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ABSTRACT

Motion artifacts in image reconstruction problems can be
reduced by performing image motion estimation and image
reconstruction jointly using a penalized-likelihood cost func-
tion. However, updating the motion parameters by conven-
tional gradient-based iterations can be computationally de-
manding due to the system model required in inverse prob-
lems. This paper describes an optimization transfer approach
that leads to minimization steps for the motion parameters
that have comparable complexity to those needed in image
registration problems. This approach can simplify the imple-
mentation of motion-compensated image reconstruction (MCIR)
methods when the motion parameters are estimated jointly
with the reconstructed image.

Keywords: motion-compensated image reconstruction, im-
age registration, tomography

1. INTRODUCTION

Most of the work on motion-compensated image reconstruc-
tion has considered the case where the motion parameters are
determined separately from the reconstructed image. For ex-
ample, in PET-CT systems one can estimate the motion from
gated CT scans and then apply those parameters to the PET
reconstruction process [1–3]. Separate motion information
is not alway available, so in some applications one must es-
timate the motion from the same data used for reconstruct-
ing the image(s) [4–7]. This paper focuses on such methods
for jointly estimating the motion parameters and the recon-
structed image from the same data. We describe an optimiza-
tion transfer approach [8] that simplifies the update of the mo-
tion parameters. The principles are applicable to all imaging
modalities.

The methods described here are also applicable to super-
resolution problems [9–16].
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2. THEORY

We first review the joint registration / reconstruction approach
described in [4]. We then describe how optimization transfer
[8, 17], also known as majorize-minimize methods [18], can
simplify the optimization problem.

2.1. Measurement model

Consider an imaging scenario where the data consists of M

“scans” {y1, . . . ,yM}, where ym denotes the data associated
with the mth “scan,” i.e., the mth frame in a dynamic study or
the mth gate in a gated study. Let xm denote the (unknown)
object corresponding to the mth scan, for m = 1, . . . , M .
(In the absence of motion we would have x1 = · · · = xM .)
We assume that the measurements are related to the object
linearly as follows:

ym = Amxm + εm, (1)

where Am denotes the system model for the mth frame and
εm denotes noise. We assume that for each m the object xm

and measurement ym are motion-free, i.e., the object does not
move during the mth scan (gate or frame).

2.2. Object model

We assume that the object state at each of the M frames can
be written in terms of a common underlying image coefficient
vector c with frame-dependent warp:

xm = T (αm) c, (2)

where T (·) denotes an operator that represents a nonrigid
warp with (unknown) motion parameters αm associated with
the mth frame. The elements of T depend on the motion
model and type of image interpolator used [7, 19].

2.3. Joint registration / reconstruction

Substituting (2) into (1) yields the following measurement
model:

ym = Am T (αm) c + εm, m = 1, . . . , M. (3)
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This model has been used widely in MCIR methods. For the
model (3), the goal is to jointly estimate the image coefficient
vector c and the motion parameters α � (α1, . . . ,αM ) from
the overall measurement vector y � (y1, . . . ,yM ). Stacking
up these models yields the overall model

y = AT (α) c + ε, (4)

where A � diag{A1, . . . ,AM}, ε � (ε1, . . . , εM ). and
with a slight reuse of notation:

T (α) �

⎡
⎢⎣

T (α1)
...

T (αM )

⎤
⎥⎦ .

One can apply many estimation methods to the model
(4). For simplicity, we focus here on penalized weighted least
squares (PWLS) estimation [20]:

(ĉ, α̂) = arg min
c,α

Ψ(c, α)

Ψ(c, α) = ‖y − AT (α) c‖
2

W
+ R1(c) + R2(α), (5)

where W is a weight matrix that approximates the inverse of
the covariance of y, R1(c) is a spatial regularization term,
and R2(α) is an optional regularization term for the motion
parameters [21]. The methods described below are easily gen-
eralized from PWLS to penalized-likelihood (PL) estimation
by using quadratic surrogate functions for the marginal log-
likelihood functions for each i [22].

The cost function (5) is a nonconvex function of α and
therefore very challenging to minimize. Some methods have
used simultaneous gradient descent, e.g., [6]. The optimiza-
tion problem is simplified by using alternating minimization
[4], where we update α holding c fixed and vice versa, i.e.:

αn+1 = arg min
α

Ψ(α, cn) (6)

cn+1 = arg min
c

Ψ
(
αn+1, c

)
, (7)

where we initialize with α0 and c0. Minimizing over c is a
standard image reconstruction problem with a modified sys-
tem matrix AT

(
αn+1

)
. There are many well-known meth-

ods for performing this step, e.g., [20]. Minimizing over α

in (6) is much more challenging. The motion parameter opti-
mization problem at the nth iteration is

αn+1 = arg min
α

‖y − AT (α) cn‖
2

W
+ R2(α). (8)

This is more challenging than a typical image registration
problem because of the presence of the system matrix A. The
next section proposes an approach to simplifying (8), loosely
inspired by [23].

2.4. Optimization transfer approach

Consider the simple WLS cost function

L(x) =
1

2
‖y − Ax‖

2

W
=

∑
i

wi

2
(yi − [Ax]i)

2.

One can show that the following function is a valid quadratic
surrogate [22]:

Q(x, xn) � L(xn)−(x−xn)′gn +
1

2
(x−xn)′D(x−xn),

where
gn � −∇L(xn) = A′W (y − Axn)

and

D = diag{dj}, dj �
∑

i

wi |aij |

(∑
k

|aik|

)
.

By completing the square, we can rewrite this quadratic sur-
rogate as follows:

Q(x, xn) ≡
1

2

∥∥∥D1/2
[
x −

(
xn + D−1gn

)]∥∥∥2

, (9)

ignoring constants independent of x. All terms in this form
of the quadratic surrogate are in the image domain. We now
adapt this idea to the motion estimation problem (8) by equat-
ing x = T (α) cn and xn = T (αn) cn. This yields the over-
all surrogate

φ(α, αn) � Q(T (α) cn, T (αn) cn) + R2(α), (10)

where

gn � −∇L(xn) = A′W (y − AT (αn) cn) .

One can show that this surrogate satisfies the majorization
conditions:

φ(αn, αn) = Ψ(cn, αn)

φ(α, αn) ≥ Ψ(cn, α), ∀α.

Therefore, minimizing (or decreasing) φ(α, αn) is guaran-
teed to decrease the original cost function Ψ(α, cn). With
this surrogate, the minimization step for α becomes

αn+1 = arg min
α

φ(α, αn). (11)

Because (9) involves only image domain terms, unlike the
original function (8), the minimization problem (11) is es-
sentially a standard image registration problem with a least-
squares similarity metric. The only difference is that there is a
diagonal weighting matrix D in that similarity metric, which
is easy to incorporate into image registration software. Of
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course, intensity-based image registration problems are non-
convex in general, so the minimization problem (11) is non-
trivial, but its challenges are well known for image registra-
tion.

With this proposed surrogate, the problem of joint estima-
tion (5) simplifies to updating the motion parameters using
a cost function that is standard for image registration prob-
lems (11), alternating with updates of the image using a stan-
dard image reconstruction tool (7). This approach may not be
the optimal algorithm in terms of convergence rate (that re-
quires numerical investigation) but it is very appealing from
the point of view of software modularization and algorithm
maintenance, because it allows one to separately tune the im-
plementations of the “registration” step and the “reconstruc-
tion” step in a joint estimation problem.

3. SUMMARY

The proposed optimization transfer approach leads to a min-
imization step for the warp parameters that is an image do-
main image registration problem. Existing fast methods such
as those based on GPUs can be used to solve this part of the
optimization problem [24, 25].

Although we focused on a WLS data fit term, the meth-
ods generalize easily to non-quadratic data-fit terms by using
quadratic surrogates, e.g., [22].

As long as one implements the reconstruction update step
(7) and the motion parameter update step (11) properly, the
overall method is guaranteed to monotonically decrease the
cost function (5) each iteration. The cost function is non-
convex in all intensity-based image registration problems, so
it will be important to use standard coarse-to-fine strategies
[26] to encourage convergence to a desirable local minimizer.

The next step is to compare this approach to a conven-
tional optimization algorithm applied to the PWLS cost func-
tion (5) such as preconditioned nonlinear conjugate gradients.
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