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Abstract
Model-based methods for image reconstruction in magnetic resonance imaging (MRI) have seen increasing interest recently.

This syllabus summarizes some of the complexities and tradeoffs that arise in model-based image reconstruction methods.

1 Introduction

The inverse fast Fourier transform (FFT) has served the MR community very well as the conventional image reconstruction
method for k-space data with full Cartesian sampling. And for well sampled non-Cartesian data, the gridding method [1]
with appropriate density compensation factors [2] is fast and effective. But when only under-sampled data is available, or
when non-Fourier physical effects like field inhomogeneityare important, then gridding/FFT methods for image reconstruction
are suboptimal, and iterative algorithms based on appropriate models can improve image quality, at the price of increased
computation. This paper synposizes some of the issues that arise when using iterative algorithms for model-based MR image
reconstruction. The references give pointers to some recent work but are by no means a comprehensive survey.

2 Signal Model

We begin by reviewing a typical approach to model-based image reconstruction. Because parallel imaging is of considerable
interest, we consider the general case ofL receive coils. A standard single receive coil is a simple special case. For simplicity
we focus on static imaging, though generalizations to dynamic imaging is of particular interest.

Based on the solution to the Bloch equation, a reasonable model for the (demodulated) received signal of thelth receive
coil is

sl(t) =

∫

f(~r) cl(~r) e−R∗

2
(~r)t e−ı ω(~r) t e−ı2π~k(t)·~r d~r, (1)

where~r denotes spatial position (in 2D or 3D),cl(~r) denotes the sensitivity of thelth receive coil,R∗

2(~r) denotes the relaxation
map of the object,ω(~r) denotes the off-resonance frequency map (field map),~k(t) denotes the k-space trajectory of the scan
andf(~r) denotes the (unknown) transverse magnetization of the object that we wish to reconstruct from the data.

MR scan data consists of noisy samples of the above signal:

yli = sl(ti) + εli, i = 1, . . . , nd, l = 1, . . . , L, (2)

whereyli denotes theith sample of thelth coil’s signal andεli denotes complex white gaussian noise, andnd denotes the
number of k-space samples.

Typically, the goal of MR image reconstruction is to estimatef(~r) from the measurement vectory = (y1, . . . ,yL), where
yl = (yl1, . . . , yl,nd

). This is an ill-posed problem because the given measurementsy are discrete whereas the object magne-
tizationf(~r) is an unknown continuous-space function. To proceed, we parameterize the objectf(~r) to facilitate parametric
estimation using a “finite series expansion” as follows:

f(~r) =

N
∑

j=1

fj b(~r − ~rj), (3)
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whereb(·) denotes the object basis function,~rj denotes the center of thejth basis function translate, andN is the number of
parameters. For simplicity, hereafter we userect basis functionsb(~r) = rect(~r/∆), i.e., square pixels of dimension∆, soN
is the number of pixels, or voxels in 3D scans. Many other possible basis function choices can be considered, all of which are
imperfect because the true object is not parametric, but nevertheless reasonable basis functions can be useful.

Substituting the basis expansion (3) into the signal model (1) and simplifying leads to the model

sl(ti) =
N

∑

j=1

aijfj (4)

where the elements{alij} of the system matrixAl associated with thelth coil are given by

alij =

∫

b(~r − ~rj) cl(~r) e− z(~r) ti e−ı2π~k(ti)·~r d~r, (5)

where we define the “rate map” by combining the relaxation andfield maps:

z(~r) , R∗

2(~r) + ı ω(~r) .

(Often this rate map is assumed to be zero,i.e., relaxation and off resonance are ignored.) We can combine (2) and (4) in
matrix-vector form as follows:

yl = Alf + εl,

wheref = (f1, . . . , fN ) is the vector of parameters (pixel values) that we wish to estimate from the datay. Equivalently,
stacking up allL vectors and defining thendL × N matrix A = (A1, . . . ,AL) yields the linear modely = A f +ε. At first
glance this linear model appears amenable to a variety of iterative solution methods. However, the first challenge that arises is
that the elements ofA are quite complicated in the form above, and not evidently amenable to fast computation.

To simplify further, we also expand the coil sensitivity maps{cl(~r)} and the rate mapz(~r) using the same rectangular basis
functions:

cl(~r) =

N
∑

j=1

b(~r − ~rj) clj

z(~r) =

N
∑

j=1

b(~r − ~rj) zj . (6)

Here,zj denotes the rate map value in thejth voxel, andclj denotes the sensitivity map value for thelth coil in thejth voxel.
Substituting these expansions (or approximations) into (5) and simplifying yields

alij = B
(

~k(ti)
)

e−zjti e−ı2π~k(ti)·~rj clj , (7)

whereB is the Fourier transform of the basis functionb(·).
The above model is a generalization of the approach described in [3] to the case of multiple coils, and is amenable to the

fast iterative algorithms described therein,e.g., [4]. In particular, because the noise in MR is gaussian, a natural approach is to
estimatef by minimizing a regularized least-squares cost function:

f̂ = arg min
f

Ψ(f), Ψ(f) , ‖y − Af‖
2

+ β R(f) . (8)

The norm‖·‖ should include the inverse of the covariance matrix that describes the noise correlation between receive coils [5,6].

3 Challenges

3.1 Regularization

The next challenge in iterative reconstruction for MR imaging is choosing the regularizerR(f). If this term is not included,
then the image estimatêf will be suffer from noise and artifacts for under-sampled and/or non-Cartesian data, because this
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inverse problem is ill-conditioned. The approach for iterative reconstruction that has been adopted in commercial PETscanners
is to use an unregularized algorithm [7], initialize it witha uniform image, stop iterating when just as the image gets unacceptly
noisy, and then perhaps apply a bit of post-filtering to reduce the noise. One can adopt a similar approach for MR imaging [8].
However, introducing regularization can ensure that the iterative algorithm converges to a stable image, and can enforce prior
information that improves image quality particularly for under-sampled data.

The simplest choice is Tikhonov regularizationR(f) = ‖f‖
2 or R(f) =

∥

∥f − f̄
∥

∥

2
, wheref̄ is some prior or reference

image (possibly zero). The disadvantage of this choice is that it biases the estimate towards the reference imagef̄ . In particular,
if the reference image is zero, then all pixel values inf̂ are diminished towards zero, possibly reducing contrast.

Another choice is a quadratic roughness penalty function, which in 1D would be written

R(f) =

N
∑

j=2

(fj − fj−1)
2.

This choices biases the reconstruction towards a smooth image where neighboring pixel values are similar. It is convenient for
minimization, [9] but it has the drawback of smoothing imageedges, particularly if the regularization parameterβ in (8) is too
large.

More recently, total variation methods have been investigated for MR image reconstruction [10]. In 1D, these methods
replace the squared differences between neighboring pixels above with differences:

R(f) =

N
∑

j=2

|fj − fj−1| .

The advantage of this type of regularization is that it biases the reconstructed image towards a piecewise smooth image,instead
of a globally smooth image, thereby better preserving imageedges. One disadvantage is that it is harder minimize and canlead
to the appearance of “blocky” texture in images [11].

3.2 Regularization parameter selection

Another challenge is selection of the regularization parameterβ. For quadratic regularization, there is a well developed theory
for choosingβ in terms of the desired spatial resolution properties of thereconstructed image [12, 13]. This theory extends
readily to MR imaging with reasonably well sampled trajectories (or parallel imaging with reasonable acceleration factors) for
which the point spread function (PSF) of the reconstructed image is relatively close to a Kronecker impulse so that simple
measures like full width at half maximum (FWHM) are reasonable resolution metrics. The extensions to MR have been
investigated [14]. For highly under-sampled trajectoriesthe PSF can have “heavy tails” due to aliasing effects, and more
investigation is needed to extend the above methods to MR applications.

For nonquadratic regularization such as the total variation method, the analysis in [12,13] is inapplicable so one mustresort
to other methods for choosingβ. Statisticians often use cross validation [15,16] for choosing regularization parameters, with a
goal of finding the parameter that minimizes the mean-squared error (MSE) between̂f and the unknownf . However, MSE is
the sum of variance and bias squared, and where bias is related to spatial resolution and artifacts, and it is unclear whether an
equal weighting of noise variance and bias (squared) is optimal from an image quality perspective in medical imaging.

Another method for choosingβ is the “L-curve” method [17, 18]. This method is expensive because it requires evaluating
f̂ for several values ofβ, and it has some theoretical deficiencies [19].

In summary, choosingβ remains a nontrivial issue in most ill-posed imaging problems including MRI.

3.3 Within-voxel gradients

The model (6) treats the field inhomogeneity within each voxel as being a constant, ignoring within-voxel gradients of the
off-resonance map. However, these gradients can be significant in functional magnetic resonance imaging (fMRI) based on the
BOLD effect [20]. Accurate reconstruction of signals near air-tissue interfaces requires compensation for these within-voxel
gradients, which complicates the reconstruction method [21–23].

3.4 Computation time and preconditioning

To attempt to accelerate algorithm convergence for non-Cartesian MR data, some authors have advocated using a weightednorm
in the cost function (8) where the weights are based on the density compensation factors that would have been used for gridding
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type reconstruction methods. This weighting can be thoughtof as a type of preconditioning of the equationE[y] = Af . If
the unregularized conjugate gradient (CG) algorithm is initialized with a zero image, then the first iterate is equivalent to a
conjugate phase (CP) reconstruction. So in this case using density compensation weighting will improve that first iterate. But
when regularization is used, initializing with an appropriate (density compensated) CP image and then iterating without any
further density compensation can be just as effective in terms of convergence rate. More importantly, weighting properly by the
statistics (rather than by the sampling pattern) avoids thenoise amplification that results from density compensation[24].

3.5 Modeling error

The model (1) assumes the field mapω(~r) is known. In practice it must be estimated from noisy MR scans, e.g., [25, 26].
Errors on the field map estimates will propagate into errors the reconstructed image, but the effect is not understood thoroughly.

In addition, object motion that occurs between the field map scans and the scan of interest will lead to an inconsistency
between the actual scan data and the assumed model (1) used bythe reconstruction algorithm. This possibility has motivated
the development of dynamic field mapping methods that estimate the field map separately for each frame in a dynamic study,
e.g., [27].

3.6 Prior information

More recently, particularly in dynamic imaging, a variety of methods have been proposed that introduce various forms ofprior
information to augment k-t space data that is inherently undersampled,e.g., [28–31]. Choosing the right balance between the
prior information and the measured data remains a very important area for further investigation.
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