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Abstract-The complex system response of 3D position­
sensitive gamma-ray detectors complicates the model for 
the recorded measurements and makes exact expressions 
for detection performance intractable. This makes source 
detection performance difficult and expensive to com­
pute. Asymptotic analysis has the potential to simplify 
detection performance prediction with complex systems 
and has previously been applied to detection performance 
prediction with simulated gamma-ray detectors. In this 
work, we use asymptotic performance prediction methods 
to predict points on the receiver operating characteristic 
(ROC) curve for the illustrative task of detecting a Cs-137 
source in background with an I8-detector CdZnTe array. 
We assume that the source position, background spectrum, 
and background spatial distribution are known. Our results 
show that the asymptotic performance prediction method 
accurately predicts the empirically observed performance 
even with real data recorded with a real system. Our 
results also characterize the performance of the detector 
array for the task of source detection. The accuracy 
and computational efficiency of the asymptotic detection 
performance prediction method make it a viable alternative 
to empirical performance evaluation. 

Index Terms-Compton imaging, Detection, Perfor­
mance Prediction 

Gamma-ray source detection problems arise in se­

curity screening, nuclear nonproliferation, and medical 

diagnostics. Simple systems for radioactive source detec­

tion look for an increase in the rate of received photons 

due to a radiation source. More complex measurement 

systems use spatial and spectral information to achieve 

better performance, but these systems often have a com­

plicated system response, making it difficult to compute 

detection performance analytically. 

In this work, we quantify detection performance in 

terms of the receiver operating characteristic (ROC) 

curve, which is the probability of detection as a function 

of the probability of false alarm [1]. Previous work 
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that characterized the detection performance of garnma­

ray detectors relied on empirical ROC calculation, e.g., 

[2], [3]. Empirical ROC calculation is computationally 

expensive and provides only limited intuition about 

how detector or environment parameters affect detection 

performance. 

Asymptotic ROC prediction is a computationally ef­

ficient alternative to empirical ROC computation for 

likelihood-based tests, or tests that are functions of 

estimates obtained by maximizing a modeled likelihood. 

We developed asymptotic approximations for the distri­

butions of likelihood-based estimates in [4], and used 

these approximations to predict detection performance 

in the presence of model mismatch. It was shown in 

[4] that the asymptotic performance prediction method 

yields more accurate predictions in terms of mean­

square error than empirical methods, especially when 

few measurements are available. 

The simulation results of [4] do not demonstrate that 

the proposed method can accurately predict the perfor­

mance of real detectors. In this work, we show that the 

performance prediction method that accounts for model 

mismatch developed in [4] can accurately predict source 

detection performance with a real Compton imaging 

system. To our knowledge, this work is the first to 

apply an asymptotic performance prediction method to 

characterize the performance of the source detection task 

with a real gamma-ray imaging system. 

In addition to demonstrating the practical utility of 

the asymptotic performance predictions of [4], this work 

serves as an example application of the asymptotic 

performance prediction method to practical problems. 

We use the asymptotic method to predict the probability 

of detection as a function of scan time with a fixed 

false-alarm rate for various source-ta-background ra­

tios. These examples demonstrate how the asymptotic 

performance prediction method can be applied to evalu­

ate the performance of real detectors in the field. 

Demonstrating the accuracy of the asymptotic perfor­

mance prediction method with real data is significant 

because there is more model mismatch than in the 

simulated case. For example, Doppler broadening [5] is 

not simulated in [4]. Room-temperature pixellated semi­

conductor detectors, including the detectors used in this 
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work [6], have an area near the anode where interacting 
photons are not detected. To simplify computation, the 
model used in this work, based on [7], does not account 
for this non-ideal detector behavior. Furthermore, crystal 
defects can cause errors in the measured interaction 
positions that are not accounted for by the model. Our 
results show that the asymptotic prediction method is 
reasonably accurate in the scenarios considered despite 
the system response approximation and failure to account 
for all non-ideal detector behavior. 

The contributions of this work are: (i) to show that the 
asymptotic performance prediction method developed in 
[4] gives reasonable predictions with a real system, (ii) 
to illustrate practical uses of this method, and (iii) to 
provide representative detection performance figures for 
a real CdZnTe gamma-ray imaging system. This paper 
is organized as follows: §I describes the experimental 
setup, §II shows predicted and empirical performance 
of the detector for various tasks, and §I1I gives our 
conclusions and plans for future work. 

I. METHODS 

We recorded gamma-ray interaction data with a 
Compton imaging system consisting of an 18 detector 
CdZnTe array similar to the system described in [8]. We 
obtained list-mode measurements of the natural back­
ground in a room with concrete walls, and measurements 
in the same position with a Cs-137 source located 1.83 
meters from the front of the detector. We use the events 
obtained from these measurements to evaluate the source 
detection performance of the system. 

A. Measurement Model 

There are many aspects of the gamma-ray source 
detection problem that one can model. The system model 
and sensitivity are necessary for the likelihood-based 
detection methods used in this work. We also model the 
background spatial and energy distributions because this 
improves detection performance when the modeling is 
reasonably accurate. Background modeling is beneficial 
in applications where the detector and environment are 
stationary. 

1) Model Parameters: There are several parameters 
that characterize the gamma-ray source detection prob­
lem. We characterize the source by its intensity Q with 
units of counts emitted per unit time and position! 
cp E <P. In the 3D far-field with a known source 
energy, the set <P could be [0,27r] x [0,7r], representing 
all possible azimuth and polar angles on a sphere. We 
parameterize the background intensity by the background 
count rate Ab with units of gamma-ray counts recorded 

1 cP could also denote a vector containing both spatial position and 
energy 

per unit time. We assume that the background spectrum 
is known. Let () be the vector of all parameters, where 
() lies in the d-dimensional parameter space 8. In what 
follows, we assume that () takes the form: 

(1) 

for which d = 3. Throughout this work, we assume 
that the source position in space and energy cp and the 
background intensity Ab are known. Let the modeled sen­
sitivity s( cp) approximate the probability that a photon 
emitted from a source positioned at cp is recorded. We 
model the total rate of recorded photons by the sum of 
the rates of recorded source and background photons 

(2) 

2) System Model: We use the model given in in [4] to 
describe the system used in this work. Let r be a vector 
of recorded attributes associated with a single photon 
interaction. In a position-sensitive Compton detector, 
the attribute vector r contains the interaction positions 
and deposited energies for a single interacting photon. 
In fixed-time mode, the number of recorded photons 
J is reasonably modeled as a random variable, where 
J rv Poisson(J(())). The mean number of recorded 
photons J(()) is given by 

J( ()) � A( ())T, 

where T is the scan time. Let r = [rl' r2, ... , r J] be a 
list of the recorded attributes for all interacting photons 
during a fixed-time scan. By the statistics of list-mode 
data [9], a reasonable model for the list of recorded 
attributes r is 

J 
P (r; ()) � e-rX(B) [TA(())]J jJ! II p(rj; ()). (3) 

j=1 
We model the probability density of the individual 

recorded attributes p (r; ()) using the approximate model 
in [7], which makes approximations to achieve computa­
tional efficiency. We use this approximate model because 
it results in reasonable detection performance and is 
much faster than computing the true density exactly. 

Let Ps (r; cp) denote the modeled density of a recorded 
attribute vector r given it originated from a source at 
position cp and let PB (r) denote the modeled density of 
a recorded attribute vector r given that it originated from 
the background. Note that ps(r; cp) depends only on the 
source position, and PB (r) does not depend on any of 
the parameters in (1). 

We model the overall distribution of recorded at­
tributes as a mixture of ps(r; cp) and PB(r) given by 

_ ( . ()) = 

Qs(cp)ps(r; cp) + AbPB(r) 
p r, QS(cp) + Ab . (4) 
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3) Sensitivity Model: We computed the sensitivity 

model s ( cfJ) by simulating the detector system in a uni­

form background using GEANT4 [10]. We used simple 

back projection [11] to reconstruct the sensitivity as 

a function of position and energy. We normalized the 

sensitivity so the sensitivity to the source at its true 

position and energy is one. This method of computing 

the sensitivity is approximate and it too may be a source 

of model mismatch. 

4) Background distribution: The simulated results in 

[4] assumed a monoenergetic source and background. 

The natural radiation background is polyenergetic, so 

we discretize the energy spectrum into 80 uniformly­

spaced bins from Oke V to 2000 ke V. We assume that 

the source is monoenergetic and that its energy is known. 

We assume that the shape of the background spectrum 

is known, and perform detection with and without the 

assumption that its intensity is known. We examine 

the performance difference between a uniform spectral 

model and a spectral model based an independent mea­

surement of the same environment. 

We measured the natural background using 10,000 

recorded background photons with two or more inter­

actions. We used an expectation maximization (EM) 

algorithm [12] to reconstruct the emission density as a 

function of energy. Figure 1 shows the modeled proba­

bility density of recorded energy given that the photon 

originated from background p (cfJl B) computed using the 

measured background spectrum. 
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Fig. 1: Estimated probability density function for the 

incident energy of recorded background photons. This 

density was estimated using 10,000 recorded events from 

the natural background. 

B. Detection Methods 

We analyze the performance of the source intensity 

test (SIT) [13] applied to the gamma-ray source detec­

tion problem. The SIT is based on the quasi maximum­

likelihood (QML) estimate for the source intensity. A 

QML estimator is equivalent to the ML estimator if the 

modeled distribution of the observations is equal to the 

true distribution. The QML estimate for the parameter 

vector 0 is defined as [14] 

- f::, OT = argmax 10gp(r; O). (5) 
BEe 

We use the SIT because experiments showed that its 

performance was superior to the generalized likelihood 

ratio test (GLRT) when applied to simple systems [13]. 

In the absence of model mismatch, the parameter 

estimate vector OT converges in probability to the true 

parameter values as the scan time goes to infinity. 

However, when model mismatch is present, the estimates 

may converge to some value that is not the true param­

eter. For example, when there is no source present, the 

true source intensity is zero, but model mismatch may 

cause the source intensity estimate to converge to some 

nonzero value. To precisely define the value to which 

the parameter estimates converge, we first define the 

expected log-likelihood by 

9 (0) � E [log p (r; 0)], (6) 

where the expectation is with respect to the true distri­

bution and R is the set of all lists of recorded attributes. 

The parameter estimates converge to the asymptotic 

mean, which is given by 

p, � arg maxg (0) . 
BEe 

(7) 

The asymptotic mean is an important component of the 

performance prediction method. 

The source intensity test (SIT) [13] for detecting the 

presence of a radiation source of unknown intensity 0: is 

given by 

(8) 

where CiT is the QMLE for 0:, which is the first element 

of On and 'Y is a threshold chosen by the user to obtain 

the desired false alarm rate. The user postulates that 

a source is present, or HI is true, when the source 

intensity estimate CiT is greater than the threshold 'Y. The 

distribution of CiT determines the threshold value that 

satisfies the desired false alarm rate, but the distribution 

of CiT is intractable in the gamma-ray imaging problem. 

C. Performance Measure 

We state our results in terms of the probability of 

detection as a function of scan time in contrast to 

previous works that state performance prediction [2], 

[4], [13] in terms of ROC and the area under the ROC 

curve (AVC). We choose to fix a false alarm probability 

and examine how the probability of detection varies as a 

function of scan time because the probability of detection 

is arguably more important to the practitioner than the 

AVe. 
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D. Performance Prediction 

We predict the ROC by approximating the distribution 

of an justified by Theorems 1 and 2 of [4], by 

- approxN (_ 1,(",( _) ) 
aT '" IL[lJ' -:;:. u J.I. [l,lJ ' (9) 

where P[lJ is the first element of ji., which corresponds 

to the asymptotic mean of the source intensity. The 

covariance is 

E. Source Intensity Variation 

We recorded data with and without a source present 

to predict detection performance. We achieved the de-

sired source-to-background ratio by combining events 

from the measurements with and without a source. For 

example, the measurements of a Cs-137 source placed 

1. 83 meters from the detector contain approximately 

48% source events and 52% background events. We 

observed the recorded background count rate Ab to be 

approximately 9114 counts per minute using a mea-

surement of 90.7 hours. The observed count rate of 

E(9) � 8-1 (9) G (9) 8-1 (9), 

where 

G (9) � AsE [ (Velog P (r; 9) + Velog,X (9)) 

(10) the measurement containing both source and background 

events is 18984 counts per minute, which we obtained 

from a measurement of 121 minutes. We combined 

events from the lists obtained with and without a source 

explore a range of source-to-background ratios. 

and 

( V e log P (r; 9) + V (;I log ,X (9) ) T ] , 
(11) 

8 (9)�-As V� log,X( 9) + V�'x( 9) 
-AsE [V� log p (r; 9)] , (12) 

Ve is the column gradient with respect to 9, V� is 

the Hessian with respect to 9, As is the true recorded 

count rate, and expectations are with respect to the true 

distribution. If the source position ¢ and background 

intensity Ab are known, then E(9) , G (9) , and 8 (9) are 

scalar, otherwise they are matrices. 

We used the following procedure to apply the asymp­

totic approximation in (9) for detection performance 

prediction. 

1) Obtain 10,000 recorded events with a source 

placed 1.83 meters from the front of the detector. 

2) Evaluate the asymptotic mean P[lJ by solving (5) 

using the recorded events. 

3) Evaluate the asymptotic covariance E(ji.) using 

(10), (11), and (12). Use Monte Carlo integration 

with the recorded data to evaluate the expectations. 

4) Compute the true count rate As by averaging the 

count rate over two hours. 

5) Obtain 10,000 recorded events with the detector in 

the same position as step 1 but without a source 

present. 

6) Repeat steps 2-4 in the absence of a source. 

7) Use the computed asymptotic means and covari­

ances to compute the approximate distribution of 

aT with and without a source present. 

8) Use the approximate distributions to compute the 

probabilities of false alarm and detection. 

F. Empirical Calculations 

We compared the predicted performance to the em­

pirical performance in terms of probability of detection, 

or equivalently, ROC. We computed the empirical per­

formance by simulating 100 scans with a source present 

and 100 scans without a source present. This method is 

similar to the method used in [2], [4], and [13]. We used 

the following procedure to simulate a scan: 

1) Draw the number of recorded source counts from a 

Poisson distribution with mean rat st, where st is 

the true sensitivity, and rat st is the mean number 

of received counts from the source. 

2) Draw the number of recorded background counts 

from a Poisson distribution with mean equal to the 

background count rate r Ab, which we measured 

over a period of two hours. 

3) Generate a list of events that contains rat st 

source counts and r Ab background counts using 

the recorded events in the presence and absence 

of a source. Combine the events from the mea­

surements with and without a source to achieve 

the proper mean number of source counts. 

4) Solve (5) using the list generated in the previous 

step. 

After simulating 100 scans with a source present and 100 

scans without a source present, we used the empirical 

source intensity estimates obtained in step 4 to compute 

the empirical probabilities of detection and false alarm. 

This empirical calculation method requires simulation 

of 200 scans for each point on the graph of probability 

of detection versus scan time. In contrast, the asymptotic 

prediction method based on (9) requires one computation 

with approximately 20,000 recorded events for all scan 

times because the asymptotic mean is invariant to scan 

time and the asymptotic covariance in (10) scales as the 
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inverse of the scan time. Thus, computing detection per­

formance as a function of scan time with the asymptotic 

prediction method requires much less computation than 

computing the performance empirically. 

II. RESULTS 

We computed the probability of detection as a function 

of scan time when the source position, source energy, and 

background spectrum are assumed known. We examined 

the case of a known background intensity. We found 

that the performance predicted using (9) agreed well 

with the empirical performance in the known background 

case. Additional results with unknown background and 

background spectrum model mismatch are given in [15]. 

We examined the problem of detecting a Cs-137 

source when the background spectrum is modeled by 

the measured background spectrum in Figure 1, and 

the background intensity is assumed known. Figure 2 

shows the probability of detection as a function of scan 

time for probability of false alarms of 5% and 10% 

with source intensities of 7.6 counts per second and 

15.2 counts per second. The background intensity is 152 

counts per second. The agreement between the empirical 

and predicted probability of detection is better with the 

higher source intensity for both false alarm rates. This 

is likely due to the fact that the Gaussian approximation 

for the distribution of the source intensity estimate (9) 

improves as the number of recorded counts increases [4]. 

III. CONCLUSION AND FUTURE WORK 

We applied the asymptotic detection performance pre­

diction method developed in [4] to performance predic­

tion of a real system with real recorded data. Our results 

showed that the asymptotic prediction method accurately 

predicts detection performance for modest scan times 

when the background intensityis known. 

This work serves as an example application of the 

theory of [4] to performance characterization of real 

systems. Our results show that the asymptotic per­

formance prediction method gives reasonably accurate 

performance predictions that one can use to determine 

sensor placement, configuration, or viability. 

We considered the case where the source position 

and energy are known. Future work would investigate 

the accuracy of the detection performance prediction 

method of [4] when the source position and energy are 

unknown. The unknown energy case presents additional 

challenges because in a typical application, only a set 

of possible sources are of interest, and each source may 

emit gamma-rays with multiple energies. The prediction 

method of [4] only applies to continuous parameters, but 

an unknown isotope is a discrete parameter. Future work 

would extend the performance prediction method to the 

case of a discrete parameter. 
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Fig. 2: Probability of detection versus scan time for 

detecting a Cs-137 source in a natural background with 

intensity 152 counts per second using an 18 detector 

CdZnTe array with various false alarm rates and source 

intensities. The background shape and intensity are as­

sumed known and the background shape is modeled 

using a prior spectral measurement. 

We also assumed that the background spectrum, spa­

tial distribution, and intensity are known. We used this 

assumption because background shape and spectrum 

estimation is a high-dimensional problem. Future work 

would investigate methods of reducing the dimensional­

ity of the background estimation problem so reasonable 

estimates could be obtained with a reasonable amount 

of data and computation. 
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