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ABSTRACT

Reducing motion artifacts is an important problem in medical
image reconstruction. Using gating to partition data into sepa-
rate frames can reduce motion artifacts but can increase noise
in images reconstructed from individual frames. One can pool
the frames to reduce noise by using motion-compensated im-
age reconstruction (MCIR) methods.
MCIR methods have been studied in many medical imag-

ing modalities to reduce both noise and motion artifacts.
However, there has been less analysis of the spatial resolution
and noise properties of MCIR methods. This paper analyzes
the spatial resolution and noise properties of MCIR methods
based on a general parametric motion model. For simplicity
we consider the motion to be given. We present a method to
choose quadratic spatial regularization parameters to provide
predictable resolution properties that are independent of the
object and the motion. The noise analysis shows that the esti-
mator variance depends on both the measurement covariance
and the Jacobian determinant values of the motion. A 2D
PET simulation demonstrates the theoretical results.

Index Terms— motion-compensated image reconstruc-
tion, spatial resolution and noise properties, quadratic regu-
larization parameter, space-invariant tomographs.

1. INTRODUCTION

Medical imaging modalities such as PET, SPECT, CT and
MRI provide useful patient image information for diagnosis,
treatment planning and intervention in clinical settings. How-
ever, due to their innate acquisition time limitations, there are
trade-offs between image noise (SNR) and motion artifacts.
Gating methods based on breathing signals or ECG signals
can reduce motion artifacts, but they also reduce SNR by dis-
carding potentially useful data.
Motion-compensated image reconstruction (MCIR)meth-

ods attempt to use all collected data and motion information
at the same time to improve image quality. Many such meth-
ods use nonrigid motion models for human anatomy. Motion
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information can be estimated separately [1–3], or simultane-
ously [4–6]. Often such methods can improve image quality.
However, there has been less research on spatial resolu-

tion and noise properties of MCIR methods [7]. It is im-
portant to know the statistical properties of an image recon-
struction method. Mean and covariance properties have been
well studied for static image reconstruction [8,9] and dynamic
image reconstruction [10]. Based on such analyses, regu-
larization designs that provide spatial resolution uniformity
have been proposed for quadratic regularizers [11] and non-
quadratic regularizers [12].
This paper studies the spatial resolution and noise proper-

ties of MCIR methods [1, 2, 4, 6]. It also proposes a strategy
to determine regularization parameters that provide resolution
uniformity independent of the object and motion (Section 3).
Lastly, it shows that the noise properties depend on both the
measurement covariance and Jacobian determinant values of
the motion (Section 4). A 2D PET simulation illustrates the
theory (Section 5).

2. METHOD

2.1. Measurement model

Let tm denote the time of themth “scan,” i.e., themth frame
in a gated study. We assume that the measurements are related
to the object fm = {f(·, tm)} linearly as follows:

ym = Gmfm + εm, (1)

where ym denotes the measurements for the mth frame, Gm

denotes the system model for the mth frame and εm denotes
noise. We assume that the object fm and measurement ym

are motion-free, i.e., the object does not move during themth
scan (gate or frame). We allow the system model to possibly
differ for each frame to accommodate systems that rotate such
as gated SPECT or CT or that can otherwise change sampling
properties dynamically such as MRI.
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2.2. Motion-compensated image reconstruction model

ForMCIR methods, we first need to choose a reference image
frame among {f1, · · · , fM}. Without loss of generality, we
assume that f1 is our reference image frame. Then, the rest
of the image frames are represented as a warped version of
f1(r):

fm = Tm,1f1, m = 1, . . . , M, (2)

where Tm,1 is an image warp that maps f1(r) to fm(r).
Substituting (2) into (1) yields a measurement model that

depends only on one image f1 instead of all images fm:

ym = GmTm,1f1 + εm, m = 1, . . . , M.

Stacking up these models yields the overall model

yc = GdTcf1 + εc, (3)

whereGd = diag {G1, · · · , GM} , Tc = [T ′1,1, · · · , T ′M,1]
′,

and εc = [ε′1, · · · , ε′M ]′. T1,1 is an identity matrix. One can
determine Tc from the measurements yc or from other mea-
surements, e.g., from CT in PET-CT systems. Here we treat
Tc as predetermined (known).
One can use (3) with any statistical image reconstruction

objective function such as penalized likelihood. In this paper,
we use a penalized weighted least square function [13]:

f̂MCIR � argmin
f1

‖yc − GdTcf1‖
2

W + η‖Cf1‖
2, (4)

where W is a weight matrix that approximates the inverse
of the covariance of yc, η is a regularization parameter, and
C is a finite-difference matrix for the first or second order
neighbors. Spatial resolution and noise properties also can be
obtained in more general statistical formulations by similar
arguments as those in [11].

3. SPATIAL RESOLUTION PROPERTIES

We are interested in the local impulse response of the esti-
mator f̂MCIR. From (4) the expected value of the estimator
f̂MCIR is:

E[f̂MCIR] = [Fc + ηR]−1Fcf1, (5)

where Fc � T ′cG
′

d
WGdTc and R � C ′C. In Poisson-

related modalities like PET and CT, the weightsW depend on
the object. Tc depends on the motion between image frames.
Thus, (5) implies that the resolution properties of the MCIR
estimator f̂MCIR are object and motion dependent. To our
knowledge, this undesirable behavior has not been analyzed
or addressed previously.
To provide uniform spatial resolution for static image re-

construction, [11] proposed a regularization design method
that depends onW . Here we extend this technique for MCIR

methods. We first define a vector κ for which the following
approximation holds:

Fc = T ′cG
′

dWGdTc ≈ D(κ)G′

dGdD(κ), (6)

where D(κ) = diag {κ} is a diagonal matrix. Due to the
1/r response of tomographs and the finitely supported image
basis, Fc is fairly concentrated about its diagonal. Therefore,
we want κ to match perfectly the diagonal elements on both
sides of (6) as follows:

[T ′cG
′

dWGdTc]jj = κ2

j [G
′

dGd]jj . (7)

To further simplify, we approximate (7) as follows:

κj �

√
[T ′cG

′

d
W1]j

[G′

d
1]j

, (8)

where 1 = [1, 1, 1, · · · ]′. Unlike a natural extension of the
conventional κ proposed in [11] and a κ that appeared in [7]
for DFT-based covariance approximation, (8) does not con-
tain T ′c in the denominator. Since one can show that

T ′m = D

(
1

|∇Tm(rj)|

)
T−1

m , (9)

our proposed κ contains additional Jacobian determinant of
deformations |∇Tm|. These terms compensate for the change
in spatial resolution due to motion.
Extending the static case [11], we now define a modified

regularizer where
C � C0D(κ), (10)

where C0 is the usual finite-differencing matrix. Thus,
R = C ′C = D(κ)C ′

0C0D(κ). Substituting this regular-
ization design into the mean expression (5) and simplifying
yields

E[f̂MCIR] ≈ [F0 + ηC ′

0C0]
−1F0f1, (11)

where F0 �
∑M

m=1
G′

mGm. Thus, our proposed regulariza-
tion design (10) achieves approximately uniform spatial res-
olution independent of the object and motion between image
frames. This aids regularization parameter selection [11] and
helps match spatial resolutions of different MCIR methods.
Using (10) requires additional T ′c computation only once at
the beginning of optimization (4) and it is equivalent to the
computational complexity of image interpolation for all vox-
els.
WhenGm = G0 for allm, we can match the spatial reso-

lution of MCIR with the resolution of gated image reconstruc-
tion (gate 1). If we substitute η with Mη, then the expected
value of both MCIR (f̂MCIR) and gated image reconstruction
(f̂1) will be

E[f̂MCIR] ≈ [G′

0G0 + ηC ′

0C0]
−1G′

0G0f1 ≈ E[f̂1]. (12)

Note that gated image reconstruction uses a conventional κ
in [11].
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4. NOISE PROPERTIES

In the usual case when W = Cov{yc}
−1, the covariance of

the MCIR estimator f̂MCIR is:

Cov{f̂MCIR} = [Fc + ηR]−1Fc[Fc + ηR]−1. (13)

To simplify, assume that we use the modified regularizer (10)
and that the associated approximations hold. Then one can
derive the following covariance approximation:

Cov{f̂MCIR} ≈ D(1/κ)H−1

0
F0H

−1

0
D(1/κ), (14)

whereH0 � F0 + ηC ′

0C0.
The comparison of noise properties is only meaningful

when the spatial resolutions are matched. If we assume that
Gm = G0, we can compare the noise covariances of MCIR
and gated image reconstruction with matched spatial resolu-
tions in the previous section. In this case, (14) becomes

Cov{f̂MCIR} ≈
1

M
D(1/κ)Ω0D(1/κ) (15)

where

Ω0 � [G′

0G0 + ηC ′

0C0]
−1

G′

0G0 [G′

0G0 + ηC ′

0C0]
−1

.

We can compare (15) with the covariance of gated image re-
construction f̂1 with a conventional “static” choice for the
regularization factors [11] given by:

κsj �

√
[G′

0
W11]j

[G′

0
1]j

. (16)

Then, one can show that the covariance of a single gate recon-
struction is

Cov{f̂1} = D(1/κs)Ω0D(1/κs). (17)

The covariances of MCIR and gated image reconstruction in
(15) and (17) depend on backprojected statistics. In addition,
the covariance of MCIR also depends on the Jacobian deter-
minant values, i.e., the local volume change.

5. SIMULATION RESULTS

We used 4 breathing phases of a 2D slice from the 4D XCAT
phantom [14]. Ground truth motion was given by cubic B-
spline nonrigid image registration based on true images. The
original image has 128 × 128 image resolution respectively
with 3.4 mm pixel size in Fig. 1. We placed 4 impulses in +
locations for spatial resolution study. We forward projected
these original images using the CTI 931 PET scanner geome-
try with 160 detector samples with 3.375 mm spacing 192 an-
gular views, 3.375 mm strip width to model detector response
and 10% random coincidences. We used 250K mean true co-
incidences for each frame (1M total) and we ignored attenua-
tion. We used 100 realizations for the covariance study.

true: frame 1 − 4

1 128

1

128

   0

8.58

Fig. 1. 2D slices of 4D XCAT phantom at 4 different breath-
ing phases.

We reconstructed 128 × 128 images from these 4 sino-
grams using the modified regularizer (10) to ensure consis-
tent spatial resolution between methods. We compared the
following methods: gated image reconstruction from a single
sinogram with a conventional κ (Gated), MCIR with a con-
ventional κ [11] (i.e., [T ′cG

′

d
1]j in the denominator of (8))

and a proposed κ in (8). We use a conjugate gradient method
for all optimizations.
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Fig. 2. Profile of local impulse responses from noiseless pro-
jections. Comparing to the conventional κ, the proposed κ
can match the spatial resolution with a gated image recon-
struction case.

Reconstructed images from noiseless projections approx-
imate the expectation of the estimated images [11]. Fig. 2
shows the profiles of local impulse responses (LIR) and full-
width-half-maximum (FWHM) values at 4 different locations
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with different Jacobian determinant values. When the Jaco-
bian determinant is close to 1, the differences of LIR and
FWHM with conventional and proposed κ designs are small.
However, for locations that experience large volume changes,
proposed κ (8) matches LIR and FWHM closer to the gated
image reconstruction case.
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Fig. 3. Scatter plot of the mean of four Jacobian determinants
(x-axis) vs. the ratio of variances of MCIR with a proposed κ
to Gated with a conventional κ (y-axis).

Fig. 3 shows an empirical comparison of the relationship
between the ratio of MCIR (with proposed κ) to Gated (with
a conventional κ) and the mean of four Jacobian determinants
of deformations. Since the variance of a Poisson model de-
pends on the image intensity, we selectively plot the points in
the different regions in different colors. This figure shows a
correlation between variance and motion, as predicted.

6. DISCUSSION

This paper analyzed the spatial resolution and noise proper-
ties for MCIR methods. We proposed a regularization de-
sign method for MCIR that can provide approximately uni-
form spatial resolution regardless of object andmotion. When
Gm = G0, one can approximately match the spatial resolu-
tion of MCIR with the resolution of gated image reconstruc-
tion (single frame). The analysis and results also showed that
image variance depends on both measurement statistics and
Jacobian determinant values for the proposed regularizer.
The theory in this paper can be applied to spatial-invariant

3D systems. We are currently extending the results to 3D
MCIR. Extending the theory with fully 3D systems may re-
quire more careful investigation such as [9] and will be inter-
esting.
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