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ABSTRACT

In MRI, RF field inhomogeneity (B1) and relaxation effects
(T1) significantly affect both B1 and T1 mapping. Simulta-
neous joint estimation of both B1 and T1 has the potential
to greatly improve both B1 and T1 estimation. This paper
analyzes the Cramér Rao Bound for joint B1, T1 estimation
using common B1 and T1 pulse sequences. This analysis aids
choosing pulse sequences and parameters given desired levels
of B1 and T1 accuracy and the inherent trade off between the
two mappings.

Index Terms— Magnetic resonance imaging, B1 map-
ping, T1 mapping, Cramer Rao Bound

1. INTRODUCTION

In MRI, maps of the B+
1 field strength, called a B+

1 map, and
of the longitudinal relaxation time T1, called a T1 map, are
essential in many situations. B+

1 maps are required for paral-
lel transmit excitation RF pulse design (using a coil array) [1]
and for pre-scan calibration at high fields (≥ 3T) where large
B+

1 inhomogeneity creates spatially varying signal and con-
trast. [2]. Fast, accurate, and precise mapping of T1 has many
applications: finding tumors or assessing organs and function,
perfusion imaging, diagnosing disease, quantifying myocar-
dial blood flow, and preparing navigation and visualization
tools for surgery.

T1 and B+
1 mapping are closely linked. Relaxation ef-

fects, unless properly accounted for, can confound B+
1 esti-

mation. Using a very large repetition time (e.g., TR > 5T1

in the popular double angle method) removes any T1 depen-
dence from the acquired images, but scans are then unde-
sirably slow for in vivo imaging. While fast and improved
methods for the double angle method use scan time more
efficiently [2], recent model-based B+

1 mapping estimation
methods [3] incorporate T1 estimation to account for these
relaxation effects.

T1 mapping can also be adversely effected by B+
1 in-

homogeneity, especially using gradient echo and spin echo
acquisitions with a short TR. Steady-state incoherent (SSI)
imaging, a very popular fast imaging method that can be used
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in T1 mapping, is especially sensitive [4]. B+
1 inhomogeneity

causes large inaccuracies in uncorrected T1 mapping [5].
Recently, methods have been developed that jointly es-

timate both B+
1 and T1 (such as [3]). Making an informed

choice between the wide variety of pulse sequences where re-
laxation effects and B+

1 inhomogeneity feature prominently
remains an open problem. Analysis of the accuracy and pre-
cision possible in B+

1 and T1 estimates and the inherent trade
offs can aid this selection.

In this paper, we first construct a general model for joint
B+

1 , T1 mapping. We then use the Cramér Rao Bound to ana-
lyze the lowest possible variance for unbiased joint estimation
of B+

1 and T1 using several specific pulse sequences. We in-
vestigate the variance of both estimates over a range of B+

1

and T1 values. We also use this analysis to help optimize tim-
ing and flip angle parameters for each pulse sequence. This
analysis extends the large body of research on optimization
of parameters and precision for T1 estimation (e.g., [6]) to
include joint B+

1 and T1 estimation. The trade offs and anal-
ysis from this paper allows comparison of pulse sequences
depending on the particular required accuracy for both B+

1

and T1.

2. JOINT ESTIMATION MODEL

2.1. General Joint Estimation Model

Most B+
1 or T1 mapping pulse sequences can be formulated

using the following general model. Let the measured value of
a single voxel for the ith scan be given by:

yi = m0F

(
TRi

T1
, αib

)
+ εi, (1)

where m0 is the nominal voxel magnetization dependent on
TE (the echo time) and T2. T1 is the longitudinal relaxation
constant, b is the RF field strength at this voxel, TRi is the rep-
etition time for a specific pulse sequence, and αi is the relative
amplitude of the RF pulse, where the product αib specifies the
flip angle in a given voxel. The unitless function F describes
the MRI scan signal value variation independent of TE and
T2 based on the individual pulse sequence and scan parame-
ters and is defined in Section §2.2 for three specific models.
The full data Y = (y1, · · · , yN ) consists of N scans where

712978-1-4244-4126-6/10/$25.00 ©2010 IEEE ISBI 2010



either TRi or αi is varied. For example, for the double angle
B+

1 mapping method, N = 2 and α2 = 2α1 and TR1 = TR2.
εi is modeled as white, Gaussian noise. While magnitude im-
ages suffer from Rician noise, we model complex scans with
true Gaussian noise. We assume that σεi

= σ0∀i.
The Cramér Rao Bound (CRB) expresses the lowest

achievable variance possible for an unbiased estimator for a
given model. Although practical estimators are often biased
(e.g., through smoothing or filtering the data or using approx-
imations to the model), the bound quantifies the estimator
variance and captures the coupling effects between the two
unknown parameters. Because θ = (b, T1), the multiple
parameter CRB must be used. In that case, the matrix CRB is

Covθ

{
θ̂

}
≥ J

−1(θ), (2)

where the Fisher information matrix is

J(θ) = E
[
[∇θ ln p(Y ;θ)][∇θ ln p(Y ;θ)]T

]
. (3)

The Fisher information J is a 2 × 2 matrix with entries:

J11 =
1

σ2

∑
i

(
∂

∂b
ȳi

)2

J12 = J21 =
1

σ2

∑
i

(
∂

∂b
ȳi

) (
∂

∂T1
ȳi

)

J22 =
1

σ2

∑
i

(
∂

∂T1
ȳi

)2

, (4)

where ȳi is the expected value of yi. We define φi � αib (tip
angle) and γi � TRi

T1

. The derivatives of the general model (1)
then are:

∂

∂T1
ȳi = −M0 · TRi

T 2
1

· F 01 (φi, γi)

∂

∂b
ȳi = M0 · αi · F 10 (φi, γi) , (5)

where F 10 and F 01 denote partial derivatives with respect to
the first and second arguments of F respectively. Then,

σb �
√

CRB(b) =
√

[J−1(θ)]11

σT1
�

√
CRB(T1) =

√
[J−1(θ)]22. (6)

In this paper, we calculate the CRB for several specific models
over a wide range of input parameters and optimize the scan
parameters.

2.2. Specific Joint Estimation Models

For joint estimation model selection, we consider three main
pulse sequences, with their corresponding models for F in
(1). First, the SSI model [4] where

F SSI
i =

(1 − e−γi) sin(φi)

1 − e−γi cos(φi)
. (7)

This pulse sequence is used commonly for T1 mapping by
varying αi although TRi can also be varied; this sequence also
has been used successfully for solo B+

1 mapping as in [7].
Second, we consider the Brunner-Pruessmann method

(BP) used in [3] using a non-selective, spoiled prepulse with
a varying flip angle (φi) followed by a slice excitation with a
flip angle βb. As in [3], we set Δ = .05 ms and βb = 20◦

to reduce the number of parameters to optimize. We define:
η � Δ

T1

. We also ignore any B0 inhomogeneity and use the
following model:

FBP
i = cos(φi) sin(βb) ·

cos(φi) e−η(1 − e−γi−η)) + 1 − e−η

1 − cos(φi) cos(βb) e−γi

. (8)

Third, we consider pulse sequence used in the Actual Flip
Angle (AFI) method [8]. When this pulse sequence is used in
B+

1 mapping, usually approximations and ratios are used to
remove T1 dependence in the final B+

1 estimator. However,
the signal depends on both B+

1 and T1 and is a candidate for
joint estimation. This model differs from the previous two in
that two repetition times, TR1 and TR2, are used simultane-
ously in steady state and thus appear in both equations FAFI

1

and FAFI
2 as shown below:

FAFI
2i−1 = sin(φi)

1 − e−γ2 + (1 − e−γ1)e−γ2 cos(φi)

1 − e−γ1−γ2 cos2(φi)

FAFI
2i = sin(φi)

1 − e−γ1 + (1 − e−γ2)e−γ1 cos(φi)

1 − e−γ1−γ2 cos2(φi)
.(9)

3. CRAMÉR RAO BOUND ANALYSIS AND
DISCUSSION

3.1. Method and Results

To compare the models using the CRB, we derived the CRB
using implicit differentiation in MATLAB. To enable fair
comparison of models using different imaging time, con-
sider that a scan repeated N times gives a standard deviation
σ0/

√
N . Therefore, we report σ̃b � σb

√∑
i TRi

m0

σ

(compare [6]), defined as the TR Compensated Deviation
(TRCD). To make optimization feasible over a very large
parameter space, we constrain the search space by requir-
ing that αi = iΔα for the SSI (7) and BP (8) models.
For the AFI model, we keep TR1 and TR2 constant and
set α2i−1 = α2i = iΔα. Therefore, we optimize over
only 4-5 parameters regardless of the number of scans:
(Δα, TRi, b, T1).

The ideal model will have a low σ̃b and σ̃T1
and also be

relatively insensitive to variation in B+
1 and T1. There is a

trade off between optimizing both TRCD values; therefore,
we use a scalar valued function

f(Δα, TR, b, T1) = σ̃b(Δα, TR, b, T1) + σ̃T1
(Δα, TR, b, T1)
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in our optimization to consider the effect of both TRCDs. We
seek scan parameters (tip angles and repetition times) whose
TRCDs have low variation over a wide range of T1 and B+

1

values. We perform a min-max optimization; we minimize
over the set of scan parameters the worst-case (i.e., maximum)
f(·) over the range of B+

1 and T1 values. This is expressed
mathematically as optimizing the following equation:

(Δopt
α , T opt

R ) = arg min
(Δα,TR)

max
(b,T1)

f(Δα, TR, b, T1). (10)

We first find the TRCD over a large parameter space
defined by the maximum tip angle Δα · N ∈ [π/4, 9π/4],
TR ∈ [.1, 3], T1 ∈ [.2, 1.2], and b ∈ [.5, 2]; these denote the
“search” range. We perform the optimization in (10). The
optimal values for our choice of f are shown in Table 1.

To analyze the trade off between σ̃b and σ̃T1
, we also find

the worst case TRCD values over the range of B+
1 and T1. We

define

σ̃max
b � max

b,T1

σ̃b(Δα, TR, b, T1),

σ̃max
T1

� max
b,T1

σ̃T1
(Δα, TR, b, T1).

We then plot, for each σ̃max
b , the lowest achievable σ̃max

T1
over

Δα and TR. These plots are shown in Fig. 4 (N = 4) and
Fig. 5 (N = 8).

Next, using the optimal parameters Δopt
α and T opt

Ri (10),
we calculate the TRCD over a larger range of B+

1 (keeping
the range of T1 the same): b ∈ [.25, .4]; this is the “display”
range. Now, we can see how robust the optimized parameters
are when B+

1 and T1 are outside the original search range. We
plot, for each B+

1 value in the display range, the maximum σ̃
over the T1 search range on one set of graphs (e.g., σ̃b in plot
B and σ̃T1

in plot D); and also for each T1 value in the display
range, the maximum σ̃ over the B+

1 search range on another
set of graphs (e.g., σ̃b in plot A and σ̃T1

in plot C). The graphs
are shown in Fig. 1, Fig. 2, and Fig. 3.

Table 1. Optimized scan parameters based on (10)
Model N Δα or α ΔTR

or TR1 TR2

(radians) (sec) (sec)

SSI 2 1.1781 0.68 -
SSI 4 1.3744 0.68 -
SSI 8 0.8836 0.68 -
AFI 2 1.0996 0.245 0.10
AFI 4 1.3352 0.825 0.10
AFI 8 1.0603 0.68 0.10
BP 2 2.2776 0.825 -
BP 4 0.9818 0.535 -
BP 8 0.8836 0.825 -
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Fig. 1. SSI model, N = 2 (solid line), 4 (dotted line), 8
(dashed line). We plot, at the optimal parameters in Table 1,
the maximum σ̃b for each T1 over B+

1 values in the search
range (A), the maximum σ̃b for each B+

1 over T1 values in
the search range (B), the maximum σ̃T1

for each B+
1 over T1

values in the search range (C), and the maximum σ̃T1
for each

T1 over B+
1 values in the search range (D).
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Fig. 2. AFI model, compare Fig. 1.
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Fig. 3. BP model, compare Fig. 1.
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3.2. Discussion

In this analysis, we consider two main questions: 1) What is
the trade off between σ̃b and σ̃T1

? and 2) How robust are the
optimal parameters found in (10)?

Fig. 4 and Fig. 5 show the trade off between σ̃max
b and

σ̃max
T1

. Improved accuracy in estimating B+
1 decreases T1 ac-

curacy. Therefore, in scan parameter optimization, a function
of both TRCDs is required. The SSI and AFI method have the
lowest achievable worst case TRCD (the BP method is outside
Fig. 4). both the AFI and SSI method perform well for N = 4
and N = 8, with the AFI method having a slight advantage.
For N = 2 (not shown), the SSI has a clear advantage.

The optimal parameters robustness varies both on the
method and the number of scans (see Figures Fig. 1, Fig. 2,
and Fig. 3). TRCD, for all methods, is lowest when T1 is
small (plots A and C), but is more robust to the value of B+

1

(plots B and D). This is especially true for σ̃T1
. For all meth-

ods, N = 4, 8 performs much better than N = 2, especially
for the AFI method. Using four or eight scans, both the SSI
and AFI method are relatively insensitive to specific values
of B+

1 and T1 and are appropriate to use for joint estimation,
though SSI has the lowest TRCD values consistently. The BP
method has relatively high TRCD values, even when N = 8,
and σ̃b is especially sensitive to the value of B+

1 , so this
method as implemented will have high variance for unbiased
B+

1 estimation.
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Fig. 4. Minimum achievable σ̃max
b for a maximum σ̃max

T1
for

two scans.

4. CONCLUSIONS

After analyzing the CRB for joint estimation of B+
1 and T1,

the SSI has both the lowest worst case estimator variances
and is the least sensitive to B+

1 and T1 values. The AFI is
also relatively insensitive to B+

1 and T1 values, but, overall,
has higher estimator variances. The BP model, as modeled
here, exhibits the highest optimized variance, although this
may be improved by further optimizing other scan parameters
in the model. Although the results are not shown here, we also
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Fig. 5. Minimum achievable σ̃max
b for a maximum σ̃max

T1
for

eight scans.

tried using the SSI model and varying TR, but had very poor
results.

We note that this optimization does neglect SAR con-
straints which may be a problem when using a large tip angle
and a short repetition time. The effect of B0 is also neglected
in the models (7), (8), and (9). The effect of considering much
lower TR, (e.g., 10 ms), on the CRB is also not considered.
These will be further analyzed in the future work.
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