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ABSTRACT 
 
This paper presents a new statistical reconstruction 
algorithm for X-ray CT. The algorithm is based on Poisson 
statistics and a physical model that accounts for the 
measurement nonlinearities caused by energy-dependent 
attenuation. We model each voxel’s attenuation as a mixture 
of bone and soft tissue by defining density-dependent tissue 
fractions, maintaining one unknown per voxel avoiding the 
need of a pre-segmentation. Rather than requiring the entire 
X-ray spectrum, the method approximates the 2D beam 
hardening function corresponding to bone and soft tissue 
with the 1D function corresponding to water and one or two 
empirical tuning parameters. 

Results on simulated human data (NCAT phantom) 
showed a beam hardening reduction similar to conventional 
post-processing techniques, but with an improved signal to 
noise ratio. 
 

Index Terms— X-ray computed tomography, beam 
hardening, penalized-likelihood image reconstruction 
 

1. INTRODUCTION 
 
Filtered back projection (FBP) is the reconstruction method 
traditionally used in X-ray CT. However, non-radon 
scanning geometries, such as cone-beam and multi-slice 
helical CT, the desire for lower-dose scans, and the 
necessity of handling truncated data, are increasingly 
challenging the capabilities of FBP. Statistical techniques 
have better bias-variance performance, permit lower dose 
and accommodate models of data acquisition physics such 
as beam hardening, scatter, partial-volume effects, etc [1].  

Beam hardening is a process whereby the average energy 
of the X-ray beam increases as the beam propagates through 
a material because lower energy x-rays are preferentially 
attenuated. X-rays traversing different paths through an 
object will emerge with different spectra, leading to data 
inconsistencies (in the Radon sense) and reconstruction 
artifacts: ‘cupping’ due to water-related beam-hardening and 
‘streaks’ or ‘shadows’, and ‘spill over’ of bone areas into 
soft tissue, due to bone-related beam-hardening [2-4]. 
Several schemes have been proposed to correct for such 

artifacts. Most scanners use the “water correction method” 
that assumes that all the materials in the scan field are water 
equivalent in X-ray attenuation characteristics and corrects 
the measurements prior to reconstruction [2, 5, 6]. This is 
often not sufficient for non homogeneous objects, especially 
in the presence of high density areas, like bone, leading to 
suboptimal correction. 

Dual-energy imaging (typically 80 kVp and 120 kVp in 
human scans) [7-9] doubles the number of measurements 
and enables reconstruction of separate bone and soft tissue 
images. It is useful for tissue characterization and 
quantitative CT, but its major drawback is the need for two 
separate scans, requiring a sophisticated hardware setup. It 
can also significantly increase the radiation dose. 

Joseph and Spital [4] described a post processing 
technique that involves segmenting the bone voxels from an 
initial FBP reconstruction, which are then forward 
projected. This bone projection provides an estimate of the 
amount of nonlinear beam hardening distortion, which is 
then corrected for [4, 10-12].  

Several iterative methods have been proposed for beam 
hardening correction. Yan et al [13] developed an iterative, 
but non-statistical, beam hardening correction method, 
assuming two categories of materials and iteratively 
computing their volume fraction at each pixel. DeMan et al 
[1] proposed a statistical approach modeling the object 
attenuation as a linear combination of the attenuation 
properties of two base substances. The algorithm needs 
knowledge of the polyenergetic source spectrum but does 
not need a pre-segmented image. Elbakri and Fessler [14] 
presented a statistical algorithm that, like the Joseph and 
Spital method, required pre-segmenting an initial image and 
did not permit pixels to contain tissue mixtures. Later [15], 
they eliminated the necessity of segmentation and allowed 
pixels to contain mixtures. Both approaches needed 
tabulated measurements of the line integrals of bone and 
water over a reasonable range of object thicknesses for the 
CT system of interest. To avoid modeling the entire X-ray 
spectrum, Srivastava and Fessler [16] proposed a simplified 
statistical image reconstruction approach for polyenergetic 
X-ray CT using the using the same calibration data and 
tuning parameters as Joseph and Spital. However, that 
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method uses approximations that can lead to nonphysical 
negative values that can cause convergence problems. 

In this paper, we explore in more depth the latter work, 
proposing improved approximation functions and presenting 
a segmentation free algorithm by modeling the tissue 
fractions in the voxels as functions of the density [15].  

The proposed statistical reconstruction algorithm 
includes beam hardening correction without requiring the 
full X-ray spectrum and eliminates the segmentation step 
needed in most other approaches. The algorithm iteratively 
minimizes the Poisson likelihood. Although one version of 
the algorithm can be guaranteed to ensure monotonicity, we 
usually use ordered subsets to accelerate the algorithm, 
compromising it. Including scatter estimates in the 
algorithm is straightforward. 

We tested the algorithm on simulated human data using 
the CT part of the NURBS-based Cardiac-Torso (NCAT) 
phantom [17]. 
 

2. MATERIALS AND METHODS 
 
We model the measurements as independently distributed 
Poisson random variables [18] that are contaminated by 
extra background counts caused primarily by scatter: 
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where (x,y, ) is the unknown energy-dependent attenuation 
map of the object. The integral in the exponent is taken over 
the line Li and Ii( ) incorporates the energy dependence of 
both the incident ray and the detector sensitivity. The term ri 
can account for scatter and other background signals. 
 
2.1. Segmentation free implementation 
 
We express the attenuation coefficient using the mass 
attenuation coefficient/density model:   
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where the tissue fraction, j
kf , is a unitless fraction that 

describes the contribution of material k to attenuation in 
pixel j. Using this model directly would require K sets of 
unknowns. Often one assumes K=2, i.e., the object is 
composed of only two materials: bone and soft tissue. Dual-
energy scanning accommodates K=2 by providing a 
proportional increase in the available measurements. In 
single-energy scanning a common approach to reduce the 
number of unknowns is to assume that each pixel is either 
bone or soft tissue, i.e., fk

j is a binary function that is equal 
to 1 for pixels of tissue type k and 0 for the rest. Usually the 

values j
kf  are determined by segmenting a preliminary 

reconstruction [14, 16]. Here we consider an alternative 
approach [15] that avoids segmentation by modeling the 
tissue fraction value in the pixel as a function of the 
estimated density in that pixel.  For the two-material case we 
assume 
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The tissue fraction functions, )(s j
jf ρ  and )(b j
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contribution of each tissue type to the line integral along the 
jth ray is now  
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where aij denotes elements of the system matrix. 
 
2.2. Forward model 
 
The mean of the measured data along the path Li is then 
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where 

( ) εε dII ii ≡  , (8) 

and the function F, that characterizes the beam hardening, is 
defined by 
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where we drop the dependence on ray i for simplicity. 
 
2.3. Beam hardening function approximations 
 
The beam-hardening function F(ts,tb) could be calculated if 
the X-ray spectrum were known, but often it is not. 
Tabulating F experimentally is cumbersome. The function 
that is more easily measured and tabulated is the one that 
characterizes the beam hardening for only one tissue type, 
defined by 
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The table corresponding to water (equivalent to soft 
tissue) is available in most scanners.  This table is used for 
the so-called water correction, though it is often insufficient 
for inhomogeneous objects. The method developed by 
Joseph and Spital [4] improves upon the water correction 
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method and uses only one or two additional parameters that 
can be tuned empirically rather than requiring the entire X-
ray spectrum. The idea is based on the concept of “effective 
density,” that is, that equivalent to water. Using this 
concept, we rewrite the beam hardening function as 

( ) )()0),,((, esbssbs tFtttFttF =+= σ , (11) 

where the water function is ( )0,)( sss tFtF =  and we define 
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The line integral of the effective density (water 
equivalent) is given by 
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An exact expression for (ts,tb) would require the full X-
ray spectrum, just like the function F(ts, tb). What would be 
preferable is an approximation involving only one or two 
tuning parameters that one can determine experimentally. 
Fig. 1 shows (ts, tb) for a typical polyenergetic spectrum. 

  

Fig. 1. Example of (ts,tb). Left: profile versus ts for 
different values of tb. Right: profile versus tb for different 
values of ts. 

 
Fig. 1 shows that for small bone areas, the dependence 

on ts is negligible when the amount of bone in the object is 
small, thus, we can approximate (ts,tb) by a function that 
depends only on tb. One possible approximation, suggested 
in [4], is based on the power series approximation of the 
function that defines the measured projection. This is a 
similar approach to the one followed by Hsieh [11], which 
results in 
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Although this approximation works adequately in an 
analytic reconstruction scheme, it fails when included in the 
forward model of an iterative algorithm because it can yield 
negative values. Furthermore, one can show mathematically 
that (ts,tb) is a monotone increasing function of both of its 
arguments, whereas (14) is not. To overcome this problem, 
we investigated the following alternative approximation: 
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We also explored another approximation that better matches 
the true shape of (ts,tb), but requires one more parameter: 
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Substituting (15) or (16) into (11) and (7) yields our 
proposed forward model. 
 
2.3. Algorithm 
 
The negative log-likelihood for independent Poisson 
measurements is given by 
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Given that data is noisy and it is an ill-posed problem, 
we include regularization by adding a penalty term to the 
likelihood function that controls how much the object  
departs from our assumptions about image properties. In this 
work we used a 3D roughness penalty function with the 
convex edge-preserving Huber potential. To improve 
resolution uniformity, we modified the penalty function as 
described in [19]. With regularization we have the following 
penalized cost function: 

( ) ( ) ( )ρβρρ RL +−=Φ  , (19) 

where  is a scalar that controls the tradeoff between the 
data-fit and the penalty terms. A small value will result in 
very good spatial resolution in the absence of noise, but very 
noisy estimates in the presence of noise. Conversely, a large 
value will emphasize minimizing R(x), which usually means 
a smooth estimate with low noise. 

We can derive an iterative algorithm using the principles 
of optimization transfer. This results in the following 
update:  

( )nnn D ρρρ Φ∇−= −+ 11  , (20) 

where D is a diagonal matrix that influences the rate of 
convergence. We can design D to ensure the algorithm 
monotonically decreases the cost function. However, 
following [14] usually we choose the elements of D 
approximately by using the pre-computed curvature: 
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3. RESULTS 

 
Fig. 2 shows the results on one slice of the NCAT 

phantom. The proposed method eliminates the beam 
hardening artifact while showing a significant reduction of 
noise when compared with the post-processing method by 
Joseph and Spital (JS). The reduction of noise was of 40.5% 
in the round ROI on the tissue area shown in Fig. 2-A, while 
substantially reducing noise in the background. 

ts tb 
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Original image FBP 

  
FDK + Water correction FBP + JS correction 

  
Statistical algorithm (no BH) Statistical algorithm proposed 

      
Zoom of images A-F 

 
Fig. 2. Reconstructed 512x512 pixel transaxial slice of the 
NCAT phantom. The bottom images are a zoom of the area 
inside the dotted square drawn in A. 
 

4. SUMMARY 
 

We have presented present a statistical reconstruction 
algorithm based on minimizing the negative Poisson log-
likelihood with regularization. The method includes beam-
hardening correction but requires only the water-correction 
function and one or two tuning parameters instead of 
requiring the entire X-ray spectrum. The method also 
eliminates the segmentation step needed in most other 
approaches. Although one version of the algorithm is 
monotonic, we usually use ordered subsets to accelerate the 
algorithm, forgoing monotonicity. Including scatter 
estimates in the algorithm is straightforward. 

The algorithm outperforms the commonly used water 
correction method, achieving a similar beam hardening 
correction as the post-processing technique proposed by 
Joseph and Spital, but with increase signal-to-noise ratio and 
eliminating the need of pre-segmentation. 

The approximations to (ts,tb) used here are accurate 
when there are only small areas of bone. In future work we 
will explore more accurate approximations by considering 
the dependence on ts. We will also apply the algorithm to 
real data. 
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