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ABSTRACT

Sliding effects often occur along tissue/organ boundaries. For

instance, it is widely observed that the lung and diaphragm

slide against the rib cage and the atria during breathing. Con-

ventional homogeneous smooth registration methods fail to

address this issue. Some recent studies preserve motion dis-

continuities by either using joint registration/segmentation

or utilizing robust regularization energy on the motion field.

However, allowing all types of discontinuities is not strict

enough for physical deformations. In particular, flows that

generate local vacuums or mass collisions should be discour-

aged by the energy functional. In this study, we propose

a regularization energy that encodes a discriminative treat-

ment of different types of motion discontinuities. The key

idea is motivated by the Helmholtz-Hodge decomposition,

and regards the underlying motion flow as a superposition

of a solenoidal component, an irrotational component and

a harmonic part. The proposed method applies a homoge-

neous penalty on the divergence, discouraging local volume

change caused by the irrotational component, thus avoiding

local vacuum or collision; it regularizes the curl field with a

robust functional so that the resulting solenoidal component

vanishes almost everywhere except on a singular set where

the large shear values are preserved. This singularity set cor-

responds to sliding interfaces. Preliminary tests with both

simulated and clinical data showed promising results.

Index Terms— registration, divergence, curl

1. INTRODUCTION

The ultimate goal of medical image registration is to recover

the physical transformation that generated the two (or series)

of observation images. The problem of estimating such vector

field from noisy intensity observations is ill-posed and neces-

sitates the incorporation of prior knowledge. One effective

approach in solving such inverse problems is to use an opti-

mization formulation, where the objective function (total en-

ergy) to be minimized is composed of a data (in)fidelity and

a regularization term (E = Ed + Er). A well designed regu-

larization energy encodes physical understanding of the de-

sirable properties of the unknown parameters and drives the

optimization to solutions with such characteristics. To esti-

mate motion-induced deformation, roughness regularization

is commonly used. It penalizes the L2 norm of the kth-order

derivative of the deformation field1. However, when there is

sliding along tissue/organ boundaries, homogeneous smooth-

ness regularization leads to estimated transformations that are

blurry across the sliding surface - an undesirable artifact.

Recently, several studies [3, 4] of joint segmentation and

registration have arisen from various disciplines and appli-

cations. In these methods, smooth regions and singularity

sets (edges) are devised according to image intensity, and

registration aims to align each part respectively. As an al-

ternative, [5] proposes to capture the intrinsic discontinuity

boundaries incurred by the flow itself, based on a regular-

ization design that interprets he energy minimization process

as anisotropic diffusion. Unfortunately, none of the afore-

mentioned methods distinguishes among various discontinu-

ities, and may preserve flow singularities corresponding to

dramatic volume change, contradicting our prior knowledge

that physical transformations in medical imaging are invert-

ible and roughly volume preserving.

Motivated by the above observations, we study a regular-

ization scheme that preserves large local shear discontinuities

and penalizes other types of nonsmoothness. We propose a

discriminative regularization energy that encodes the distinc-

tion among different contributing components to the Jacobian

of the deformation field and use a robust energy functional to

implicitly preserve the large shear component. The proposed

energy reflects more accurately the physical prior knowledge,

and leads to promising results in a preliminary study.

2. PROPOSED METHOD

Since the endpoint of regularization design is to penalize so-

lutions that violate physical prior, we start by characterizing

the admissible solution set. First, the deformation should be

fairly smooth except at the sliding sites. Second, dramatic

local volume change seldom occurs in physical deformations

1Typically k = 1,2 or their combination is used. If k = 1, it corresponds

to the Horn and Schunck regularization [1], and k = 2 is related to thin-plate

spline formulation [2]. The combination version has an interpretation with

the corresponding Sobolev space.
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induced by motion and should be excluded; in particular, the

deformation should neither map distinct voxels in the source

image to the same location in the target image (mass colli-

sion) nor the other way around (vacuum). Third, shear (slid-

ing) may be large on a sliding surface (boundary), but should

be small within the complement of the motion boundary. Fi-

nally, medical image registration involves tissues that are elas-

tic with sliding motion and mild changes in topology, so a

physical deformation generally has nonvanishing divergence

and curl components everywhere, and we are not interested in

the extreme cases of pure solenoidal or irrotational flows. We

choose to stay within the optimization framework and seek

a proper regularization to drive the solution to a vector field

possessing the traits mentioned above, rather than to use seri-

ally structured post-processing.

To simplify description and to better motivate the ba-

sic ideas, we start by considering the 2-dimensional cases.

We represent the components of the deformation field Φ as

(U,V ) so that at spatial location x, Φ(x) = [U(x),V (x)], and

the pointwise Jacobian of the deformation is given by

DΦ(x) =

[
Ux(x) Uy(x)
Vx(x) Vy(x)

]
.

Recall that the conventional Horn and Schunck type regular-

ization uses the following energy functional:

Er,hs =
Z

Ω

{
U2

x +U2
y +V 2

x +V 2
y

}
dx

=
Z

Ω
‖DΦ‖2

F dx

= ‖‖DΦ‖F‖
2
2 . (1)

Where the subindex of ‖·‖ indicates the type of norm applied:

‖·‖F corresponds to the Frobenius norm and ‖·‖2 represents

the L2 norm. In the above expressions, the components of

DΦ(x) are combined according to the Frobenius norm; and

then the regularization energy is defined as the L2 norm (with

respect to spatial locations) of this intermediate scalar field.

Note that the trace of the deformation Jacobian, trace{DΦ},

is the divergence of the deformation field, ∇ ·Φ,

trace{DΦ} = Ux +Vy = ∇ ·Φ,

which characterizes the local volume change. To the first or-

der, ∇ ·Φ agrees with the alternative volume change measure

based on local Jacobian (‖DΦ+ I‖2
F − 1) used in [6]. This

motivates us to derive other quantities from the Jacobian that

reflect the physical properties we hope to incorporate.

The Helmholtz-Hodge decomposition [7] states that a

smooth vector field can be uniquely decomposed into:

Φ = ∇× f +∇g+h,

where f is a vector field and ∇ · (∇× f ) = 0; g is a scalar

potential field and that ∇× (∇g) = 0; and h is a harmonic

vector field with ∇ · h = 0 and ∇× h = 0. This implies that

the solenoidal component ∇× f is the sole contributor to the

curl value of the deformation ∇× (∇× f ) = ∇×Φ; and the

irrotational component ∇g is the sole contributor to the diver-

gence value ∇ ·Φ. This idea has been explored recently to

filter and decompose vector fields [8].

Motived by the above observations, we consider regular-

izing the divergence and the curl of the deformation field sep-

arately, because we could suppress the irrotational component

by penalizing ∇ ·Φ and control the behavior of the solenoidal

component by regularizing ∇×Φ. Note that preservation of

mass is a reasonable assumption for physical deformations

throughout the region of interest, thus a homogeneous regu-

larization on the divergence component is appropriate. On the

other hand, we want to preserve large shear values and sup-

press the smaller ones caused by observation noise, so it is

reasonable to use a robust regularization energy functional on

the curl field.

We consider a regularization energy of the form:

Er,∗,2d(Φ) =

Z
Ω

{
α|∇ ·Φ|2 +β|∇×Φ|

}
dx

= α‖∇ ·Φ‖2
2 +β‖∇×Φ‖1 (2)

This is an legitimate expression in 2D since ∇×Φ is a scalar

field. Notice that the L1 norm on the curl is reminiscent of

the total variation formulation in edge preserving image re-

construction. Only that in this case, we are preserving large

shears.

In 3D, the deformation Φ = [U,V,W ] is a length-3 vector

field, and its divergence and curl components are as follows:

∇ ·Φ = Ux +Vy +Wz; (3)

∇×Φ = det

⎡
⎣ i j k

∂
∂x

∂
∂y

∂
∂z

U V W

⎤
⎦

, (4)

where i,j,k are the unit vectors for the x−, y−, and z−axes,

respectively.

Divergence (3) is still a coordinate independent scalar

field as in the 2D case, but the curl component (4) is now a

vector field with three coordinates (i,j,k) and it is necessary

to define an intermediate map to convert this vector field to

scalar values in order to apply the suggested regularization

functional. We use the L2 length as the measure of point-

wise strength of the curl field before the spatial integration,

ensuring rotatioal invariance of the regularization energy.

Er,∗,3d(Φ) = α‖∇ ·Φ‖2
2 +β‖‖∇×Φ‖2‖1 (5)

= α

Z
Ω
(Ux +Vy +Wz)

2dx

+β

Z
Ω

√
(Wy −Vz)2 +(Uz −Wx)2 +(Vx −Uy)2dx.
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3. PRELIMINARY TEST RESULTS

For preliminary study, we used voxel based free-form descrip-

tor for the deformation, and the optimization procedure was

performed with energy descending variational flows. We have

performed the following three sets of tests.

1. As a proof of principle, we started with an initial vector

field and updated it such that the proposed regulariza-

tion energy was decreased. This test was intended as an

qualitative justification of the impact of the proposed

regularization energy.

original image

initial flow deformed intensity

HR regularized flow deformed intensity

discriminatingly regularized flow deformed intensity

Fig. 1. Evolution of vector field under descending flow for

the regularization energy.

2. For illustrative purposes, we simulated a pair of source

(Is) and target (It) images, consisting of two blocks slid-

ing against each other in the vertical direction by 5 pix-

els. We registered the simulated image pair by mini-

mizing the energy corresponding to both the proposed

method and the conventional Horn and Schunck formu-

lation. The sum of squared distance (SSD) was used as

the data discrepancy energy Ed so that the overall ob-

jective functional to be minimized was given by:

E(Φ) = Ed(Is, It ,Φ)+λEr(Φ), (6)

where the discrepancy energy read

Ed(Is, It ,Φ) = ‖Is ◦ (I +Φ)− It‖
2
2

=
Z

Ω
(Is(x+Φ(x))− It(x))

2dx. (7)

Since the local minima depend on the choice of tradeoff

parameters (λ,α,β), we tested a wide variety of param-

eter values, and compared the best performance among

all choices. To illustrate the result for comparison bet-

ter, we show the value of the vertical component (V ) of

the estimated deformation field with each regulariza-

tion method (the truth views as two side-by-side blocks

with values −5 and +5 respectively).

source image target image

−5

0

5

V-comp. with HS reg. deformed source

−6

−4

−2

0

2

4

V-comp. w. proposed reg. deformed source

Fig. 2. Registration test for simulated sliding blocks.

3. Finally, we performed a comparison test on a thorax CT

data set: the images were acquired at deep inhale and

deep exhale respectively. The experiment set up were

the same as in the simulation test above. In the absence

of ground truth, optimal parameter values could not be

determined. For a fair comparison, we used a set of

tradeoff parameters so that the resulting data discrep-

ancy energy were comparable for both methods,
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Fig. 3. Registration test for thorax CT pair under respiratory

motion.

Notice that in both registration cases (test 2 and test 3),

despite the similarity between deformed intensity im-

ages, the proposed regularization led to flow fields that

were more physical than the ones estimated with the

Horn and Schunck regularization. This further justifies

the effect of a well-designed regularization functional:

it guides the solution to a local minimum that conforms

to prior knowledge.

4. CONCLUDING REMARKS

We have proposed a regularization energy that implicitly

encodes a discriminative treatment among different types

of discontinuities and selectively preserves shear disconti-

nuity boundaries. By penalizing the L2 norm of the flow

divergence, the proposed method prevents unphysical discon-

tinuities such as mass collisions or vacuums. On the other

hand, the L1 norm on the curl field drives the deformation

to be irrotational for most region of interest, yet allows for

shear boundaries. The proposed regularization appropriately

reflects our understanding of the sliding effects in medical

image registration problems. Preliminary results on both

simulated and clinical data were promising. Current work

has used the L1 normed curl regularization for large shear

preserving. Other robust functionals such as Geman-type

energy [9], Huber and hyper-geometric functionals are also

reasonable choices. We will explore the behavior of those

alternative in future work.

Because the objective energy is nonconvex for image

registration problems, local minimal solutions are attained.

When observations are subject to noise corruption, it is cru-

cial to balance various terms in data fidelity and regularization

energy properly - analogous to setting the Tikhonov regular-

ization weight to be inversely proportional to observation

noise variance in conventional image denoising problems -

only that it is much harder in registration problems, due to

the nonlinear relationship between the deformation parameter

and observed intensity. We are working on a bias-variance

analysis, which has the potential to provide guidance for

parameter selection.

In the proposed method, the computation complexity for

each iteration in the variational PDE evolution is comparable

to any alternative regularization methods involving the Jaco-

bian. Moreover, the data fidelity component gives rise to the

hyperbolic term in the PDE, which subsequently determines

the time step size restricted by the Courant-Friedriches-Lewy

(CFL) stability condition. This indicates that the proposed

method does not incur intrinsic sacrifice of computation effi-

ciency, compared to alternative regularization methods.
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