

5. Obtain x(j+1) by applying (P)CG iterations to (12)

6. η
(j+1)
u = η

(j)
u − (u(j+1) − Ax(j+1))

7. η
(j+1)
v = η

(j)
v − (v(j+1) − Rx(j+1))

8. Set j = j + 1
Until stop criterion is met

Fig. 1. ADMM for Regularized X-ray CT Reconstruction

that constitutes a Lagrange multiplier term (with multipliers

γ
△
= [γT

u γT
v ]T ∈ RN1) and an augmented quadratic penalty

term with the penalty parameter µ > 0 and a symmetric

weighting matrix Λ ≻ 0. The AL scheme for solving P1
(and thus P0) consists of iterating the following steps [17]:

(x(j+1), z(j+1)) = arg min
x,z

L(x, z,γ(j) , µ), (5)

γ(j+1) = γ(j) + µΛ(z(j+1) − Cx(j+1)). (6)

An advantage of the AL formalism is that (5)-(6) may converge

to a minimizer without having to increase µ → ∞ [17].

Absorbing the multiplier term inside the quadratic penalty and

using η
△
= [ηT

u ηT
v ]T = − 1

µΛ−1γ, we write L (ignoring

irrelevant constants) as

L(x, z,η, µ) = f(z) +
µ

2
‖z − Cx − η‖2

Λ2 , (7)

so (6) becomes η(j+1) = η(j) − (z(j+1) − Cx(j+1)). In stan-

dard AL formulations (e.g., [2]), Λ = IN1 . But in transmission

tomography, the elements of A and R can differ by several

orders of magnitude, and it becomes crucial to balance the

sub-matrices in C. So we propose to use

Λ =

[
IM 0
0

√
νINL

]
,

which results in L(x,u,v,η, µ) = f(z)+ µ
2 ‖u−Ax−ηu‖2+

µν
2 ‖v − Rx − ηv‖2. Including ν > 0 does not affect the AL

formalism.

B. Alternating Direction Minimization

The potential advantage of the splitting (3) and the AL

formalism (4)-(6) is that L is amenable to alternating min-

imization (where L is minimized with respect to one variable

at a time while holding the others at their most recent

updates): This a numerically attractive alternative to the joint-

minimization in (6) as it decouples the minimization process.

So at the jth iteration, instead of (5)-(6), we perform:

u(j+1) = argmin
u

L(x(j),u,v(j),η(j), µ) (8)

v(j+1) = argmin
v

L(x(j),u(j+1),v,η(j), µ) (9)

x(j+1) = argmin
x

L(x,u(j+1),v(j+1),η(j), µ) (10)

η(j+1) = η(j) − (z(j+1) − Cx(j+1)). (11)

Convergence of (8)-(11) to a minimizer is ensured [18, Theo-

rem 8] provided that C has full column-rank. This is readily

ensured for most regularization operators R for CT.
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(a) (b) (c)
Fig. 2. Experiment with a 2D slice of a NCAT phantom: Zoomed versions of (a) Noise free phantom; (b) FBP reconstruction; (c) Sparsity-
regularized Reconstruction (also the solution x⋆ of P0).

Sub-problems (8) and (10) involve quadratic criteria (ignor-

ing irrelevant constants) and result in the following updates:

u(j+1) = H−1
µ (Wy + µ(Ax(j) + η

(j)
u )) and

x(j+1) = H−1
ν

(
AT(u(j+1) − η

(j)
u )

+νRT(v(j+1) − η
(j)
v )

)
, (12)

where Hµ = (W + µI) is a diagonal matrix that is easily

inverted. Using the constraint variable u has resulted in the

term Hν = (ATA + νRTR) that is independent of the data

(i.e., W) and can be “inverted” efficiently using PCG with

a circulant preconditioner that is a kind of regularized cone

filter. In our implementation, we applied 2 PCG iterations with

warm starting (i.e., to obtain x(j+1), PCG is initialized with

x(j)). Without u one would have ended up with a shift variant

matrix (ATWA+νRTR) that is difficult to precondition [8].

Using θn = {vnl}L
l=1, ζn = {ρ

(j)
nl }L

l=1 where ρ(j) =

Rx(j) + η
(j)
v , (9) decouples in terms of {θn}N

n=1 as

θ(j+1)
n =arg min

θn

{
λwn

µν
Φn (‖θn‖m

m) +
1

2
‖θn − ζ(j)

n ‖2

}
. (13)

This is a L-dimensional denoising problem that can be solved

either iteratively (using a general purpose gradient-descent

method) for a general Φn or exactly for some specific instances

of Φn and m [19]. For the special case of ℓ1-regularization

(Φn(x) = x, m = 1), (13) further decouples in to L 1D

problems whose solutions are given by soft-thresholding:

v
(j+1)
nl = soft{ρ

(j)
nl , λwn/µν}, l = 1, . . . , L, (14)

where soft(d, λ) = sign(d)max(|d| − λ, 0).
Based on (3)-(14), Fig. 1 presents our ADMM algorithm

for solving P0. With the exception of Step 5, all the steps

can be implemented exactly. Steps 3 and 4 are independent

and may therefore be executed in parallel. The parameters µ
and ν govern the convergence speed of ADMM and do not

influence the solution of P0. We used ν = 1
100

σmax{ATA}
σmax{RTR} ,

where σmax{A} is the maximum eigenvalue of A and µ =
median{wi} as they provided good convergence speeds for

ADMM in all our experiments.

III. RESULTS

We performed preliminary evaluations using 2D CT sim-

ulations and a 2D CT phantom scan. The proposed method

is readily applicable to 3D problems but our initial imple-

mentation is in Matlab so we focused on small 2D cases.

For Ψ, we used a ℓ1-regularization with finite differences
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Fig. 3. Experiment with NCAT phantom: Plot of ξ(j) as a function
time tj for MFISTA, and ADMM with unpreconditioned (ADMM-
CG) and preconditioned CG inner-iterations (ADMM-PCG).

and chose wn = [ATW1]n/[AT1]n [16]. To quantify the

convergence speed, we computed the normalized ℓ2-distance

ξ(j) = 20 log10(‖x(j) − x⋆‖2/‖x⋆‖2) between x(j) and x⋆

(a solution of P0) as a function of algorithm run-time tj .

We obtained x⋆ using the Monotone Fast Iterative Shrinkage

Thresholding Algorithm (MFISTA) [20] (with Chambolle-type

iterations [15] for the inner-step [20, Equation 5.3]) which is

a state-of-the-art method that does not require any “corner

rounding” to handle (2) and is directly applicable to P0. We

used a 12-core PC with 2.67 GHz Intel Xeon processors. We

used the FBP reconstruction as our initial guess x(0).

In the simulation, we used a 1024 × 1024 2D slice of the

NCAT phantom [21] and numerically generated a 888 × 984
noisy sinogram (with GE LightSpeed fan-beam geometry [22])

corresponding to a mono-energetic source with 2.5 × 104

incident photons per ray. We reconstructed 512 × 512 images

over a 65cm FOV. Fig. 2 compares standard FBP and sparsity-

regularized (x⋆) reconstructions. The regularized output has

less noise than the FBP output. Fig. 3 plots ξ for the

two versions ADMM-CG and ADMM-PCG corresponding

to unpreconditioned and preconditioned CG, respectively, for

Step 5. We also included MFISTA for completeness. In this

experiment, both versions of ADMM are faster than MFISTA

and ADMM-PCG converges to x⋆ faster than ADMM-CG.

We scanned a large CIRS phantom on a GE HD scanner

using a 80kVp source potential and a 150 mA tube current
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Fig. 4. Experiment with a 2D slice of a real phantom data: Zoomed
versions of (a) FBP reconstruction and (b) Sparsity-regularized Re-
construction (also the solution x⋆ of P0).

with a 1-second 360 degree rotation. We reconstructed a single

1.25mm thick slice from the 888 by 984 view sinogram. The

reconstructed images are 512 x 512 over a 50cm FOV and are

displayed in Fig. 4. The sparsity-regularized output has less

noise but exhibits blocky image-patches that are typical for ℓ1

regularization. It may be desirable to use a smoothed edge-

preserving regularization (e.g., Huber) to reduce such block-

artifacts. Fig. 5 shows ξ for this experiment. ADMM-CG is

slower than MFISTA, but ADMM-PCG is fastest among all

algorithms.

IV. SUMMARY & CONCLUSIONS

We have described a new iterative reconstruction algorithm,

Alternating Direction Method of Multipliers (ADMM), for X-

ray CT. ADMM can accommodate non-smooth regularizers

(like TV and sparsity encouraging approaches) as well as

conventional edge-preserving regularization. The method has

an inner step that involves solving a system of equations based

on ATA, and this step is amenable to preconditioning using

FFTs and a type of cone filter. Preliminary 2D CT results

show that the proposed algorithm (ADMM-PCG) converges

fairly rapidly and that the cone filter greatly accelerates the

convergence rate as predicted. The next step is to evaluate the

method with 3D helical and axial CT scans of patients and

compare it with other algorithms in the literature.
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