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ABSTRACT
Fast and accurate variance/covariance predictions are useful for analyzing the statistical characteristics of the reconstructed
images and may aid regularization parameters selection. The existing methods, the matrix-based method and its DFT ap-
proximations, are impractical for realistic data size in X-ray CT. We have previously addressed this problem in 2D fan-beam
CT by proposing “analytical” approaches, the simplest of which requires computation equivalent to one backprojection and
some summations. This paper extends these approaches to 3D step-and-shoot “cylindrical” cone-beam CT.

Keywords: variance approximation, local discrete Fourier analysis, cone-beam tomography, penalized-likelihood image
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1. INTRODUCTION
Statistical reconstruction methods are usually nonlinear and shift-variant. To analyze the statistical characteristics of the
reconstructed images from these methods, one would often like to predict the variance of pixel/voxel values. The variance
information provides an uncertainty measure of the reconstructed image and can also be very useful for regularization
parameter selection.

The existing prediction methods derived in1 for penalized likelihood estimators are computationally expensive and only
practical when the variances prediction are needed at a few image locations.

As shown in,1 the p× p covariance matrix for quadratically penalized likelihood estimators is approximately

K , Cov{µ̂} ≈ (A′WA + αR)−1A′WA(A′WA + αR)−1, (1)

where µ = [µ1, . . . , µp]
′, A is the system matrix, Y = [y1, . . . , yn]′ denotes the noisy measurements, R is the Hessian

matrix of the roughness penalty and α is the regularization parameter controlling the noise and resolution tradeoff.
In the spirit of the local shift-invariance approximations,5 we approximate the covariance matrix in (1) near a given

location ~n0 by
K̆0 , (F0 + αR0)

−1
F0(F0 + αR0)

−1,

where F0 and R0 are the (N1N2N3)× (N1N2N3) block Toeplitz with Toeplitz blocks (BTTB) approximations correspond-
ing to A′WA and R, respectively. In practical computation of predicted variances at a few image locations, circulant
approximations and DFTs are usually used as follows:2, 3

Var{µ̂[~n]} ≈
1

N1N2N3

~N−1
∑

~k=~0

Pd0[~k], (2)

where ~N = (N1, N2, N3),

Pd0[~k] ,
Γ0[~k]

(Γ0[~k] + αΩ0[~k])2
,
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with F0 ≈ QΓ0Q
′, R0 ≈ QΩ0Q

′ where Q is the 3D (N1, N2, N3)-point orthonormal DFT matrix, and Γ0 and Ω0 are
diagonal matrices with diagonal elements Γ0[~k] and Ω0[~k] that are the 3D DFT coefficients of the local impulse response of
A′WA and R near ~n0, respectively. Computing this DFT approximation is still expensive for realistic image sizes when
the variance is computed for all or many pixels, particularly for shift-variant systems like fan-beam CT and cone-beam CT.

To aid regularization parameters’ selection, we would like to obtain the variance information for all or many image
locations. Therefore, a new fast and accurate prediction method is needed.

2. GENERAL VARIANCE PREDICTION FOR 3D TOMOGRAPHY
We have proposed new “analytical” approaches to predict the approximate variance maps of 2D images that are recon-
structed by penalized-likelihood estimation with quadratic regularization in fan-beam geometries.4, 5 In this paper, we
expand these approaches to 3D step-and-shoot cone-beam CT by applying the same principles: “local shift invariance”
approximation and “local Fourier analysis”.

We approximate (2) by the 3D discrete-space Fourier transform (DSFT) as follows:

Var{µ̂[~n]} ≈

∫ π

−π

∫ π

−π

∫ π

−π

Pd0(~ω)
d~ω

(2π)3
, (3)

where Pd0(~ω) is the local spectrum of the covariance matrix, given as follows:

Pd0(~ω) ,
Hd0(~ω)

[Hd0(~ω) + αRd0(~ω)]2
, (4)

where Hd0(~ω) is the local frequency response of the Gram matrix A′WA and Rd0(~ω) is the local frequency response of
R near ~n0.

Let ~∆ = (∆X,∆Y,∆Z) denote the sample spacings in the reconstructed image. Make the change of variable, ~ω =

(2π%)~∆ � ~eΦ,Θ where ~eΦ,Θ = (cos Φ cos Θ, sin Φ cos Θ, sin Θ), and � denotes element-by-element multiplication. We
rewrite (3) in terms of spherical frequency coordinates (%,Φ,Θ) as follows:

Var{µ̂[~n]} ≈ ∆X∆Y∆Z

∫ π

−π

∫ 2π

0

∫ %max(Φ,Θ)

0

P0(%,Φ,Θ)%2 |cosΘ| d% dΦ dΘ, (5)

where %max(Φ,Θ) = 1/
{

2min
(

∆X

|cos Φ cos Θ| ,
∆Y

|sin Φ cos Θ| ,
∆Z

|sin Θ|

)}

, and we define

P0(%,Φ,Θ) , Pd0(2π%~∆� ~eΦ,Θ) =
H0(%,Φ,Θ)

[H0(%,Φ,Θ) + αR0(%,Φ,Θ)]2
. (6)

We define H0 and R0 similarly in terms of Hd0 and Rd0. If we find analytical expressions for H0 and R0, then the
approximation (5) can lead to faster alternatives to the DFT approach (2). The analytical variance prediction in (5) is
applicable to any 3D CT geometry. We focus on step-and-shoot 3D cone-beam CT here. To use (5), we need to find
H0(%,Φ,Θ) and R0(%,Φ,Θ) first.

3. STEP-AND-SHOOT CONE-BEAM GEOMETRY
Consider an ideal “cylindrical” step-and-shoot cone-beam tomography: the source can be at any point on a cylinder of
radius Ds0 centered along the z-axis. The source position ~p0 can be parameterized by two variables (β, ζ) as follows:

~p0 =





−Ds0 sin β
Ds0 cos β

ζ



 , (7)

where Ds0 is the source to rotation center distance, β is the angle of the source relative to the y axis, and ζ is the z-axis
position of source.



We focus on the 2D cylindrical detector that moves with the cone vertex here. We introduce local/relative coordinates
(s, t) on the detector plane, where s is the arc length along each row, and the t-axis is parallel to the z-axis. A point on the
2D detector can be expressed as

~p1 =





Dsd sin γ cos β + (Dsd cos γ −Ds0) sin β
Dsd sin γ sin β − (Dsd cos γ −Ds0) cos β

t + ζ



 =





Dsd sin ϕ
−Dsd cos ϕ

t



+ ~p0, (8)

where D0d = Dsd −Ds0 is the isocenter to detector distance and

γ = γ(s) ,
s

Dsd
, ϕ = ϕ(s, β) , γ(s) + β. (9)

The direction vector of a ray from ~p0 to ~p1 can then be expressed as

~e3(~γ) =
~p1 − ~p0

‖~p1 − ~p0‖
=

1
√

t2 + D2
sd





Dsd sinϕ
−Dsd cosϕ

t



 =





cos θ sin ϕ
− cos θ cos ϕ

sin θ



 , (10)

where ~γ = (ϕ, θ) and

θ = θ(t) , arctan

(

t

Dsd

)

. (11)

The projection plane is perpendicular to ~e3(~γ), specified by

~e1(~γ) = (cosϕ, sinϕ, 0), ~e2(~γ) = (− sinϕ sinθ, cosϕ sinθ, cosθ).

The corresponding Cartesian coordinates (u, v) can be found by

u(s) = ~p1 · ~e1(~γ) = Dsd sin γ cos γ − (Dsd cos γ −Ds0) sin γ = Ds0 sin γ(s) (12)
v(s, t, ζ) = ~p1 · ~e2(~γ) = Ds0 cos γ(s) sin θ(t) + ζ cos θ(t), (13)

since −Dsd sin θ(t) + t cos θ(t) = 0. Combining (9), (11), (12) and (13), we have the cone-to-parallel rebinning relations.

3.1. Local Impulse Response of Gram Matrix
To predict variance images in fan-beam transmission tomography we need to determine the local frequency response
H0(ρ,Φ,Θ), or equivalently Hd0(~ω). We first find the local impulse response.

Consider the 3D object model based on a common basis function χ(~x) superimposed on a N ×M × L Cartesian grid
as follows:

µ(~x) =
∑

~n∈S

µ[~n]χ

(

1

~∆
� (~x− ~xc[~n])

)

, (14)

where S , {~nj : j = 1, . . . , p} denotes the subset of the N ×M ×L lattice that is estimated and ~xc[~n] denotes the center
of the ~nth basis function. The grid spacing is ~∆ = (∆X,∆Y,∆Z). We consider the case ∆X = ∆Y hereafter, but we allow
∆X 6= ∆Z. Typically ~w~x = ( ~N − 1)/2 + ~c~x, ~xc[~n] = (~n− ~w~x)� ~∆, ~n ∈ S, where the user-selectable parameter ~c~x

denotes an optional spatial offset for the object center.
Assume that the detector blur b(s, t) is shift invariant, independent of source position (β, ζ) and acts only along the

s and t coordinates. (This could be generalized to the case of locally shift-invariant blur.) Then we model the mean
projections as follows:

ȳϕ[sk, t`;β, ζ] =

∫ ∫

b(sk − s′, t` − t′) p
(

ũ(s′), ṽ(s′, t′, ζ); ϕ̃(s′, β), θ̃(t′)
)

ds′ dt′ (15)

for sk = (k −wS)∆S, t` = (`−wt)∆t and k = 0, . . . , ns − 1; ` = 0, . . . , nt − 1, where ∆S is the sample spacing in s,
∆t is the sample spacing in t, wS and wt are defined akin to ~w~x, and p(u, v;ϕ, θ) is the line integral of µ(~x).



Let g(u, v;ϕ, θ) denote the Radon transform of χ(~x) at angle (ϕ, θ). By shifting and scaling properties of Radon
transform, we have

χ

(

1

~∆
� (~x− ~xc[~n])

)

3D Xray
←→

∆X∆Z

c(θ)
g

(

u− uϕ[~n]

∆X

,
v − vϕ,θ[~n]

c(θ)
;ϕ, arctan

(

∆X

∆Z

tan θ

))

,

where c(θ) ,

√

∆2
X

sin2 θ + ∆2
Z
cos2 θ, and uϕ[~n] , ~xc[~n] · ~e1(ϕ), vϕ,θ[~n] , ~xc[~n] · ~e2(ϕ, θ).

Substituting the basis expansion model in (14) for the object into the measurement model (15) and simplfying leads to
the linear model ȳϕ[sk, t`;β, ζ] =

∑

~n∈S a(sk, t`;β, ζ;~n)µ[~n], where the cone-beam system matrix elements are samples
of the following cone-beam projection of a single basis function centered at ~xc[~n]:

a(s, t;β, ζ;~n) =

∫∫

b(s− s′, t− t′)
∆X∆Z

c(θ̃(t′))

· g

(

ũ(s′)− uϕ̃(s′,β)[~n]

∆X

,
ṽ(s′, t′, ζ)− vϕ̃(s′,β),θ̃(t′)[~n]

c(θ̃(t′))
; ϕ̃(s′, β), θ̃(

∆X

∆Z

t′)

)

ds′ dt′, (16)

where
arctan

(

∆X

∆Z

tan θ̃(t′)

)

= arctan

(

∆X

∆Z

t′

Dsd

)

= θ̃(
∆X

∆Z

t′). (17)

To proceed, we rebin (16) into parallel coordinates. Reparameterizing variables s′ and t′ according to the inversion of
cone-to-parallel rebinning as follows: s′ → s̃(u′), t′ → t̃(θ′), and use first-order Taylor expansion to expand s(u) around
s′(u′) as follows:

s(u)− s(u′) ≈ ms(u
′)(u− u′), (18)

where
ms(u

′) ,
∂s̃

∂u
(u)

∣

∣

∣

∣

u=u′

=
Dsd

Ds0 cos γ̃(s̃(u′))
. (19)

Similarily,
t̃(θ)− t̃(θ′) ≈ mt(θ

′)(θ − θ′), (20)

where
mt(θ

′) ,
∂t̃

∂θ
(θ)

∣

∣

∣

∣

θ=θ′

=
Dsd

cos2 θ′
. (21)

Reparameterize variables s and t according to the inversion of cone-to-parallel rebinning as

s→ s̃(u), t→ t̃(θ), β → β̃(ϕ, u), ζ → ζ̃(u, v, θ),

we have the following:

θ̃(t′) = θ̃(t̃(θ′)) = θ′

ũ(s′) = ũ(s̃(u′)) = u′

ϕ̃(s′, β) = ϕ + arcsin
u′

Dsd
− arcsin

u

Dsd
≈ ϕ

θ̃

(

∆X

∆Z

t′
)

= θ̃

(

∆X

∆Z

t̃(θ′)

)

= arctan

(

∆X

∆Z

tan θ′
)

, ϑ(θ′)

ṽ(s̃, t̃, ζ) = ṽ(s̃(u′), t̃(θ′), ζ̃(u, v, θ)) ≈ v − f(u′, θ)(θ − θ′), (22)

by exploiting locality approximations u′ ≈ u, θ′ ≈ θ, where

f(u′, θ′) ,
Ds0 cos γ̃(s̃(u′))

cos θ′
. (23)



Plugging (18) and (20) into (16) and changing variables u′ = u′, v′ = v − f(u, θ)(θ − θ′), the cone-beam system
matrix elements can be rebinned and approximated as:

a(s, t;β, ζ;~n) ≈ ap(u, v;ϕ, θ;~n) , a(s̃(u), t̃(θ); β̃(u, ϕ), ζ̃(u, v, θ);~n)

≈

∫∫

b(ms(u)(u− u′),ms,t(u, θ)(v − v′))
∆X∆Z

c(θ)

· g

(

u′ − uϕ[~n]

∆X

,
v′ − vϕ,θ[~n]

c(θ)
;ϕ, ϑ(θ)

)

|ms(u)ms,t(u, θ)| du′ dv′, (24)

where
ms,t(u, θ) ,

mt(θ)

f(u, θ)
=

Dsd

Ds0 cos θ′ cos γ̃(s̃(u′))
. (25)

Consider ~n and ~n′ values that are sufficiently close to ~n0, the location of interest. Let u0(ϕ) , uϕ[~n0], v0(ϕ, θ) ,

vϕ,θ[~n0]. and v0(ϕ, θ) , vϕ,θ[~n0]. Assume ms(u) and ms,t(u, θ) are fairly smooth over (u, v):

ms(u) ≈ ms(u0(ϕ)) , ms,0(ϕ) (26)
ms,t(u, θ) ≈ mt(u0(ϕ), θ) , ms,t,0(ϕ, θ). (27)

Therefore, we make further approximations using (26) and (27) to (24) as follows:

ap(u, v;ϕ, θ;~n) ≈ a0(u− uϕ[~n], v − vϕ,θ[~n];ϕ, θ)

,

∫∫

b0(u− uϕ[~n]− u′′, v − vϕ,θ[~n]− v′′;ϕ, θ)

·
∆X∆Z

c(θ)
g

(

u′′

∆X

,
v′′

c(θ)
;ϕ, ϑ(θ)

)

du′′ dv′′, (28)

where

b0(u, v;ϕ, θ) , |ms,0(ϕ)ms,t,0(ϕ, θ)| b(ms,0(ϕ) u,ms,t,0(ϕ, θ)v) (29)

a0(u, v;ϕ, θ) ,

∫∫

b0(u− u′, v − v′)
∆X∆Z

c(θ)
g

(

u′

∆X

,
v′

c(θ)
;ϕ, ϑ(θ)

)

du′ dv′ (30)

The second line of (28) makes change of variables u′′ = u′ − uϕ[~n], v′′ = v′ − vϕ,θ[~n].

Then the elements of the Gram matrix are given exactly by

hd[~n;~n′] =

{

[A′WA]jj′ , ~n = ~nj ∈ S, ~n′ = ~nj′ ∈ S
0, otherwise

= h̆d[~n;~n′]η(~xc[~n])η(~xc[~n
′]) (31)

where

h̆d[~n;~n′] =

ns
∑

k=1

nt
∑

l=1

nβ
∑

i=1

nζ
∑

j=1

w(sk, t`;βi, ζj) a(sk, t`;βi, ζj ;~n)a(sk, t`;βi, ζj ;~n
′) (32)

and η(~xc[~n]) , 1{~n∈S}, w(s, t;β, ζ) denotes the weighting associated with W . We first use integrals to approximate the
summations in (32) as follows:

h̆d[~n;~n′] ≈ Π

∫ ∞

−∞

∫ ∞

−∞

∫ 2π

0

∫ ∞

∞

w(s, t;β, ζ)rect

(

s

2smax

)

rect

(

t

2tmax

)

rect

(

ζ

2ζmax

)

·a(s, t;β, ζ;~n)a(s, t;β, ζ;~n′) ds dtdβ dζ, (33)



where Π = 1/(∆S∆t∆β∆ζ), ∆S,∆t,∆β and ∆ζ are the sampling intervals in s, t, β and ζ. Notice that h̆d[~n;~n′] in (33)
is not shift invariant. Make a change of variables from cone-beam coordinates to parallel-beam coordinates, (33) can be
rewritten as

h̆d[~n;~n′] ≈ Π

∫ π
2

−π
2

∫ 2π

0

∫ ∞

−∞

∫ ∞

∞

w̄(u, v;ϕ, θ)ap(u, v;ϕ, θ;~n)ap(u, v;ϕ, θ;~n′)J(u, θ) du dv dϕ dθ

≈ Π

∫ π
2

−π
2

∫ 2π

0

w̆(ϕ, θ;~n;~n′)h̆ϕ,θ[~n;~n′] dϕ dθ, (34)

where w̄(u, v;ϕ, θ) is the rebinning weighting as follows:

w̄(u, v;ϕ, θ) , w(s(u), t(θ);β(ϕ, u), ζ(u, v, θ)) rect

(

s(u)

2smax

)

rect

(

t(θ)

2tmax

)

rect

(

ζ(u, v, ζ)

2ζmax

)

, (35)

and for small θ, J(u, θ) is the absolute value of the determinant of the Jacobian matrix, given by

J(u, θ) =

∣

∣

∣

∣

∣

∂s̃

∂u

∂t̃

∂θ

∂β̃

∂ϕ

∂ζ̃

∂v

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

D2
sd

cos3 θ
√

D2
s0 − u2

∣

∣

∣

∣

∣

, (36)

and

w̆(ϕ, θ;~n;~n′) ,

∫∞

−∞

∫∞

∞
w̄(u, v;ϕ, θ)ap(u, v;ϕ, θ;~n)ap(u, v;ϕ, θ;~n′)J(u, θ) du dv
∫∞

−∞

∫∞

∞
ap(u, v;ϕ, θ;~n)ap(u, v;ϕ, θ;~n′) du dv

(37)

h̆ϕ,θ[~n;~n′] ,

∫ ∞

−∞

∫ ∞

∞

ap(u, v;ϕ, θ;~n)ap(u, v;ϕ, θ;~n′) du dv . (38)

To further simply the expression (34), we make further approximations to (37) and (38) based on the fact that ~n and ~n′ are
sufficiently close to ~n0:

w̆(ϕ, θ;~n;~n′) ≈

∫∞

−∞

∫∞

∞
w̄(u, v;ϕ, θ)J(u, θ)a0(u− uϕ[~n], v − vϕ,θ[~n])a0(u− uϕ[~n], v − vϕ,θ[~n

′]) du dv
∫∞

−∞

∫∞

∞
a0(u− uϕ[~n], v − vϕ,θ[~n])a0(u− uϕ[~n′], v − vϕ,θ[~n′]) du dv

≈

∫∞

−∞

∫∞

∞
J0(ϕ, θ)w̄(u, v;ϕ, θ)a2

0(u− u0(ϕ), v − v0(ϕ, θ)) du dv
∫∞

−∞

∫∞

∞
a2
0(u− u0(ϕ), v − v0(ϕ, θ)) du dv

≈ J(u0(ϕ), θ)w̄(u0(ϕ), v0(ϕ, θ);ϕ, θ) ≈ J0(ϕ, θ)w̄(u0(ϕ), v0(ϕ, θ);ϕ, θ) , w0(ϕ, θ) (39)

h̆ϕ,θ[~n;~n′] ≈

∫ ∞

−∞

∫ ∞

∞

a0(u− uϕ[~n], v − vϕ,θ[~n])a0(u− uϕ[~n], v − vϕ,θ[~n
′]) du dv

=

∫ ∞

−∞

∫ ∞

∞

a0(u, v;ϕ, θ)a0(u + uϕ[~n]− uϕ[~n′], v + vϕ,θ[~n
′]− vϕ,θ[~n

′];ϕ, θ) du dv

= h̆0(~∆� (~n− ~n′) · ~e1(~γ), ~∆� (~n− ~n′) · ~e2(~γ);ϕ, θ), (40)

where

J0(ϕ, θ) , J(u0(ϕ), θ) (41)
h̆0(u, v;ϕ, θ) , a0(u, v;ϕ, θ) ?? a0(u, v;ϕ, θ). (42)

Thus, we now have a form that is nearly shift-invariant (except for edge effects).
Combining all the approximations above, we have the expression for the local impulse response:

hd[~n;~n′] ≈ Π

∫ π
2

−π
2

∫ 2π

0

w0(ϕ, θ)hϕ,θ[~n;~n′] dϕ dθ, (43)



where
hϕ,θ[~n;~n′] , h̆0(~∆� (~n− ~n′) · ~e1, ~∆� (~n− ~n′) · ~e2;ϕ, θ)η(~xc[~n])η(~xc[~n

′]). (44)

As shown in 2D fan-beam case,5 the edge effects in (31) are a main concern in accurate variance prediction. Here we
use a similar approach to take the edge effects into account to find the local frequency response. As in 2D fan-beam case,
we refer all displacements relative to the point ~n0 as follows:

hϕ,θ[~n;~n′] ≈ hϕ,θ[~n0 + ~n;~n0] = h̆0(~∆� ~n · ~e1, ~∆� ~n · ~e2;ϕ, θ)η2(~xc[~n]) , h̃ϕ,θ[~n;~n0], (45)

where η2(~x) , η(~x0 + ~x)η(~x0), and then approximate η2(~x) as following:

η2(~x) ≈ η0(~x) = η(~x)η(~x0). (46)

This choice also yields a local impulse response that is symmetric in ~n provided η(~x) is symmetric itself. We focus on a
symmetric η(~x), such as elliptical cylinder or sphere hereafter. The final form of local impulse response follows from (43),
(45) and (46):

hd[~n;~n′] ≈ Π

∫ π
2

−π
2

∫ 2π

0

w0(ϕ, θ)h̃ϕ,θ[~n;~n0] dϕ dθ . (47)

3.2. Local Frequency Response of Gram Matrix
To find the DSFT Hd0(~ω) of hd[~n;~n′], we need Hϕ,θ(~ω) first, the spectrum of h̃ϕ,θ[~n;~n0], because by linearity of DSFT,
taking the DSFT of (47) yields the following result:

Hd0(~ω) = Π

∫ π
2

−π
2

∫ 2π

0

w0(ϕ, θ)Hϕ,θ(~ω) dϕ dθ . (48)

Define a “tube like” function sϕ,θ(~x) , h̆0(~x·~e1, ~x·~e2;ϕ, θ)η0(~x), then we have h̃ϕ,θ[~n;~n0] = sϕ,θ(~∆�~n). The spectrum
of h̃ϕ,θ[~n;~n0] can be found as follows:

Hϕ,θ(~ω) =
∑

~n

h̃ϕ,θ[~n;~n0] e
−ı(~ω·~n) =

∑

~n

sϕ,θ(~∆� ~n) e−ı(~ω·~n)

≈
1

∆2
X
∆Z

∫∫∫

sϕ,θ(~x) e−ı 1

~∆
�(~ω·~x) d~x =

1

∆2
X
∆Z

Sϕ,θ

(

1

2π~∆
� ~ω

)

, (49)

where sϕ,θ(~x)
2D FT
←→ Sϕ,θ(~ν).

To preserve the non-negative definiteness of the Gram Matrix, we choose

η0(~x) = tri
(

~x · ~e3

d0(ϕ, ϑ(θ))

)

, (50)

where d0(ϕ, ϑ(θ)) is the intersecting length of the profile passing though ~n0 and the finite support at direction (ϕ +
π/2, ϑ(θ)). Therefore the local frequency response H0(%,Φ,Θ) of the step-and-shoot cone-beam Gram matrix around ~n0

is
H0(%,Φ,Θ) ≈ Υ

∫ θmax

−θmax

∫ 2π

0

w0(ϕ, θ)Sϕ,θ(%,Φ,Θ)dϕ dθ, (51)

where the constant Υ , Π
∆2

X
∆Z

. The 3D FT of sϕ,θ(~x) has the following form according to the rotation property:

Sϕ,θ(~ν) = |A0(~ν · ~e1(~γ), ~ν · ~e2(~γ);ϕ, θ)|
2
d0(ϕ, ϑ(θ)) sinc2(d0(ϕ, ϑ(θ))~ν · ~e3(~γ)), (52)

where A0(νu, νv;ϕ, θ) is the 2D FT of a0(u, v;ϕ, θ) with respect to (u,v), including the effects of basis function and
detector blur:

A0(νu, νv;ϕ, θ) = B0(νu, νv;ϕ, θ)G(νu, νv;ϕ, θ), (53)



where B0(νu, νv;ϕ, θ) G(νu, νv;ϕ, θ) are the 2D FT of b0(u, v;ϕ, θ) and ∆X∆Z

c(θ) p
(

u
∆X

, v
c(θ) ;ϕ, ϑ(θ)

)

with respect to
(u,v), respectively.

As θ → 0 and d0(ϕ, ϑ(θ))→∞, one can show that for large %, the sinc2 term is sharply peaked at near ϕ = Φ± π:

d0(ϕ, ϑ(θ)) sinc2(d0(ϕ, ϑ(θ))~ν · ~e3(~γ))→ δ(~ν · ~e3(~γ)) = δ(% sin(ϕ− Φ) cos Θ) . (54)

Therefore we consider the following approximations to (51):

H0(%,Φ,Θ) ≈ Υ

∫ θmax

−θmax

w0(Φ, θ)

∫ 2π

0

Sϕ,θ(%,Φ,Θ)dϕ dθ, (55)

where Sϕ,θ(%,Φ,Θ) , Sϕ,θ(%~eΦ,Θ). If we consider “ideal” cubic basis function χ(~x) = rect3(~x), then

A0(νu, νv;ϕ, θ) = ∆2
X
∆Z sinc(∆Xνu cos ϕ− c(θ)νv sin ϕ sin ϑ(θ))

· sinc(∆Xνu sinϕ + c(θ)νv cosϕ sin ϑ(θ))

· sinc(c(θ)νv cosϑ(θ)) sinc

(

∆Sνu

ms,0(ϕ)

)

sinc

(

∆tνv

ms,t,0(ϕ, θ)

)

. (56)

4. 3D QUADRATIC REGULARIZATION
For a discrete-space 3D object µ[~n], a typical quadratic roughness penalty is given as

R(µ) =
∑

~n

L
∑

l=1

rl,0
1

2

(

(cl ∗∗∗µ)[~n]
)2

,

where rl,0 values are design parameters that affect the directionality of the regularization and hence the shape of the
PSF. Each cl[~n] is a (typically) high-pass filter. For a first-order difference: cl[~n] = ξl (δ3[~n]− δ3[~n− ~ml]) , where
ξl = ‖~ml‖

−υ/2, ~ml denotes the spatial offsets to the neighboring voxels, and υ is the power of weights for diagonal
neighbors that can be chosen by the user. For example, common practice chooses υ = 1.7, 8

Applying Parseval’s theorem, the local frequency response of R for a Λ-order (where Λ ∈ N) difference can be found
in a similar form of 2D fan-beam case as follows:

R0(%,Φ,Θ) =
L
∑

l=1

rl,0ξ
2Λ
l 4 sin2Λ

(

π%(~∆� ~eΦ,Θ) · ~ml

)

. (57)

In 3D geometry, L = 13 for the second order neighborhood.

5. SIMULATION RESULTS
We first used a smaller image and sinogram to validate the local frequency responses H0(%,Φ,Θ) and R0(%,Φ,Θ) for a
given location. We simulated a step-and shoot cone-beam CT system with an cylindrical 2D dectector with quarter detector
offset. The corresponding sinogram size was 111 samples in s, spaced by ∆S ≈ 8 mm, 32 samples in t, spaced by ∆t ≈ 8.8
mm, 20 samples in ζ, spaced by ∆ζ ≈ 5 mm, and 123 source angular positions over 360

◦ for each ζ. The image is of size
64× 62× 20 and the object is an ellipsoid. The voxel size is of 7.8 mm, 7.8 mm and 5mm. An cylindrical support is used
with radius rs = 164.1 mm and height 80 mm. In this case, d0(ϕ, ϑ(θ)) = rs/ cos ϑ(θ).

In our simulation, we used the distance-driven (DD) projectors developed by Deman et al. The 3D forward pro-
jector works by mapping voxel boundaries and detector boundaries onto a common plane specifying by (rϕ, z), where
rϕ , max(|cos ϕ| , |sin ϕ|). This method approximates the total contribution of voxel j to detector k by the following
expression:6

Pjk ≈
∆

cos β cos θ

o1

∆S

o2

∆t
µk,
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Figure 1. Profiles of local frequency responses of Gram matrix at image center.
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Figure 2. Profiles of local frequency responses of quadratic regularization at image center.

where ∆ is isotropic voxel size and o1, o2 are the overlapped length between the mapped boundaries of voxel j and detector
k onto rϕ-axis and z-axis, respectively.

Therefore, for the DD projector, instead of (56), A(νu, νv;ϕ, θ) is given by

A(νu, νv;ϕ, θ) = ∆2
X
∆Z sinc

(

min

(

∆S

ms,0(ϕ)
,∆X max(|cosϕ| , |sinϕ|)

)

νu

)

sinc

(

min

(

∆t

ms,t,0(ϕ, θ)
,∆Z

)

νv

)

.

(58)
• Quadratically Penalized Unweighted Likelihood (QPUL) case:

We first investigated the unweighted case where ~n0 is at image center. Fig. 1 and Fig. 2 show the ν1-axis and ν3-
axis profiles of local frequency responses H0(%,Φ,Θ) and R0(%,Φ,Θ). The normalized root-mean-squared (NRMS)
difference between the standard deviations predicted by DFT method (2) and AVP methods (5) with (55) and (57) is
less than 1%.
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