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ABSTRACT
We propose a method for joint reconstruction of dynamic

images and fieldmaps in parallel MRI, using single-shot tra-

jectories. We exploit the sensitivity encoding from paral-

lel imaging to reduce the length of acquisition and essen-

tially perform joint reconstruction using just one full k-space

dataset. We also explore the use of modified trajectories (both

EPI and spiral) that provide full coverage of k-space and also

contain enough inherent time differences to permit accurate

fieldmap estimation. Finally we improve the efficiency of the

reconstruction algorithm by using a linearization technique

for fieldmap estimation, which allows the use of the conju-

gate gradient algorithm.

Index Terms— Parallel MRI, fieldmap estimation, single-

shot trajectories, iterative reconstruction

1. INTRODUCTION

In functional MRI one reconstructs a series of dynamic im-

ages and since high temporal resolution is required it is com-

mon to use fast single-shot acquisitions such as echo-planar

(EPI) or spirals. The disadvantage of these techniques is the

long readout time that can cause significant artifacts in the

reconstructed image due to field inhomogeneities if uncor-

rected. As proposed in [1] one can reconstruct an undis-

torted image and undistorted dynamic fieldmap using spiral-

in/spiral-out acquisition. However acquiring two full datasets

in a single acquisition may result in very long readout times.

In this work, motivated by [2], we propose to use the sen-

sitivity encoding [3] to acquire just one full dataset from a

single-shot acquisition (shorter readout time) and still be able

to reconstruct both the image and dynamic fieldmap.

Another disadvantage of the method in [1] is that the

method used for fieldmap estimation in nonlinear and com-

putationally demanding. The method described in [4] can

significantly improve the efficiency of fieldmap estimation

since the linearization that is used permits the use of conju-

gate gradient (CG) which is much more efficient compared to

the gradient descent (GD) method used in [1].
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This work proposes a method for jointly estimating the

image and dynamic fieldmap in parallel MRI, using a single-

shot acquisition that uses just one full dataset. This method

retains the advantage of high temporal resolution of single-

shot trajectories along with the advantage of shorter readout

time by exploiting the coil sensitivity encoding. The shorter

readout time has the potential to significantly improve the re-

construction quality since it leads to less distortion due to field

inhomogeneity. We also propose the use of modified single-

shot trajectories (both EPI and spiral) that provide full cov-

erage of k-space and also allow for enough time differences

between regions of k-space so that the fieldmap estimation is

facilitated (see §3). Finally, in this work we will use the lin-

earization technique for fieldmap estimation [4] to improve

the efficiency of the reconstruction algorithm.

2. THEORY

Parallel MRI uses multiple receiver coils and the coil sensi-

tivity patterns provide extra information that we can use for

image reconstruction. Assuming that we have nc coils the

sensitivity of each coil ci(r) is location dependent and the

signal equation for the ith coil at time t is expressed as:

si(t) =

∫
ci(r)f(r)e

−iω(r)te−i2πk(t)·rdr, i = 1, . . . , nc,

where f(r) is the object’s magnetization at location r, ω(r)
is the field inhomogeneity and k(t) is the trajectory. By

parametrizing the signal equation using basis functions for the

image, fieldmap and coil sensitivities (rect basis for now) [1]

we have:

si(t) = Φ(k(t))

N−1∑
n=0

ci,nfne
−iωnte−i2πk(t)·rn , (1)

where Φ(k) is the Fourier transform of the basis function

φ(r), and fn, ωn, ci,n denote the pixel values of f(r), ω(r),
ci(r) respectively.

The MRI measurements are noisy samples of this signal:

yi,m = si(tm) + εm, for m = 1, . . . ,M,
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and we can express the noisy measurements yi for each coil

in matrix-vector form as follows:

yi = A(ω, ci)f + εi, for i = 1, . . . , nc, (2)

where f is the discretized object and the elements of the ma-

trix A(ω, ci) are

am,n = Φ(k(tm))e−iωntme−i2πk(tm)·rnci,n.

The total measurement vector y is given by stacking the

measurement vectors yi for each coil: y = [y1, ..., ync
]T .

Hence the overall ncM × N system matrix AC(ω) is given

by stacking the system matrices A(ω, ci) for each coil:

AC(ω) =

⎡
⎢⎣

A(ω, c1)
...

A(ω, cnc)

⎤
⎥⎦ .

Using the above, the overall measurement model in matrix-

vector form can be written as:

y = AC(ω)f + ε.

To estimate f and ω we have to minimize a cost function

similar to the one derived in [1], with the only difference that

we use AC as the system matrix:

Ψ(f, ω) =
1

2
‖y −AC(ω)f‖2 + β1R(f) + β2R(ω),

where R(f) and R(ω) are quadratic regularization terms

‖Cf‖2 and ‖Cω‖2 respectively, and C is a matrix of second

order differences.

We want to jointly estimate f and ω by minimizing Ψ:

f̂ , ω̂ = argmin
f,ω

Ψ(f, ω). (3)

Following the idea from [4] we can solve (3) for ω using a

linear approximation to the dynamic changes between ω and

a carefully chosen reference ω̌. By doing that we can avoid

using the computationally demanding GD method and use the

CG method instead to solve for ω. Typically we obtain ω̌
from a prescan or by using the estimate ω̂ from the previous

dynamic frame.

Assuming that we have a reliable initial estimate ω̌ we can

write the signal equation for each coil (1) as:

si(t) = Φ(k(t))

N−1∑
n=0

ci,nfne
−iω̌nte−i(ωn−ω̌n)te−i2πk(t)·rn .

(4)

Now, if the difference of ω and ω̌ is small we can use the

following first-order Taylor approximation:

e−i(ωn−ω̌n)t ≈ 1− it(ωn − ω̌n), (5)

and then by substituting (5) in (4) and rearranging the terms,

the signal equation becomes:

si(t) ≈Φ(k(t))

N−1∑
n=0

ci,nfne
−iω̌nte−i2πk(t)·rn−

i(−t)Φ(k(t))

N−1∑
n=0

ci,nfne
−iω̌nte−i2πk(t)·rn ω̌n+

i(−t)Φ(k(t))

N−1∑
n=0

ci,nfne
−iω̌nte−i2πk(t)·rnωn,

for i = 1, ..., nc. (6)

Using the signal equation (6) we can rewrite the measure-

ment model for each coil (2) in matrix-vector form as:

yi = A(ω̌, ci)f −B(ω̌, f, ci)ω̌ +B(ω̌, f, ci)ω + εi,

where the elements of the M × N matrices A(ω̌, ci) and

B(ω̌, f, ci) are:

am,n = Φ(k(tm))e−iω̌ntme−i2πk(tm)·rnci,n,

bm,n = i(−tm)Φ(k(tm))e−iω̌ntme−i2πk(tm)·rnfnci,n.

The overall measurement vector y and the matrices AC

and BC are given by stacking the measurement vectors yi and

system matrices A(ω̌, ci) and B(ω̌, f, ci) for each coil. Hence

the overall linearized measurement model is:

y = AC(ω̌)f −BC(ω̌, f)ω̌ +BC(ω̌, f)ω + ε.

Similarly to (3), to estimate the image f and fieldmap ω
we have to minimize the following cost function:

Ψ(f, ω) =
1

2
‖y −AC(ω̌)f +BC(ω̌, f)ω̌ −BC(ω̌, f)ω‖2

+ β1R(f) + β2R(ω). (7)

To minimize the cost function (7) we first minimize over

f by using an estimate ω̌ for the fieldmap and then we use the

estimate f̌ for the image to minimize over ω. When solving

for f we must minimize:

Ψ1(f) =
1

2
‖y −AC(ω̌)f‖2 + β1R(f) (8)

and when solving for ω we must minimize:

Ψ2(ω) =
1

2

∥∥ỹ −BC(ω̌, f̌)ω
∥∥2 + β2R(ω), (9)

where,

ỹ � y −AC(ω̌)f̌ +BC(ω̌, f̌)ω̌.

We minimize both Ψ1 and Ψ2 using the CG-NUFFT method

[1] which is reasonably computationally efficient.
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(a) Interleaved EPI trajectory (b) Interleaved spiral-in trajec-

tory

Fig. 1. Single-shot, interleaved trajectories used in simula-

tions.

3. MATERIALS AND METHODS

The joint estimation method described in §2 can be applied

with any trajectory, but the results will depend on the chosen

trajectory. For parallel imaging (multiple coils) we can ex-

ploit the coil sensitivities so that we can achieve joint recon-

struction using only one full dataset acquired with a single-

shot trajectory [2]. The trajectories we chose are a single-shot

“interleaved” EPI (Fig. 1(a)) and a single-shot “interleaved”

spiral-in (Fig. 1(b)). These trajectories provide full coverage

of the k-space and also they have some time differences be-

tween neighboring parts of k-space, which intuitively should

facilitate fieldmap estimation. The parameters used for both

trajectories are FOV = 22 cm, matrix size = 64 × 64. For

interleaved EPI we have readout time = 20 ms and two echo

times at TE1 = 5 ms and TE2 = 15 ms. In this trajectory, since

we do not exactly traverse the center of k-space, we define as

echo time (TE) the time when we are closest to the center of

k-space. For interleaved spiral we have readout time = 16 ms

and two echo times at TE1 = 8 ms and TE2 = 16 ms.

The necessary matrix-vector multiplications are per-

formed with time segmentation and the use of FFT for EPI

trajectories (data are on a cartesian grid) and the use of

NUFFT for the spiral trajectories [5]. Time segmentation was

performed with L = 8 time segments and the NUFFT used a

6 × 6 interpolation neighborhood with minmax interpolation

and two times oversampling for the FFT.

The regularization parameters β1 and β2 in (8) and (9)

were chosen to achieve a specific spatial resolution [6]. For

the image reconstruction we chose the parameter β1 so that

the FWHM of the PSF was 1.2 pixels for EPI and 2 pixels

for spiral and for the fieldmap reconstruction we chose the

parameter β2 so that the FWHM of the PSF was 1.7 pixels for

both trajectories.

To jointly estimate the image and fieldmap we used the

CG method alternating between updating the image and then

updating the fieldmap using in total 20 updates. In each up-

date for image or fieldmap we used 15 iterations of the CG

method. For parallel imaging, in our simulations, we used

(a) True image (b) True fieldmap

(c) Oracle image estimate (d) Oracle fieldmap estimate

Fig. 2. True image and fieldmap and oracle estimates for im-

age and fieldmap.

four coils with smooth B1 maps.

3.1. Simulation

For the simulations we performed we chose the Shepp-Logan

phantom as the true image (Fig. 2(a)) and a smoothed, rapid-

changing susceptibility induced, fieldmap acquired from hu-

man brain data as the true fieldmap (Fig. 2(b)). The range

of the fieldmap is from -36 to 116 Hz. The experiments were

performed with simulated data, created using the exact system

model, to which we added noise to make a 30dB SNR. For

the image reconstruction we used an iteratively reconstructed

image, uncorrected for field inhomogeneities, as an initial es-

timate. For the fieldmap reconstruction we used a smoothed

standard estimate, from two single-shot EPI acquisitions, as

the initial estimate. To further evaluate the quality of the joint

reconstruction we created an oracle image estimate that was

reconstructed with our method using the true fieldmap (Fig.

2(c)) and we also created an oracle fieldmap estimate that

was reconstructed with our method using the true image (Fig.

2(d)). These oracle estimates provide an upper bound on the

accuracy of the proposed joint reconstruction method.

4. SIMULATION RESULTS

Fig. 3(a) shows the reconstructed image when we do not

correct for field inhomogeneities. Because of the fieldmap

strength and the long readout time there are significant ar-

tifacts. Fig. 3(b) shows the reconstructed image when we

correct for field inhomogeneities using the initial, standard

fieldmap estimate (Fig. 3(c)). In this case the artifacts are

reduced but not completely eliminated and the reconstruction
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(a) Uncorrected image.

(b) Reconstructed image using ini-

tial fieldmap estimate.

(c) Standard (initial) fieldmap esti-

mate.

(d) Jointly reconstructed image. (e) Jointly reconstructed fieldmap.

Fig. 3. Results of reconstruction methods for image and

fieldmap using single-shot “interleaved” EPI trajectory.

quality is not close to the one achieved in the oracle recon-

struction (Fig. 2(c)) when the true fieldmap is used. This is

also evident in terms of normalized RMS error, as seen in Ta-

ble 1. Fig. 3(d) and 3(e) show the jointly reconstructed image

and fieldmap that were created with our proposed method.

In this case there are no field inhomogeneity artifacts in the

reconstructed image and both the image and fieldmap are

very close to the oracle reconstructions (Fig. 2(c) and 2(d)).

This can be also seen in terms of normalized RMS error in

Table 1. These reconstruction results were created using the

single-shot “interleaved” EPI trajectory, but the results for

the “interleaved” spiral are also very similar (see Table 1).

From these preliminary simulation results we can see that

our method seems promising in performing efficient joint

reconstruction of image and dynamic fieldmap.

5. DISCUSSION

This paper proposed an efficient method for jointly estimat-

ing image and fieldmap in parallel MRI. The preliminary

simulation results showed that we can achieve high quality

reconstruction with this method by using significantly re-

EPI Spiral

Reconstructed image
uncorrected 107.5% 62.2%

using initial fieldmap 63.3% 35.3%

oracle (using true fieldmap) 8.6% 13.7%

joint estimation 11.2% 14.1%

Reconstructed fieldmap
standard estimate* 47.4% 47.4%

oracle (using true image) 2.2% 4.0%

joint estimation 5.5% 4.6%

Table 1. Comparative table of NRMS error of reconstruction

methods. *Note: The same standard estimate was used for

both trajectories as initial fieldmap for joint estimation.

duced datasets compared to standard methods for image and

fieldmap estimation. Due to this fact, this method has the po-

tential to be used in functional MRI where dynamic updates

of the image and fieldmap are desirable. A disadvantage of

this method is that non-standard single-shot trajectories seem

to be required to achieve good reconstruction. It would be

interesting as a future step to find an analytic relation between

trajectories and reconstruction quality as this could explain

why the standard trajectories failed to perform well in our

simulations. Finally, to further evaluate the proposed method

it is necessary to perform experiments using real data from

human studies.
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