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ABSTRACT 

Iterative algorithms for X-ray CT image reconstruction of­
fer the possibility of reduced dose and/or improved image 
quality, but require substantial compute time. Reducing the 
time will likely require algorithms that can be massively par­
allelized. Ordered subsets (OS) algorithms update all voxels 
simultaneously and thus are amenable to such parallelization. 
We present an new monotonic algorithm for regularized im­
age reconstruction that is derived using optimization trans­
fer with separable quadratic surrogates (SQS). The new algo­
rithm accelerates the convergence rate by adapting reduced 
curvature values for the regularizer that were proposed by Yu 
et al. [1] for coordinate descent algorithms. We further accel­
erate the algorithm using ordered subsets. Simulation results 
show that the proposed OS algorithm converges faster than 
the traditional OS algorithm for X-ray CT reconstruction from 
a limited number of projection views. 

Index Terms- Regularized image reconstruction, opti­
mization transfer, separable quadratic surrogate, ordered sub­
sets, optimum curvature, iterative image reconstruction. 

1. INTRODUCTION 

X-ray CT image reconstruction using regularized cost func­
tions requires iterative algorithms. Both coordinate descent 
algorithms [1,2] and ordered-subsets (OS) algorithms [3,4] 
have been investigated, among others. Computation time re­
mains a significant impediment to practical use of such algo­
rithms, and it is likely that practical algorithms will require 
massive parallelization. We focus here on OS methods be­
cause they update all voxels simultaneously, facilitating par­
allelization. 

OS methods usually are derived using optimization trans­
fer [4], where a complicated cost function is replaced by iter­
ative minimization of simpler surrogate functions. Optimiza­
tion transfer derivations often begin with separable surrogate 
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functions that facilitate simultaneous voxel updates. Exam­
ples include expectation-maximization (EM) algorithms [5, 
6], the convex algorithm [7], and separable quadratic surro­
gates (SQS) [4]. Such algorithms can readily accommodate 
non-quadratic edge-preserving regularizers and can enforce 
nonnegativity constraints. However, generally they require 
more iterations to converge than coordinate descent methods, 
particularly for high spatial frequencies [8], so it is desirable 
to accelerate them. 

We can improve the convergence rate of an optimization 
transfer method by reducing the curvature of the surrogate 
functions, provided the monotonicity conditions are retained. 
Recently, Yu et al. [1] proposed a new curvature for edge­
preserving regularization and applied it in a coordinate de­
scent algorithm. Here we show that this curvature accelerates 
the original OS algorithm described in [4], particularly for re­
construction from limited projection views. 

2. PROBLEM 

The image reconstruction problem is to estimate an image 
x E ffi, N from noisy measured transmission data Y E 
ffi,M. A simplified model for the measurement statistics is 
Vi rv POisson{bi e-[AX]i + rd for i = 1, . . .  , M, where 
bi, ri are known nonnegative constants, and A = {aij} is 
a M x N system matrix corresponding to forward projec­
tion. For simplicity of presentation, we focus on the log 
data Yi = log(bd(Yi - ri)), for which we can use the linear 
model Y = Ax + €, where € E ffi,M denotes additive noise. In 
limited view tomography, under-sampling artifacts often are 
a dominant factor of image degradation. 

We estimate x by minimizing a regularized cost function: 

x � argmin \II (x) 
x 

1 
\II(x) � Q(x) + f3R(x) = 211y - Axll� + f3R(x) 

M K 

= L qi([Ax]i) + f3 L '¢k([CX]k) (1) 
i=l k=l 
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edge-preserving potential function. The K x N matrix C = 

{ Ckj} is a finite differencing matrix. The regularization pa­

rameter f3 balances between the data fitting term Q( x) and the 

penalty term R(x). The diagonal matrix W = diag{wi} pro­

vides statistical weighting, and Ak provides optional weights 

for the regularizer. 

3. ALGORITHM 

This section derives separable quadratic surrogates (SQS) for 

both the data-fit term Q(x) and the regularizer R(x). 

3.1. SQS for data-fit term Q( x) 

For completeness, we repeat the arguments in [4,9]. Using 

the method in [6], we rewrite [AX]i as follows: 

N N 
[AX]i = L aijXj = L 7fij (a�j (Xj - xjn») + [Ax(n)]i) , 

j=l j=l 7f,) 
(2) 

where I:f=l 7fij = 1 and 7fij is nonnegative and zero only if 

aij is zero. Using the convexity inequality: 

Thus, a separable surrogate for Q( x) is 

N 
Q(x) � ¢>�)(x) � L¢>g:j(Xj) (4) 

j=l 
M 

¢>g:j(Xj) � L 7fijqi (a�j (Xj - xjn») + [Ax(n)]i) ' (5) 
i=l 7f,) 

We choose 7f .. � � = 
aij where a·· > 0 for the ') I:l=l ail ai. ' ') -

projection matrix A. Then the surrogate ¢>�)(x), which is 

both separable and quadratic, can be rewritten as follows: 

¢>�)(X) = Q(x(n») + VQ(x(n»)(x - x(n») 

+ �(x - x(n»), diag{ d� }(x - x(n») (6) 

whered� = �¢>�)(x) = I:f'!1 Wiaijai*· 
3 

3.2. SQS for reguJarizer R( x) 

3.2.1. Separable surrogate/or R(x) 

Similar to the derivation in Sect. 3.1, we first derive a sep­
arable surrogate for the regularizer R(x) given in (1). We 

adapt (4) to an arbitrary matrix C by letting 7fkj = �, 

where Ck* = I:f=l ICkjl. Assuming 1jJ(t) is convex, we have 

N 
R(x) � ¢><;:)(x) � L¢>��(Xj) (7) 

j=l 
K 

¢>�j(Xj) � LAkPkj(Xj -ri;»), (8) 
k=l 

wherepkj(t) � 1�:!I1jJ(�Ck*t),ri;) � xjn)_� c!. [CX(n)]k' 
Typically the regularization matrix C is sparse, so we can 

save computation by using the set Nj = {k = 1, ... , K : 
Ckj i- a}. Combining with the data-fit surrogate yields the 

overall separable surrogate 

¢>jn)(Xj) = ¢>g:j(Xj) + L AkPkj(Xj - ri;»). (9) 
kENj 

3.2.2. Separable quadratic surrogate/or R(x) 

The surrogate ¢> <;:) (x) is separable, but not quadratic. To 

simplify minimization, we design a quadratic surrogate for 

it next. The simplest design is to find an upper bound on the 

curvature of ¢> �j (x j), called the maximum curvature. Much 

smaller curvatures are derived in [10, Lemma 8.3, p.184] that 

are optimal when minimizing over the entire real line (see 

(13) below). However, the minimizer of a separable surrogate 

always lies in a finite interval, and this property provides the 

opportunity to use the method in [1] that yields even smaller 

curvatures that can accelerate the convergence rate. 

We assume that the potential function 1jJ(t) satisfies the 

conditions in [1, Thm 1], then Pkj(t) also satisfies these. Un­

der the conditions (10) below, the quadratic surrogate function 

for Pkj (t) can be defined as 

(n)(t) ( A (n») . ( A (n»)(t A (n») 1 (n)(t A (n»)2 Ukj = Pkj Ukj +Pkj Ukj -Ukj +2Skj -Ukj , 

where Lli;) � xjn) -ri;). We design the regularizer surro­

gate curvature ski) so that the surrogate ui;) (t) tightly satis­

fies the following conditions: 

Pkj(xjn) -rk;») = ui;) (xjn) -ri;») 
( (n») < (n)( (n») Pkj Xj - rkj _ ukj Xj - rkj , 

where U�n) = [u�in(n) u�ax(n)] is an interval containing ) ) ' ) 
the minimizer of ¢>jn) (Xj). This set is computed by find­

ing the smallest and the largest minimizers of the functions 

{¢>g:j(Xj), Pkj(Xj - ri;»), k E Nj}. The minimizer of 

¢>(n).(x·) is q(n) = x(n) _ 1 ....£...Q(x(n») and the mini-Q,) ) ) ) d!f 8xj , 
. 

f ( (n»). (n) Th 
min(n) d IDlzer 0 Pkj Xj - rkj IS rkj . en we set Uj an 

max(n) be th 
.. 

d ' . I f Uj to e IDlmmum an maxImum respective y o  
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{ (n) (n) k N} H ' U(n) th 
. % ' r kj' E j. avmg j , e optimum curvature 

sk;) of O'k;) (t) satisfying the conditions (10) is computed with 
the method in [1, Fig. 12]: {_�(n) .kj , 

t(n) _ � mm(n) kj - kj , 
A max(n) I....l.kj , 

l�k;)1 � min{I ��in(n)l, 1��ax(n)l} 
1��in(n)1 � min{l�k;)I, 1��ax(n)l} 
otherwise, 

(11) 

h A min(n).!i!. min(n) (n) A max(n).!i!. max(n) (n) w ere I....l.kj - Uj -rkj , I....l.kj - Uj -rkj • 

The optimum curvature sk;), which is the smallest curva­

ture of O'k]) (t) satisfying the conditions (10), is 

(n) _ (t(�) -.6. (�»)2 t(�) -.6. �)' kj -;-S kj - k3 k3 k3 k3 
{2 (Pkj(t�j»)-Pkj(.6.kj») _ Pkj(.6.�T)) �(n) ....i. 0 

Pkj (0), otherwise. 
(12) 

The traditional curvature in most previous work is found 
by computing sk;) for tk]) = -�k;) where ujn) = [-00, 00], 
and turns out to be 

. (�(n)) (n) _ Pkj kj 
Skj - A (n) , 

I....l.kj 

which is larger than the optimum curvature (12). 

(13) 

The quadratic surrogate function of the separable surro­
gate ¢y:'� (Xj) in (8) can be defined as 

,l.,R(n) ( ).!i!. '" \ (n)( (n)) 'l'SQS,j Xj - L.J AkO'kj Xj -rkj 
kENj 

(14) 

Then the overall separable quadratic surrogate function for 
R( x) can be written as follows: 

¢��n.J(x) = R(x(n)) + Y'R(x(n))(x - x(n)) 
+ �(x - x(n))' diag{ df(n) }(x - x(n)). (15) 

h dR(n) 82 ,l.,R(n)() " \ (n) w ere j = 7fX'J('I'SQS x = L.JkENj AkSkj • 3 

3.3. Iterative parallelized update for SQS 

To summarize the surrogate derivations above: 

w(x) � ¢�n4s(x) = ¢�)(x) + (3¢��n.J(x) 
= w(x(n)) + Y'w(x(n))(x - x(n)) 
+ �(x - x(n)), diag{ d)n) }(x - x(n)), (16) 

h d(n) dQ (3dR(n) B ,I.,(n) ( ) . 
dr ' w ere j = j + j • ecause 'l'sQs x IS qua atic, 

its unconstrained minimizer is easily derived to be: 

u�n) = argmin¢(n) . (u) = x�n) __ 1_�W(x(n)). J SQS,J J d(n) ax. U j J 
(17) 
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However, X)n+1) must be in the set ujn) to maintain the 
monotonicity, so we revise (17) to be: 

where the clip function chooses a nearest value in the inter­
val U;n) when U)n) falls out of the U;n). All voxels can be 
updated simultaneously using (18). 

3.4. Reducing the interval U;n) 
The algorithm can be further accelerated while preserving 
monotonicity by reducing the interval ujn) which in turn de­
creases the the optimum curvature (12). Define { [ (n) _ 1'min(n) (n) + 1'max(n)] (n) E U(n) [J�n) = 

Xj 'rfUj , Xj 'rfUj , Xj j 
J U�n), otherwise, J 

h Jmin(n) _ (n) min(n) Jmax(n) _ max(n) (n) w ere j - Xj - uj ' j - uj - Xj 
and'rf E [0,1] is a reduction factor. However, too much re­
duction can confine the update to a small interval, possibly 
slowing convergence. 

3.5. Ordered subsets 

Further acceleration is possible using ordered subsets, while 
possibly losing monotonicity [4]. We call the final algorithm 
the accelerated OS-SQS algorithm (A-OS-SQS). The algo­
rithm reduces to the accelerated SQS algorithm when the 
number of ordered subsets is one. 

4. RESULTS 

The algorithm is simulated with the phantom Fig. l(a). The 
projection space is 444 radial bins and 20 angles, and the 
reconstructed image is of size 256 x 256. The noisy sino­
gram data y was generated by the Poisson noise model. The 
FBP reconstructed image Fig. l(b) was the initial guess x(O) 
for the iterative reconstruction. The regularization parameter 
(3 = 0.25 and an edge-preserving hyperbola potential func-

tion'ljJ(t) = 5; ( Jl + 3(tjJ)2 -1 ) with J = 0. 0 05 was 
empirically chosen to produce a good image. The differenc­
ing matrix C had 1st-order differences in 2D. The parameters 
were chosen as Wi = exp( -Yi) ex: var(Yi) , Ak = 1 for hori­

zontal and vertical differences, Ak = � for diagonal differ­
ences. We reconstructed an image for each 'rf = 0.5, 0.25, 
0.125 and 1,2 and 4 ordered subsets. Image reconstruction 

included the nonnegativity constraint. The OS-SQS and A­
OS-SQS reconstructed images in Fig. 1 suggest that iterative 
image reconstruction can produce better images than FBP. 

The proposed method uses smaller curvatures than pre­
vious work, thus converging faster than the conventional OS. 
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Fig. I. (a) P hantom image, (b) FBP image x(O), (c) OS-SQS 
image x(330) and (d) A-OS-SQS image x(290) with 1J = 0 .25 
for 4 ordered subsets. The NRMS difference for both (c) and 
(d) is -30 [dB]. 

Fig. 2 plots NRMS difference [dB] between the current image 
x(n) and the converged image x after 3000 iterations, ver­
sus iteration. The results show that A-OS-SQS is about 15% 
faster than the standard OS-SQS. This is a modest improve­
ment, but the extra curvature computation required in (12) 
is small compared to forward projection. Fig. 2 illustrates 
that both reducing the interval uj n) and using ordered sub­
sets accelerate the SQS algorithm, as expected. However, the 
results show that reducing the interval too much slows down 
the convergence speed. We found that for densely sampled 
view angles, the acceleration was less significant because the 
reduced curvatures in R( x) are overwhelmed by the curvature 
ofQ(x). 

5. CONCLUSION 

We introduced the accelerated OS-SQS algorithm for regu­
larized image reconstruction. The new algorithm converged 
somewhat faster than the previous OS method, with a small 
increase in computation per iteration for calculating the new 
curvatures (12). The new algorithm, like previous OS meth­
ods, is amenable to massive parallelization. 
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