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ABSTRACT
In dynamic MRI, one is constantly addressing the tradeoff

between spatial and temporal resolution. Regularized recon-

struction methods may offer benefits in terms of this tradeoff.

However, selection of the regularization parameters is chal-

lenging. In this work we examine the spatial and temporal

resolution of penalized-likelihood image reconstruction for

dynamic MRI, and present an accelerated method for com-

puting the local impulse response. This method may prove

advantageous for regularization parameter selection.

Index Terms— MRI, regularization, resolution

1. INTRODUCTION

The fundamental challenge in dynamic Magnetic Resonance

(MR) imaging is the tradeoff between spatial resolution and

temporal resolution. Most traditional dynamic image acqui-

sition methods and associated image reconstruction methods

have been based on simple k-space operations. One acquires

a temporal sequence of incomplete k-space sample sets, each

of which may cover a different portion of k-space. In dynamic

contrast enhanced MRI (DCE-MRI), e.g., breast cancer stud-

ies, one also collects a full k-space reference dataset before

contrast injection, and possibly a second reference dataset af-

ter the contrast has reached equilibrium. Then one applies

temporal interpolation or “data sharing” to form a sequence

of “complete” k-space datasets from those partial datasets and

the full k-space reference data. Finally one applies a tradi-

tional image reconstructionmethod (inverse FFT) to those im-

puted k-space datasets to form the dynamic image sequence.

The Keyhole method exemplifies this type of approach [1].

Temporal interpolation in k-space is based on an implicit

assumption that the object is varying smoothly over time. We

are investigating image reconstruction methods for dynamic

MRI that use explicit temporal models in object space. We

use iterative methods for fitting those models to the measured

k-space data using regularized estimators without attempting

to synthesize missing k-space data. The reconstruction algo-

rithm is based on minimizing a cost function that consists of

two types of terms: a data-fit term and regularization terms
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that account explicitly for temporal smoothness and spatial

regularity. We refer to this approach as “Temporal Regular-

ization Use in Image Reconstruction” (TRUIR). Similar for-

mulations have been studied in electrocardiography [2–4] and

recently applied to simulated cardiac MRI data [5].

A challenging aspect of any such formulation is choos-

ing appropriate regularization terms, as well as determining

the relative weights of these terms. Regularization parame-

ter choice can significantly influence the quality of the recon-

structed images.

This work aims to address the issue of regularization pa-

rameter selection by analyzing the resolution properties of the

TRUIR method, which is a penalized-likelihood reconstruc-

tor. To do this, we examine the local impulse response. Simi-

lar analysis of penalized-likelihood reconstruction for (static)

tomography was presented in [6].

Because only a partial k-space dataset is collected for each

time frame, and the sampled k-space locations generally vary

from frame to frame, the TRUIR method is not locally shift-

invariant in time. That is, reconstruction of an object in the

m+1st time framewill not simply be a time-shifted version of
the reconstruction of the same object in the mth frame. This

complicates the analysis of the local impulse response for dy-

namic imaging in MRI compared to previous such analyses

for Positron Emission Tomography (PET) [7]. In particular,

previous methods based solely on FFT calculations are not

directly applicable. By building on this previous work, we

present an accelerated method to determine the local impulse

response of the TRUIR formulation for dynamic MR.

In the following section we derive an approximation to

the local impulse response that leads to faster computation.

Then we present some results indicating that spatial resolu-

tion does not rely solely on the spatial regularization param-

eter, β, nor does temporal resolution solely dependent on the

temporal regularization parameter, α.

2. THEORY

2.1. Cost Function Formulation

In dynamic MRI the measured data is a collection ofM scans

y1, . . . , yM , where ym = (ym1, . . . , ym,Nm
) and Nm de-

notes the number of k-space samples acquired for the mth
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scan. We parameterize the dynamic object f(�r, tm) during
themth scan as:

f(�r, tm) =

np∑
j=1

M∑
l=1

xljbs(�r − �rj)bt(tm − tl), (1)

where bs(�r) and bt(t) are spatial and temporal basis functions,
respectively. The spatial coordinates �rj are spaced equally,

but temporal sample times tl may be unequally spaced. Be-

cause each image is displayed using np pixels, a natural choice

for the spatial basis function is bs(�r) = rect(�r). In this work,
we also use bt(t) = rect(t), although, as will be discussed
further, this may not be the most appropriate choice given our

object model. Nonetheless, it simplifies our analysis.

Based on the MR signal equation (and ignoring relaxation

and field inhomogeneity), one can show that the measurement

model becomes

E[ym] = Amxm (2)

[Am]ij = B(�νmi)e
−i2π�νmi·�rj ,

wherexm = (xm1, . . . , xm,np
), andB(�ν) is the Fourier Trans-

form of b(�r) [8]. Note that because we are using a rect basis
function in time, each ym is a function of the object at a single

time, tm. Stacking the data, we can write

E[y] = Ax,

y =

⎛
⎜⎝

y1

...

yM

⎞
⎟⎠ , A =

⎛
⎜⎜⎜⎜⎝

A1 0 . . . 0

0 A2 0
...

... 0
. . . 0

0 . . . 0 AM

⎞
⎟⎟⎟⎟⎠

,

with x stacked similarly to y.

For complex Gaussian measurements, the negative log-

likelihood is equivalent to

L(x) =
1

2
‖y −Ax‖2.

Estimating x = (x1, . . . , xM ) by minimizing the negative
log-likelihoodwould be equivalent to reconstructing each scan

independently. However, because each ym is undersampled

in general, the ML estimator would be poorly conditioned

and the reconstructions would have low spatial resolution. In-

stead, we propose the TRUIR cost function, which includes

penalty terms that encourage spatial regularity and temporal

smoothness:

x̂ = argmin
x

Ψ(x),

Ψ(x) = L(x) + αRt(x) + βRs(x). (3)

We use a quadratic penalty in both space and time, with

Rt(x) =
1

2
‖Ctx‖

2

Rs(x) =
1

2
‖Csx‖

2 =

M∑
m=1

1

2
‖Cs0xm‖

2,

whereCs0 is a spatial differencingmatrix that compares neigh-

boring pixels within an image and Cs
�
= I ⊗ C′

s0Cs0. The

temporal differencing matrixCt compares pixels at the same

spatial location in adjacent time frames. A first-order tempo-

ral penalty function looks like

Rt(x) =
M∑

m=2

1

2
‖xm − xm−1‖

2,

and higher order penalty functions may also be reasonable.

Letting R(x) = αRt(x) + βRs(x), we can write

x̂ = [A′A + R]−1A′y, (4)

where R is the Hessian of R(x). This estimate can be com-
puted using the conjugate gradient (CG) algorithm.

2.2. Local Impulse Response

For practical use of (4), one must understand how the regular-

ization parametersα and β in (3) affect the spatial and tempo-

ral resolution of the reconstructed image. One method of an-

alyzing resolution is to look at the local impulse response [6].

Noting that E(y) = Ax, the local impulse response near the

jth pixel is

lj = [A′A + R]−1A′Aej . (5)

This expression could be evaluated using the CG algorithm,

but computation would be slow as the matrices are quite large

and non-sparse.

We can simplify the expression for lj by using the rela-

tionship between circulant matrices and FFTs. Namely, the

eigenvalues of a circulant matrix are the DFT coefficients

of the first column of the matrix [9]. Because the operators

A′
mAm and C′

s0Cs0 are locally shift invariant in the spatial

dimension (but not in the temporal dimension), they can be

approximated by circulant matrices and have the following

orthonormal eigenvector decompositions:

A′

mAm ≈ QΛmQ′

C′

s0Cs0 ≈ QΩQ′, (6)

which implies

A′A ≈ (I⊗Q)Λ(I⊗Q)′ (7)

where

Λ =

⎛
⎜⎜⎜⎜⎝

Λ1 0 . . . 0

0 Λ2 0
...

... 0
. . . 0

0 . . . 0 ΛM

⎞
⎟⎟⎟⎟⎠

,

and I is theM ×M identity matrix. Combining (5), (6), and

(7), we get

lj ≈ (I⊗Q)x̂f (8)

x̂f
�
= [Λ + β(I⊗Ω) + αC′

tCt]
−1Λ(I⊗Q′)ej . (9)
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Fig. 1. K-space trajectory used in simulations.
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Fig. 2. Angularly averaged FWHM of spatial PSF for TRUIR
as a function of spatial regularization parameter β.

While the inverse term in (9) is not diagonal, it composed

of two diagonal matrices,Λ and β(I⊗Ω), and one sparse ma-
trix αC′

tCt. Thus it should be relatively quick to invert. Due

to the approximations and simplifications described above,

computing x̂f in (9) is much faster than computing lj in (5).

Once we have x̂f , we obtain lj using (8) through a simple

inverse (spatial) FFT.

3. RESULTS

We simulated dynamic MR scans using the k-space trajectory

shown in Fig. 1. We generated k-space data for one reference

frame and eight subsequent frames, each undersampled by a

factor of 1/16. For the partially sampled frames, we alternated

the phase encode and readout directions with each frame.

We computed the local impulse response using the accel-

erated method in (8) for many values of α and β. For this

study, the accelerated method was over 3 times faster than

evaluating the original expression for the local impulse re-

sponse (5).

Fig. 2 shows the effect of the spatial regularization param-

eter β on the Full Width at Half Maximum (FWHM) of the

Point Spread Function (PSF) in space. The temporal regular-

ization parameter α mainly affects the temporal PSF, and this

dependence is shown in Fig. 3.

To gain a better understanding of how parameter choice
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Fig. 3. FWHM of temporal PSF for TRUIR as a function of
temporal regularization parameter α.
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Fig. 5. True image (A) and reconstructions with zero-padding
(B), Keyhole (C), TRUIR with α = 25 (D), TRUIR with α =
220 (E), TRUIR with α = 214 (F).
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affects dynamic images, we performed a simulation of con-

trast agent uptake using a real bilateral breast image with an

inserted (simulated) circular lesion. The lesion exhibited en-

hancement over time according to the curve in Fig. 4, while

the rest of the image remained static.

We reconstructed the data using β = 24 and first order

temporal regularization with several values of α. Fig. 5 shows

the reconstructed images from the 5th time frame; zero-padded

reconstruction and Keyhole reconstruction are shown for ref-

erence. The “tumor” enhancement curves from the recon-

structed images appear in Fig. 4. Using an α that is too large

degrades the temporal dynamics of the reconstructed sequence,

as can be seen for α = 220 in Fig. 4. The reconstructed im-

age from the middle frame of the dynamic sequence, shown

in Fig. 5(E), has good spatial resolution.

In this case the large weighting of the temporal regulariza-

tion term in the cost function (3) enforces strong correlation

between the reference and partial datasets. The result is a

sequence of reconstructed images with excellent spatial res-

olution, but flattened enhancement curve, i.e., poor temporal

resolution.

Choosing α too small can also degrade the quality of the

reconstructed images. Fig. 5(D) shows a reconstructed im-

age using α = 25. This image appears quite blurry because

the temporal regularization term in (3) is not large enough

to overcome the spatial blur (due to undersampling of the k-

space data in the individual frames) represented by the log-

likelihood term. Note that the corresponding enhancement

curve in Fig. 4 shows good temporal resolution.

We need α large enough to provide adequate “connectiv-

ity” between the frames (especially with the reference frame),

but small enough so that the reconstructed image sequence

correctly reflects dynamic changes in the object. In this sim-

ulation, α = 214 provided such a balance. The reconstructed

enhancement curve in Fig. 4 is a good fit to the true enhance-

ment curve, and the reconstructed image in Fig. 5(F) has good

spatial resolution.

4. DISCUSSION

We have presented a fast method to compute the local impulse

response for quadratic penalized least-squares reconstruction

of a dynamic MRI sequence. Our results show that the lo-

cal impulse response depends heavily on the choice of both

temporal regularization parameter α, and spatial regulariza-

tion parameter β. This analysis is a first step in an attempt to

provide guidelines for choosing these parameters.

Future work will also re-examine the choice of temporal

basis function in parameterization of the dynamic object (1).

Here we have used a rect function, but an underlying theme

of our problem formulation is temporal smoothness, thus this

choice may be inappropriate. Using B-splines as temporal

basis functions may prove more reasonable, and we are cur-

rently investigating their use in this problem.
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