Tradeoffs and complexities in model-based MR image reconsbructi

Jeffrey A. Fessler
EECS Dept., The University of Michigan
fessl er@m ch. edu

December 6, 2007

Abstract

Model-based methods for image reconstruction in magnetic resonaagagr(MRI) have seen increasing interest recently.
This syllabus summarizes some of the complexities and tradeoffs thaimrsodel-based image reconstruction methods.

1 Introduction

The inverse fast Fourier transform (FFT) has served the MRnaonity very well as the conventional image reconstruction
method for k-space data with full Cartesian sampling. Andviell sampled non-Cartesian data, the gridding method [1]
with appropriate density compensation factors [2] is fagt effective. But when only under-sampled data is availabie
when non-Fourier physical effects like field inhomogenaity important, then gridding/FFT methods for image recontbn

are suboptimal, and iterative algorithms based on apmtgprodels can improve image quality, at the price of in@géas
computation. This paper synposizes some of the issuesribatvehen using iterative algorithms for model-based MRgma
reconstruction. The references give pointers to some tegak but are by no means a comprehensive survey.

2 Signal Mode

We begin by reviewing a typical approach to model-based @ragonstruction. Because parallel imaging is of considlera
interest, we consider the general casé.géceive coils. A standard single receive colil is a simplegdease. For simplicity
we focus on static imaging, though generalizations to dyoamaging is of particular interest.
Based on the solution to the Bloch equation, a reasonableinfiadthe (demodulated) received signal of fltke receive
coil is
Sl(t) _ /f(f*) Cl(f') e—R;(F)t e " o7) t e_ﬁﬂk(t)q?d??, (1)

wherer” denotes spatial position (in 2D or 3D)(7) denotes the sensitivity of théh receive coil R () denotes the relaxation
map of the objectw(r) denotes the off-resonance frequency map (field m%(m),denotes the k-space trajectory of the scan
and f () denotes the (unknown) transverse magnetization of thetthjat we wish to reconstruct from the data.

MR scan data consists of noisy samples of the above signal:

ylizsl(ti)+5lia i=1,...,nq, l:17"'7L7 (2)

wherey;; denotes théth sample of thdth coil’s signal ande;; denotes complex white gaussian noise, apddenotes the
number of k-space samples.

Typically, the goal of MR image reconstruction is to estimA{r) from the measurement vectgr= (yi,...,yr), where
Y = (Yi1,-- -, Ying)- This is an ill-posed problem because the given measurengesits discrete whereas the object magne-
tization f(7) is an unknown continuous-space function. To proceed, wanpaterize the object(r) to facilitate parametric
estimation using a “finite series expansion” as follows:
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whereb(-) denotes the object basis functiof),denotes the center of thi¢h basis function translate, ard is the number of
parameters. For simplicity, hereafter we wset basis functions(7) = rect(#/A), i.e.,, square pixels of dimensiafy, so N
is the number of pixels, or voxels in 3D scans. Many other iptesasis function choices can be considered, all of whieh a
imperfect because the true object is not parametric, bignti@ess reasonable basis functions can be useful.

Substituting the basis expansion (3) into the signal mabedud simplifying leads to the model

N
si(ti) = Zaijfj 4
j=1
where the elementgy;;; } of the system matrixd; associated with théh coil are given by

aij = / b(7 — 75) ca(7) e~ A0 e 2RO T g (5)

where we define the “rate map” by combining the relaxationfald maps:
2(7) £ Ry(7) +1 w(F).

(Often this rate map is assumed to be zem, relaxation and off resonance are ignored.) We can comi@par(d (4) in
matrix-vector form as follows:
Yy =Af +e,

wheref = (f1,..., fn) is the vector of parameters (pixel values) that we wish torege from the datay. Equivalently,
stacking up allL vectors and defining theq L x N matrix A = (A4,..., Ar) yields the linear modey = A f 4. At first
glance this linear model appears amenable to a varietyratite solution methods. However, the first challenge thiaea is
that the elements ol are quite complicated in the form above, and not evidentlgraable to fast computation.

To simplify further, we also expand the coil sensitivity rsdp; (¥) } and the rate map(+) using the same rectangular basis
functions:

N
2(F) = D b(F—7) (6)

Here,z; denotes the rate map value in tfth voxel, and:;; denotes the sensitivity map value for ttie coil in the jth voxel.
Substituting these expansions (or approximations) int@as simplifying yields

ayj = B(E(tl)) e~ Zits 67127r12(t,;).7:f7. cij, (7)

whereB is the Fourier transform of the basis functib).

The above model is a generalization of the approach deskciibjd] to the case of multiple coils, and is amenable to the
fast iterative algorithms described theredy., [4]. In particular, because the noise in MR is gaussiantarabapproach is to
estimatef by minimizing a regularized least-squares cost function:

f=arg;mnw>, U(f) 2 |y — Af|]” + BR(S). (8)

The norm|-|| should include the inverse of the covariance matrix thatidess the noise correlation between receive coils [5,6].

3 Challenges

3.1 Regularization

The next challenge in iterative reconstruction for MR inmagis choosing the regulariz&{ f). If this term is not included,
then the image estimatg will be suffer from noise and artifacts for under-sampled/an non-Cartesian data, because this



inverse problem is ill-conditioned. The approach for itexareconstruction that has been adopted in commercialde&aiiners
is to use an unregularized algorithm [7], initialize it wihuniform image, stop iterating when just as the image getseeptly
noisy, and then perhaps apply a bit of post-filtering to redhe noise. One can adopt a similar approach for MR imagihg [8
However, introducing regularization can ensure that theative algorithm converges to a stable image, and can@nfaior
information that improves image quality particularly forder-sampled data.

The simplest choice is Tikhonov regularizatiB(f) = || f|® or R(f) = | f - f||2 , where f is some prior or reference
image (possibly zero). The disadvantage of this choiceaisithiases the estimate towards the reference infade particular,
if the reference image is zero, then all pixel valuegiare diminished towards zero, possibly reducing contrast.

Another choice is a quadratic roughness penalty functidnchvin 1D would be written

N

RF) =D _(f; — fi-1)*

j=2

This choices biases the reconstruction towards a smootheimvaere neighboring pixel values are similar. It is congatfor
minimization, [9] but it has the drawback of smoothing imagiges, particularly if the regularization parameten (8) is too
large.

More recently, total variation methods have been invest@dor MR image reconstruction [10]. In 1D, these methods
replace the squared differences between neighboringspitelve with differences:

N
R(F) =D _1f5— fial-
=2

The advantage of this type of regularization is that it kéathe reconstructed image towards a piecewise smooth inmestead
of a globally smooth image, thereby better preserving ineges. One disadvantage is that it is harder minimize anttaan
to the appearance of “blocky” texture in images [11].

3.2 Regularization parameter selection

Another challenge is selection of the regularization pai@ms. For quadratic regularization, there is a well developewbii
for choosingg in terms of the desired spatial resolution properties ofrée®nstructed image [12, 13]. This theory extends
readily to MR imaging with reasonably well sampled trajeies (or parallel imaging with reasonable accelerationoia} for
which the point spread function (PSF) of the reconstructeagie is relatively close to a Kronecker impulse so that ssmpl
measures like full width at half maximum (FWHM) are reasoeatdsolution metrics. The extensions to MR have been
investigated [14]. For highly under-sampled trajectoties PSF can have “heavy tails” due to aliasing effects, antemo
investigation is needed to extend the above methods to MRcafipns.

For nonquadratic regularization such as the total vanatiethod, the analysis in [12,13] is inapplicable so one massirt
to other methods for choosing Statisticians often use cross validation [15, 16] for cdiog regularization parameters, with a
goal of finding the parameter that minimizes the mean-squam®r (MSE) betweerf and the unknowrf. However, MSE is
the sum of variance and bias squared, and where bias isdétagpatial resolution and artifacts, and it is unclear Wwbean
equal weighting of noise variance and bias (squared) ismgbtirom an image quality perspective in medical imaging.

Another method for choosing is the “L-curve” method [17,18]. This method is expensivedigse it requires evaluating
f for several values of, and it has some theoretical deficiencies [19].

In summary, choosing remains a nontrivial issue in most ill-posed imaging pratsdéncluding MRI.

3.3 Within-voxel gradients

The model (6) treats the field inhomogeneity within each Va@sebeing a constant, ignoring within-voxel gradients @& th
off-resonance map. However, these gradients can be sigmiific functional magnetic resonance imaging (fMRI) basethe
BOLD effect [20]. Accurate reconstruction of signals negstiasue interfaces requires compensation for theseinvitbxel
gradients, which complicates the reconstruction methad23].

3.4 Computation time and preconditioning

To attempt to accelerate algorithm convergence for norteGimn MR data, some authors have advocated using a weigbred
in the cost function (8) where the weights are based on thsityezompensation factors that would have been used fodigd



type reconstruction methods. This weighting can be thooglas a type of preconditioning of the equatibfy] = Af. If
the unregularized conjugate gradient (CG) algorithm iidlized with a zero image, then the first iterate is equinate a
conjugate phase (CP) reconstruction. So in this case ugingjitg compensation weighting will improve that first iteraBut
when regularization is used, initializing with an appreipei (density compensated) CP image and then iterating wtitioy
further density compensation can be just as effective msaf convergence rate. More importantly, weighting propley the
statistics (rather than by the sampling pattern) avoidsitige amplification that results from density compensdidih.

3.5 Modedingerror

The model (1) assumes the field magr) is known. In practice it must be estimated from noisy MR scamts, [25, 26].
Errors on the field map estimates will propagate into erteegé¢constructed image, but the effect is not understoadtighly.

In addition, object motion that occurs between the field magms and the scan of interest will lead to an inconsistency
between the actual scan data and the assumed model (1) usiegl f@construction algorithm. This possibility has mdiaeh
the development of dynamic field mapping methods that estitie field map separately for each frame in a dynamic study,
eg., [27].

3.6 Prior information

More recently, particularly in dynamic imaging, a variefyneethods have been proposed that introduce various formpsaf
information to augment k-t space data that is inherentlyeusaimplede.g., [28—-31]. Choosing the right balance between the
prior information and the measured data remains a very itapbarea for further investigation.
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