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ABSTRACT
X-ray CT images have various applications, including CT-

based attenuation correction (CTAC) for PET. Low-dose CT

imaging is particularly desirable for CTAC. Dual-energy

(DE) CT imaging methods may improve the accuracy of

attenuation correction in PET. However, conventional DE CT

approaches to sinogram material decomposition use logarith-

mic transforms that are sensitive to noise in low-dose scans.

This paper describes a DE reconstruction method based on

statistical models that avoids using a logarithm. We first

estimate material sinograms directly from the raw DE data

(without any logarithm), with mild regularization to control

noise and avoid outliers. We then apply a penalized weighted

least squares (PWLS) method to reconstruct images of the

two material components. We also propose a joint edge-

preserving regularizer that uses the prior knowledge that the

two material images have many region edges located in the

same positions. Preliminary simulation results suggest that

this iterative method improves image quality compared to

conventional approaches based on log data for low-dose DE

CT scans.

I. DUAL-ENERGY RECONSTRUCTION

I-A. Measurement model
Let μ(�x, E) denote the object’s linear attenuation coeffi-

cient (LAC) which depends on the spatial position �x and the

photon energy E . For m = 1, . . . ,M0, i = 1, . . . , Nd, the

CT measurement data ymi recorded by the ith ray for the

mth incident spectrum has the following ensemble mean:

ȳmi �
∫

Imi(E) exp
(
−
∫
Li

μ(�x, E) d�
)

dE + rmi. (1)

where
∫
Li

· d� denotes the line integral along the ith ray,

Imi(E) denotes the product of the mth incident source spec-

trum and the detector gain for the ith ray, and rmi denotes

additive background contributions such as room background,

dark current, and scatter. We assume that Imi(E) and rmi

are known nonnegative constants by [1]–[3].
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The measurements are finite, but μ(�x, E) is a continuous

function of �x and E . Thus, for reconstruction we param-

eterize μ(�x, E) using basis material decomposition [4] as

follows:

μ(�x, E) =
L0∑
l=1

Np∑
j=1

βl(E)bj(�x)ρlj , (2)

where βl(E) denotes the energy-dependent mass-attenuation

coefficient (MAC) of the lth material type; we use tabulated

MAC values for water and bone [5]. {bj(�x)} denotes unitless

spatial basis functions such as square pixels, and ρlj are

unknown density of lth material type at spatial location j.

In DE CT, we usually choose M0 = 2, L0 = 2.

Substituting (2) into (1) yields the following simplified

model for the ensemble means of the measurements :

ȳmi(s) = Imie
−fmi(s) + rmi (3)

fmi(s) � − log vmi(s) (4)

vmi(s) �
∫

pmi(E)e−β(E)·si dE ,

for m = 1, . . . ,M0, l = 1, . . . , L0, and Imi =
∫
Imi(E) dE

denotes the total intensity for the mth incident spectrum and

the ith ray, and we define the sinogram vector si as follows:

pmi(E) � Imi(E)/Imi,

sil(ρ) � [Aρl]i,

β(E) � (β1(E), . . . , βL0(E)),
si(ρ) � (si1(ρ), . . . , siL0

(ρ)),

where A denotes the Nd×Np system matrix having elements

aij �
∫
Li

bj(�x) d�.

In DE CT, the goal is to reconstruct the object density maps

ρlj from the sinogram data.

I-B. Conventional approach
Due to the nonlinear model (1), it is challenging to esti-

mate the object ρ directly. Therefore, conventional methods

first estimate the nonlinear function fmi by inverting (3):

f̂mi � − log

(
smooth

{
Ymi − rmi

Imi

})
, (5)
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where radial smoothing is often included to reduce noise

[6]. Then one applies conventional DE decomposition [4],

followed by FBP reconstruction. This approach is fast but

suboptimal especially for low-dose X-ray CT.
Recently, several iterative methods were presented, such

as single energy CT [7], and statistical sinogram restoration

for DECT [8], and PWLS DE CT reconstruction from f̂
[9]. At each iteration, the DE methods estimate the material

images or material sinograms based on f̂ . However, accuracy

of f̂ limits these methods; f̂ in (5) uses the logarithm that

is sensitive to noise especially when ymi − rmi is small.

Fig. 1 summarizes several possible methods for DE CT

reconstruction.
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Fig. 1. Four different DE CT reconstruct algorithms. <A>
conventional method [4], <B> statistical sinogram restora-

tion [8], <C> PWLS DE CT reconstruction from f̂ [9],

<D> proposed method.

I-C. Proposed approach
This paper proposes a regularized iterative algorithm to

estimate the material density map. This algorithm consists

of two steps: (i) estimating material sinograms ŝ directly

from the raw sinograms, and (ii) reconstructing the material

density ρ from the estimated material sinogram. We use

suitable regularization for both steps.
Instead of estimating f by using log function, we propose

to estimate material sinogram, s, from X-ray CT measure-

ment data, y, directly. By including a sinogram-domain

roughness penalty R in the cost function, we can also control

noise and handle cases where ymi−rmi is negative. Our cost

function is defined as:

ŝ = argmin
s

Ψ1(s), (6)

Ψ1(s) � L(s) + β1R(s)

=
∑
m

∑
i

wmi

2
|ymi − ȳmi(s)|2 + β1R(s), (7)

where s � (s1, . . . , sNd
), si � (si1, . . . , siL0), and

wmi �
1

Var(ymi)
. (8)

We minimize (7) using a CG algorithm with a monotone

line search [10].

After estimating the material sinogram ŝ, we use it as the

data fitting term to estimate the object ρ by minimizing the

following cost function:

ρ̂ = argmin
ρ

Ψ2(ρ), (9)

Ψ2(ρ) � L(ρ) + β2R(ρ)

=
∑
l

∑
i

w̃il

2
|ŝil − sil(ρ)|2 + β2R(ρ), (10)

where by error propagation (assuming β1 small):

[ diag{w̃i1, . . . , w̃iL0
}]−1 (11)

≈ Cov{ŝi} ≈ (∇yi)
−1Cov{ŷi}[(∇yi)

−1]′ (12)

≈ (∇yi)
−1 diag{Ymi} [(∇yi)

−1]′. (13)

The regularizer in (10) is given by:

R(ρ) =

L0∑
l=1

Np∑
j=1

∑
k∈Nj

ψ(ρlj − ρlk), (14)

where ψ is a potential function and Nj is a neighborhood of

pixel j and the modified regularizer in [11] to provide uni-

form spatial resolution. For ψ we used a modified hyperbola

discussed below. We define (7) similarly.

We minimized the cost function (10) using an ordered

subsets method [12]. We initialized the iterations using the

estimated image by the conventional algorithm in [9] and by

using a suitable stopping criteria; the number of iterations

did not exceed 200.

I-D. Joint edge preserving regularizer
Previously we used a hyperbolic potential function ψ

to preserve edges. However, this penalty function ignores

the fact that water and bone material images share many

common edges. To improve the accuracy of the algorithm,

we should consider both materials’ edge positions jointly

when we estimate the object. Adapting [13], we investigated

the following potential function:

ψ(Δρ1,Δρ2) =

√
1 + (

Δρ1
δ

)2 + (
Δρ2
η

)2 − 1 (15)

and the following roughness penalty function:

R(ρ1, ρ2) =
∑
j

∑
i∈Nj

ψ(ρ1j − ρ1i, ρ2j − ρ2i)

=
∑
j

∑
i∈Nj

√
1 +

(
ρ1j − ρ1i

δ

)2

+

(
ρ2j − ρ2i

η

)2

,

where Nj denotes the neighborhood of pixel j. We need set

the values of δ and η differently due to the differences of

the two material images; roughly we want δ2 ∝ Var(ρ) to

preserve edges while suppressing noise.
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II. RESULTS
We simulated DE CT scans to evaluate the proposed meth-

ods feasibility for image reconstruction. The reconstructed

images were 128 × 128 with 0.1 × 0.1 cm2 pixel size.

The fan-beam projection space was 888 radial samples ×
984 angular views over 360◦ degrees, with source voltages

80kVp and 140kVp. We applied the conventional dual-

energy FBP reconstruction method, DE CT reconstruction

algorithm in [9], and proposed method. We investigated 10

different X-ray source intensities, from 1 × 104 to 1 × 105

photons per ray.
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Fig. 2. First row: simulated sinogram of two components.

Second row: previous method <B> sinogram images with

I0 = 2 · 104. Third row: proposed method <D> sinogram

images with I0 = 2 · 104.

Fig. 2 illustrates estimated material sinograms based

on the conventional logarithm approach. and the proposed

method. The proposed method has reduced noise and out-

liers.

Fig. 3 shows that the proposed method reduces signifi-

cantly the NRMSE of the material sinograms compared to

the conventional sinogram estimation based on log function.
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Fig. 3. NRMSE of reconstructed material sinograms: previ-

ous method <B>, and the proposed method <D>, versus

I0 (number of incident X-ray photons per ray).

Fig. 4 shows the density maps of the material components:

soft tissues and bone mineral and the estimated object of the

three methods with I0 = Imi = 2 · 104. Fig. 4(a)-(b) shows

the simulated two component images. Fig. 4(c)-(d) shows

FBP method images, whereas Fig. 4(e)-(f) shows the con-

ventional iterative method images. The conventional iterative

method succeeded in reducing streak artifacts compared to

the FBP images. However, the conventional method image

contains many outlier voxels whose magnitudes are larger

than 5 g/cm3 even though the bone density is at most 2

here. In contrast, the proposed method, in Fig. 4(g)-(h), has

successfully reduced streaks and yields lower noise than

other two methods. Plus, its voxels have more reasonable

density values for all spatial locations than the conventional

approaches.

Fig. 5 shows the RMSE plot of the reconstructed object

images with different incident intensities, I0. We observed

that the proposed method significantly reduces the NRMSE

of soft tissue and bone minerals compared to the competing

method.

III. CONCLUSION

We presented a new iterative approach for DE CT re-

construction. Unlike other DE CT algorithms, the proposed

method first estimates material component sinograms di-

rectly from X-ray DE CT sinograms without using a loga-

rithm. Preliminary simulation results show that the proposed

method estimates material sinograms more precisely than

the conventional logarithm method. The improved sinograms

yield images with lower RMS error than the conventional

approach in Fig. 5. Our next step is to evaluate the method

with a third material and compare to the method <C>.

1514



Simulated density map

1 128

1

128 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) Soft tissues

FBP method

1 128

1

128 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) Soft tissues

Conventional method

1 128

1

128 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(c) Soft tissues

Proposed method

1 128

1

128 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(d) Soft tissues

Simulated density map

1 128

1

128 0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

(e) Bone minerals

FBP method

1 128

1

128 0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

(f) Bone minerals

Conventional method

1 128

1

128 0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

(g) Bone minerals

Proposed method

1 128

1

128 0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

(h) Bone minerals

Fig. 4. First column: Two component simulated densities. Second column: FBP method <A> with I0 = 2 · 104. Third

column: previous method <B> with I0 = 2 · 104. Fourth column: proposed method <D> with interpolated DE data.
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Fig. 5. RMSE of reconstructed object images: previous

method <B>, and the proposed method <D>, versus I0
(number of incident X-ray photons per ray).
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