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Abstract—The computation burden of cone-beam forward
and back-projectors is one of the greatest challenges facing
iterative methods for 3D image reconstruction in CT. This
paper describes a new separable footprint (SF) projector. It
takes advantage of small polar angles of X-rays in cone-beam
geometry to approximate the voxel footprint functions as 2D
separable functions with simple rectangular functions in the
axial direction. Due to rotation of the source, a more accurate
function is adopted to approximate the footprint function in the
transaxial direction, such as a trapezoid function. Because of
the separability of these footprint functions, calculating their
integrals over a detector cell is greatly simplified and can be
implemented efficiently. Simulations and experiments showed
that the SF projector is more accurate with similar computational
speed than the distance-driven (DD) projector, which is a current
state-of-the-art method in the field.

Index Terms—Cone-beam tomography, iterative tomographic
image reconstruction, forward and back-projection

I. I NTRODUCTION

Iterative statistical methods for 3D tomographic image re-
construction offer numerous advantages such as the potential
for improved image quality and reduced dose, as compared
to the conventional methods such as filtered back-projection
(FBP). The primary computational bottleneck in iterative re-
construction methods is forward and back-projections. The
forward projection is roughly a discretized evaluation of the
Radon transform, and the back-projector is the adjoint of
the forward projector. Traditionally the forward and back-
projection steps involve operations such as computing the
lengths of intersections between each tomographic ray and
each image basis function.

A variety of methods for 3D forward and back-projection
have been proposed [1]–[6]. All methods provide some com-
promise between computational complexity and accuracy.

Although spherically symmetric basis functions (blobs) have
many advantages over simple cubic voxels or other basis
functions for the image representation,e.g., their appearance is
independent of the viewing angle, evaluating integrals of their
footprint functions is computationally intensive. Ziegleret al.
[3] proposed to store the integrals of their footprint functions
in a lookup-table, but the computation of forward and back-
projection is still large due to loading a large table and the fact
that blobs intersect many more tomographic rays than voxels.
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The distance-driven (DD) projector [2] is a current state-
of-the-art method. It maps the horizontal and vertical bound-
aries of the image voxels and detector cells onto a common
plane such asxz or yz plane, approximating their shapes by
rectangles, calculates the lengths of overlap along thex (or
y) direction and along thez direction, and then multiplies
them to get the area of overlap. The DD projector has the
largest errors when azimuthal angle of the X-ray source is
around multiples ofπ/4, because the transaxial footprint
is approximately triangular rather than rectangular at those
angles.

We have developed a new approach for 3D forward and
back-projection that we call the separable footprint (SF)
projector. It approximates the voxel footprint functions as
2D separable functions. This approximation is reasonable
for typical axial or helical cone-beam CT geometries. The
separability of these footprint functions greatly simplifies the
calculation of their integrals over a detector cell and allows
efficient implementation of the new projector. Our studies
showed that the SF projector is more accurate with similar
computational speed than the DD projector.

The organization of this paper is as follows. Section 2
describes the cone-beam 3D system model, and introduces the
SF projector and its acceleration. Section 3 gives simulation
results, including accuracy and speed comparison between
the SF and DD projector as stand alone modules and within
iterative image reconstruction of a region of interest (ROI)
method [7]. Finally, conclusions are in Section 5.

II. M ETHOD

A. Cone-Beam 3D System Model

In the practice of iterative image reconstruction, rather than
operating on a continuous objectf(~x), we want to forward
project a discretized object based on a common basis function
β0(~x) superimposed on aN1 × N2 × N3 Cartesian grid as
follows:

f(~x) =
∑

~n

f [~n]β0

(

1

~∆
⊙ (~x − ~xc[~n])

)

, (1)

where the sum is over theN1×N2×N3 lattice,~xc[~n] denotes
the center of the~nth basis function and~n = (n1, n2, n3).
The grid spacing is~∆ = (∆X,∆Y,∆Z). We consider the case
∆X = ±∆Y hereafter, but we allow∆X 6= ∆Z.

Axial cone-beam projection space is characterized by three
independent indices(s, t, β), whereβ denotes the angle of
the source point counter-clockwise from they axis, and(s, t)
denote the local coordinates on the 2D detector plane where
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the s-axis is perpendicular to thez-axis and thet-axis is
parallel to thez-axis.

The cone-beam projections off(~x) are given by

p(s, t;β) =

∫

L(s,t,β)

f(x, y, z) dℓ, (2)

where

L(s, t, β) =

{

~p0 + α~e3 : α ∈ [0,
√

D2

sd
+ s2 + t2]

}

,

~e3 denotes the direction vector of a ray from the source
position~p0 to a point~p1 on the detector plane, andDsd denotes
the source to detector distance.

Assume that the detector blurh(s, t) is shift invariant,
independent ofβ, and acts only along thes andt coordinates.
Then the mean projections satisfy

ȳβ [sk, tl] =

∫∫

h(sk − s, tl − t)p(s, t;β)dsdt, (3)

where(sk, tl) denotes the center of detector cell specified by
indices(k, l) for k = 0, . . . , Ns − 1 and l = 0, . . . , Nt − 1.

Using the basis expansion model (1) for the object leads to
the linear model

ȳβ[sk, tl] =
∑

~n∈S

aβ [sk, tl;~n]f [~n],

where the elements of cone-beam system matrixA are sam-
ples of the following cone-beam projection of a single basis
function centered at~xc[~n]:

aβ [sk, tl;~n] =

∫∫

h(sk − s, tl − t)q(s, t;β;~n)dsdt

= F (sk, tl;β;~n), (4)

where

F (s, t;β;~n) ,

∫∫

h(s− s′, t− t′)q(s′, t′;β;~n)ds′dt′,

which is the “blurred footprint” function andq(s, t;β;~n)
denotes the cone-beam footprint of basis function
β0

(

1

~∆
⊙ (~x − ~xc[~n])

)

. i.e.,

q(s, t;β;~n) =

∫

L(s,t,β)

β0

(

1

~∆
⊙ (~x − ~xc[~n])

)

dℓ . (5)

A simple model for the detector blur is

h(s, t) =
1

rsrt
rect

(

s

rs

)

rect

(

t

rt

)

, (6)

where rs andrt denote the width alongs and t respectively.
This model accounts for the finite size of the detector elements.

B. Separable Footprint (SF) Projector and Its Acceleration

The footprints of cubic voxel basis functions can be com-
puted analytically for cone-beam geometries [8, p. 104]. Fig. 1
shows an example of a true footprint and its profiles.

Inspired by the shape of the true footprint, we approximate
it as a 2D separable function with a rectangular function in

 

 

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

   0

1.15

s[mm]

t
[
m

m
]

True footprint

−1.5 −1 −0.5 0 0.5 1 1.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

s[mm]

Le
n

g
h

t[m
m

] Profile s

−1.5 −1 −0.5 0 0.5 1 1.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

t[mm]

Le
n

g
h

t[m
m

] Profile t

Fig. 1. An example of true footprint function and its profiles of a voxel with
∆X = ∆Y = ∆Z = 1mm centered at the origin under a flat-detector cone-
beam geometry withDsd = 949mm andDs0 = 541mm (Ds0 is the source
to rotation center distance) whenβ = 30

◦.

the axial direction and a trapezoid function in the transaxial
direction as follows,

q(s, t;β;~n) ≈ ∆Xl(β;~n) rect

(

t− t0
wt0

)

trap(s; τ0, τ1, τ2, τ3) ,

(7)
where

l(β;~n) ,
1

| cos(θ0) | · max{| cos(ϕ0) |, | sin(ϕ0) |}
,

trap(s; τ0, τ1, τ2, τ3) ,















s−τ0

τ1−τ0

, τ0 < s < τ1
1, τ1 ≤ s ≤ τ2
τ3−s
τ3−τ2

, τ2 < s < τ3
0, otherwise

t0 =
tl + tr

2
,

wt0 = tr − tl, tr ≥ tl, (8)

where θ0 and ϕ0 denote the polar and azimuthal angles of
the ray connecting the source and center of the~nth voxel
respectively,τ0, τ1, τ2 andτ3 denote vertices of the trapezoid
function which are at the exact locations as those of the true
footprint function in thes direction, andtl and tr denote the
boundaries of the rectangular function which are the projected
t coordinates of two axial boundaries of the voxel. Since the
boundaries of the separable function are determined by the
projections of boundaries of the voxel basis function under
the cone-beam geometry, the depth-dependent magnification
is accurately modeled.

The scalel(β;~n) depends on angles(θ0, ϕ0) of the ray
connecting the source and center of the~nth voxel. This means
that N1 × N2 × N3 × Nβ different l(β;~n) values have to
be computed, whereNβ denotes the number of projection
views. In addition, computing the angles for each voxel at
each projection view usually involves twotan−1 functions.

To accelerate the computation of the SF projector, we
propose a method that initially ignoresl(β;~n) by setting
l(β;~n) = 1 for all the voxels at any projection view, and
then scales the “blurred footprint” functions by multiplying
them by a ray-dependent scale factor. There are many fewer
tomographic rays (ns × nt) than voxels in a 3D image
(N1 ×N2 ×N3), so this saves substantial computation.

This acceleration method utilizes the fact that for small basis
functions and narrow blursh, the angles of rays that intersect
the basis function are very similar. This method is similar to
Joseph’s method [9] where the scale of the triangular footprint
function is determined by1/max(| cosϕ|, | sinϕ|) for 2D fan-
beam geometry.
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The system matrix model (4) is used for both the SF forward
and back projector, which ensures they are the exact adjoint
operators of each other.

III. RESULT

A. Forward and Back-Projector as Single Modules

We simulated an axial cone-beam flat-detector X-ray CT
system with a detector size ofNs × Nt = 512 × 512 cells
spaced by∆S = ∆t = 1mm with Nβ = 984 angles over
360◦. The source to detector distanceDsd is 949mm, and the
source to rotation center distanceDs0 is 541mm. We included
a rectangular detector response (6) withrs = ∆S andrt = ∆t.

We implemented the accelerated SF projector in an ANSI
C MEX routine using single precision. The DD projector was
provided by De Manet al., which is also implemented as a C
MEX interface to C code.

1) Maximum Errors of Forward Projectors: We define the
maximum error as

ek(β;~n) = max
s,t∈R

|F (s, t;β;~n) − Fk(s, t;β;~n)| , (9)

wherek = 1 stands for the accelerated SF projector andk = 2
stands for the DD projector. We generated the true footprint
F (s, t;β;~n) in (4) by linearly averaging1000×1000 analytical
line integrals of rays sampled over each detector cell.

We compared the maximum errors of the accelerated for-
ward SF and DD projectors for a voxel with∆X = ∆Y =
∆Z = 1mm centered at the origin. Since the voxel is centered
at the origin, we chooseNβ = 180 angles over only90◦

rotation. Fig. 2 shows the results on a logarithmic scale. The
maximum errors of the DD projector are much bigger than
those of the accelerated SF projector,e.g., the maximum error
of the DD projector is0.3/(4.63× 10−4) ≈ 649 times of the
proposed method whenβ = 45◦.
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Fig. 2. Maximum error comparison between the accelerated forward SF and
DD projector.

2) Accuracy and Speed of Forward Projectors: We com-
pared the accuracy and computation times of the accelerated
SF and DD forward projectors using an image containing 10
voxels centered at thez = 0.5mm plane. The size of the
image isN1 = 512, N2 = 512, N3 = 128 with ∆X =
∆Y = ∆Z = 1mm in thex, y, z direction respectively. The
transaxial centers of the voxels were chosen randomly. The
“gold standard” reference sinogram was generated by linearly

Forward projectors SF DD
max % error 3.4 17.4
% nrms error 2.3 8.1

computation time (seconds) 158 172

TABLE I
COMPARISON OFSFAND DD FORWARD PROJECTORS

averaging8 × 8 analytical rays sampled across each detector
cell. For the two projectors, we computed the normalized
maximum error,maxi(|xi − yi|)/maxi(|xi|), and normalized
root-mean-square (NRMS) error,‖xi − yi‖2

/ ‖xi‖2
. We eval-

uated both projectors using 4 threads as computational cores
on a computer with Quad-Core Intel Xeon Processor X3230
(8M Cache, 2.66 GHz, 1066 MHz FSB).

Table I summarizes the comparisons of accuracy and com-
putation times. The accelerated SF forward projector is more
accurate than the DD forward projector, and the computation
time (using Matlab elapsed time commands) is about the same
(of course, the execution times depend on code implementa-
tion).

B. Forward and Back-projectors within Iterative ROI Recon-
struction

In many cases, the region of interest (ROI) is much smaller
than the field of view (FOV) that covers the whole irradiated
volume. If the ROI were known in advance, the reconstruction
could save resources in terms of computation time and memory
usage. Ziegleret al. [7] proposed the following solution to
iterative reconstruction of a ROI.

1) Iterative reconstruction of the whole FOV, yielding an
initial estimatex̂ of x which is the vector representation
of the objectf(~x).

2) Definex̂mask = x̂ · m wherem = (m1, . . . ,mp) with
0 ≤ mj ≤ 1(j = 1, . . . , p) is a mask vector setting the
estimated object̂x, inside the ROI to zero and provides a
smooth transition from the ROI to the remaining voxels.

3) Computepout = Ax̂mask which is the forward projec-
tion of the masked object̂xmask.

4) Obtain the projection of ROI,proi = p − pout where
p = Ax.

5) Iterative reconstruction of the ROI only fromproi. Due
to the transition zone, the region of this reconstruction
needs to be extended slightly from the predetermined
ROI.

This method requires accurate forward and back projectors.
Errors in step 2, where re-projection of the masked estimation
image is computed, can greatly affect the results of subsequent
iterative ROI reconstruction. Moreover, for iterative image
reconstruction, even small approximation errors might accu-
mulate after many iterations. We evaluated the accuracy of our
proposed accelerated SF projector and the DD projector in this
iterative ROI reconstruction method.

We simulated the GE LightSpeed X-ray CT system with
an arc detector of888 detector channels for 64 slices (Ns =
888, Nt = 64) byNβ = 984 views over360◦. The size of each
detector cell is∆S × ∆t = 1.0239× 1.0964mm2. The source
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to detector distance isDsd = 949.075mm, and the source to
rotation center distance isDs0 = 541mm. A quarter detector
offset in thes direction is included to reduce aliasing.

We used a modified 3D Shepp-Logan digital phantomxFOV

that only has ellipsoids centered at thez = 0 plane to
evaluate the projectors. The brain-size field of view (FOV)
is 250×250×40mm3, implying 256×256×64 voxels with a
coarse resolution of0.9766× 0.9766× 0.6250mm3. We used
the analytical method mentioned above to simulate noiseless
cone-beam projection measurements from the Shepp-Logan
phantom. Noiseless data is used because we want to focus on
the accuracy of projectors. First, an entire FOV imagex̂FOV

with the coarse resolution is reconstructed by the FDK method
since there is no noise.

The ROI is chosen to center at the rotation center and cover
about48.8 × 48.8 × 12.5mm3 (50 × 50 × 20 voxels with the
coarse resolution). The transition zone directly follows the
ROI, and covers about13.7 × 13.7 × 5mm3 (14 × 14 × 8
voxels with the coarse resolution). To construct a masked
imagex̂m

FOV
from x̂FOV, we removed the ROI and smoothly

weighted the voxels corresponding to the transition zone by a
3D separable Gaussian function (see Fig. 3).

For reconstruction of the ROI, we implemented iterative
image reconstruction with these two projectors. We ran 300
iterations of the conjugate gradient algorithm, initialized with
x̂0

ROI
which is the linearly interpolated image from̂xFOV, for

the following penalized weighted least-squares cost function
with a quadratic roughness penalty (QPWLS-CG):

Φ(xROI) =

N
d

X

i=1

wi

1

2
(yi − [AxROI]i)

2 + βR(xROI) (10)

R(xROI) =
X

k

ψ([CxROI]k), (11)

where yi is the negativelog of the measured cone-beam
projection of ROI,wis are statistical weighting factors,A is
the system matrix,C is a differencing matrix andψ(t) is the
potential function. Hereψ(t) = t2/2, a quadratic penalty. For
this simulation, we usewi = exp(−[AxFOV]i) andβ = 0.25.
Evaluating the PSF using the approximations described in [10]
shows that the FWHM is about1.37 × 0.96 × 0.90mm3 for
this value ofβ.

Fig. 3 shows the axial slices of reconstructed images and
their errors. We can see that the accelerated SF projector
provides lower artifact levels than the DD projector.

IV. CONCLUSION

We have presented a three-dimensional forward and back
projector, named the SF projector for X-ray CT. To further
improve the computation efficiency, we also proposed an
accelerated SF projector. Our results have shown that the
accelerated SF projector is more accurate with similar com-
putational speed than the DD projector. To the best of our
knowledge, the DD projector is particularly favorable relative
to other previously published projectors in terms of the balance
between speed and accuracy.

Approximation of the footprint functions as 2D separable
functions is the key contribution of our work. Since the
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separability greatly simplifies the calculation of integrals of
the footprint functions, using more accurate functions in the
transaxial direction is possible without complicating signifi-
cantly the calculation.
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