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ABSTRACT

Image registration is now a well understood problem and several techniques using a combination of cost functions,
transformation models and optimizers have been reported in medical imaging literature. Parametric methods
often rely on the efficient placement of control points in the images, that is, depending on the location and scale
at which images are mismatched. Poor choice of parameterization results in deformations not being modeled
accurately or over parameterization, where control points may lie in homogeneous regions with low sensitivity to
cost. This lowers computational efficiency due to the high complexity of the search space and might also provide
transformations that are not physically meaningful, and possibly folded.

Adaptive methods that parameterize based on mismatch in images have been proposed. In such methods, the
cost measure must be normalized, heuristics such as how many points to pick, resolution of the grids, choosing
gradient thresholds and when to refine scale would have to be ascertained in addition to the limitation of working
only at a few discrete scales.

In this paper we identify mismatch by searching the entire image and a wide range of smooth spatial scales.
The mismatch vector, containing location and scale of mismatch is computed from peaks in the local joint
entropy. Results show that this method can be used to quickly and effectively locate mismatched regions in
images where control points can be placed in preference to other regions speeding up registration.
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1. INTRODUCTION

Image registration is a widely published and growing area in medical imaging. Several algorithms have been
proposed that are capable of recovering large and complex deformations. Using mutual information for image
registration1 has furthered the capability of these algorithms because of their extensibility to multimodality
images. This has also spurred the need for faster methods that can provide similar performance using smaller
degrees of freedom eliminating control points in regions where they have little or no effect.(E.g.2, 3) as opposed
to a uniform grid placement.

Often an image pair is aligned initially based on an affine transformation before a nonlinear warp is applied.
The nonlinear warp may be parametric (e.g., thin plate splines,4 B-splines,5 compact radial basis functions6 or
other parameterizations2, 5, 7–11), or non-parameterized free-form deformation fields based on an elastic12, 13 or
viscous fluid flow14, 15 regularization.

Regardless of the specific deformation model used, the time needed to complete registration is related to the
extent of geometrical misalignment, the time taken for each cost computation, and the total number of DOF
used to describe the deformation. In certain applications the images may not belong to the same modality,
necessitating the use of Mutual Information (MI) based methods1 that maybe more time consuming than Sum
of Squared Differences (SSD) or correlation. Even for intra-modality registration, MI is often used because of its
robustness to differences in scanner parameters. Also registration times tend to be high if the images are large
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and deformations are complex with the added requirement that user intervention is impractical. However often
we can use fewer DOF if we place control points at locations having the most image mismatch.

There have been some papers that discuss spatially preferential parameterizations prior to registration. Rohlf-
ing et al.16 used multi-level B-splines for registration where a control point at a particular scale was held fixed
(i.e., not optimized) if its local marginal entropies on the target and floating images were below 50% of the
respective maximum entropies. Rohde et al.,2, 17 in their compactly supported radial basis function strategy,
used only those control points that produced large gradients of cost. Schnabel et al.18 also picked active control
points based on cost gradients for their B-spline method. Park et al.3, 19 added thin plate spline control points
at each iteration at locations with large local mismatch. As far as we are aware, thus far no thorough analysis
has been made to find mismatched regions and their degree of mismatch through an analysis of a wide range of
spatial scales at all locations in the image pair prior to registration. For any of the several deformation models
used, the knowledge of location and spatial extent of deformation could help drastically reduce compute times
by avoiding parameterization of local regions already well aligned. This enables algorithms to work at several
distinct locations at specific scales and yet contain the dimensionality of the optimization search space.

The scale of a deformation model relates to the notion of scale space. Koenderink20 discussed three aspects
of scale in images: pixellation, i.e., inner scale, extent of the Regions Of Interest (ROI), i.e., outer scale and the
resolution of the histogram used to describe the intensity distribution of the image, i.e., tonal scale. In this paper
we focus on the spatial extent of the mismatch between images so we will only use outer scale. The estimated
mismatch vector contains the location and outer scale at which the images are mismatched. Any reference further
to scale in the paper is to outer scale.

The ideas discussed here are extensions to commonly used approaches in the vision community to quantify
local complexity in images using information theoretic measures. Gilles21 used Shannon entropy to quantify
local image complexity. Salient patches identified as entropy peaks in scale space were used to estimate a global
transformation between aerial reconnaissance images. Jagersand22 used Kullback contrast between successive
scales as a measure of differential information gain at a particular scale. Kadir23 made several extensions to
Gilles’ idea notably the search through a wide range of scales in color images containing complex scenes and the
use of a new saliency measure that weighs the entropy by a measure of self-dissimilarity in scale space. In this
paper we use a similar approach to estimate feature mismatch for a pair of images using joint entropy. This
makes it possible to study the mismatch of image pairs through feature space and outer scale simultaneously.
Further, we have computed mismatch through continuous outer scale (Gaussian) giving smooth joint entropy
estimates. We begin section 2 by defining the joint histogram and joint entropy of image pairs through location
and scale. We have included several examples to show that the mismatch vectors are in excellent agreement with
location and scale of synthetic deformations.

2. MISMATCH MEASURE

We propose to locate feature mismatch for a pair of images using joint entropy that is computed from local
histograms. In three dimensions each mismatch vector found is made of individual location components Cx, Cy

and Cz , and scale component α corresponding to mismatch and is of the form [Cx Cy Cz α]T , or [Cx Cy α]T

in two dimensions.

2.1. Local Histogram
The local joint histogram for a pair of images captures the distribution of intensities within a locally specified
support. Koenderink20 used histograms to represent local information content in images parameterized based on
the “inner scale” (gaussian blurring window), “outer scale” (gaussian region of interest) and histogram resolution.
We define the local joint histogram of two images, I1(r) and I2(r) as

h(i1, i2; α, β, r0) =
1

2πα2

∑

r

A(r; r0, α)e−
(I1(r,σ)−i1)2

2β2 e
− (I2(r,σ)−i2)2

2β2 (1)

where A(r; r0, α) = e
−(r−r0)2

2α2 denotes a gaussian window function with “outer scale” parameter α centered at r0,
and Ik(r, σ) = Ik(r) ⊗ G(r, σ) where k = 1, 2. i1 and i2 are variables that span the respective image intensities,
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Figure 1. Entropy profile in outer scale. Left column: target images; Middle column: floating images; Right column:
joint entropy vs. outer scale for center pixel denoted by *, i.e., H(α; rcenter).

G is the gaussian kernel of the scale space filter with kernel width σ, and β is the Parzen window width. We are
interested in finding the location(r0) and region of interest (α, i.e. outer scale) over which the two images are
misaligned. The 2πα2 factor is the normalization applied to the spatial gaussian window so that the histogram
sums to one. The gaussian window parameterized by α prevents abrupt truncation of features and gives much
smoother entropy profiles across scale compared to using a circular window.

2.2. Local joint entropy
The joint entropy is measured from the normalized local histogram described above and is computed as

H(α; r0) = − 1
N0

∑

i1

∑

i2

h(i1, i2; α, β, r0) log2(
h(i1, i2; α, β, r0)

N0
) (2)

where N0 is the sum of the histogram h. (N0 is always 1 except near image boundaries). The spatial scale (α)
at which the target image is misaligned with the floating image at location r0 is then estimated over a range of
scales using joint entropy. If the two images are locally mis-registered at r0 and scale α∗, then we expect a peak
in joint entropy at that scale.

2.3. Example1: Sensitivity to scale
Fig(1) shows the target images (left column) and corresponding floating images (middle column). The images
have the same intensities within the shapes (circle and square). Clearly the images in the top row are mismatched
at a lower scale in the local region centered at the circle compared to the images in the bottom row. The right
column shows their entropy vs outer scale(α). The peaks show the scale at which the corresponding images are
mismatched. Circles are drawn on the images in the left column with radius α∗ that correspond to peaks in
joint entropy. Observe that this mismatch in scale can be distinguished easily in outer scale. This is discussed in
greater detail in following sections. Additionally the magnitude of entropy at this scale gives us a quantitative
estimate of the relative importance of this location and scale. Later in this paper we show examples that
demonstrate this and our ability to pick highly deformed regions for placing control points. The joint entropy
is computed for the image pair at all locations through a broad range of scales and only peaks in joint entropy
centered at each pixel through outer scale are picked as being mis-aligned. It is possible that multiple peaks may
be found corresponding to more than one spatial scale being significant at a pixel location. In these cases we
choose the scale corresponding to the larger magnitude of entropy.
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Figure 2. Search through feature space and scale space a) Target Image, b) Floating image. Center and radius of the
red circle shows location and scale of mismatch.

2.4. Example2: Largest joint entropy location and scale

Fig. (2) shows several ellipses (2a) and a very similar pattern in (2b) except for the square in one position
replacing the ellipse and the inversion of colors. We computed joint entropy over the entire image and found the
peaks in scale at every pixel location. The red circle plotted on the first image shows the center of the region
and the scale (circle radius) at which the joint entropy was highest in the entire image. Observe that it tracks
the boundary of the ellipse in (2a) closely.

2.5. Example3: Spatial variation of joint entropy

Fig. (3) shows a local deformation applied to (a) to get image (b). The applied deformation error norm is shown
in (c) and (d) is the absolute difference image ((b) and (a)). All calculations are made only along the horizontal
line superimposed on the figures to get an idea of the linear spatial variation of peaks and corresponding joint
entropy. (e) shows the computed scale at which peaks were found on this line and (f) shows the joint entropy
computed at the peaks. The entropy is clearly maximum near the region of the deformation and decreasing
with increasing distance from mismatch. The scale that corresponds to the maximum entropy is estimated from
(e) which looks bowl shaped because different points on the line find mismatch at different scales. If no peaks
were found over the discrete range of scales searched, the scale estimated was set to zero and entropy was not
computed (seen as zero in the plot). While points near the deformation estimate scale correctly, distant points
find peaks at higher scales. This is dealt with by varying scale of a gaussian lowpass filter as spatial scale increases
(discussed in the next subsection). Additionally this also enables us to discriminate local deformations better as
will be seen in the next example. The computed scale location and its magnitude are plotted in red (width of
two standard deviations of outer scale peak estimated) in (g) and (h) over the intensity difference plot and error
norm plot respectively showing how well the estimated location (center of the red line) and scale correspond
with the existing mismatch.

2.6. Inner and Outer scale

Eq.(1) contains three components of scale. While the Parzen window width β is fixed at all spatial scales (α),
the degree of smoothing (σ) should be related to the spatial scale (α). Jagersand22 used different patch sizes
at different resolution. In our simulations we varied the scale σ with α as σ = α/3 i.e., when we are looking at
larger regions of interest (α) we are also interested in the variation of coarser features (higher σ).

2.6.1. Example4: Mismatch location and scale identification

The importance of varying σ with α is shown in Fig. (4) for an image of size 213 × 291. (a) is the original
image, (b) the deformed image obtained by warping (a) using B-splines, (c) pixel-wise deformation error norm,
and (d) shows the positions where peaks in joint entropy were found, where its magnitude corresponds to the
scale of deformation. (e) and (f) are respectively the magnitudes of joint entropy obtained by keeping σ fixed,
and varying σ with α. In both cases the scale is found to be α ≈ 25 at the pixel with highest entropy but (f)
tracks the deformation error(c) much more closely than (e). The range of scales searched was limited from 6 to
40, i.e., it was assumed that the maximum scale of the deformation was below 40.
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Figure 3. a) Target image, b) Floating image , c) Registration error norm, d) Absolute difference between images in a)
and b), e) Significant spatial scale peaks, f) Joint entropy at scale peaks, g) Outer scale found(line)on intensity difference
along line profile and h) Outer scale(line) on geometric error norm
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Figure 4. a) Target image, b) Floating image, c) geometric error norm, d) peaks in scale, e) joint entropy at peaks
without gaussian scale space low pass filter and f) joint entropy at peaks with gaussian scale space filter
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Figure 5. a) Typical target Image with deformation center and scale, b) Warped floating image, c) Absolute intensity
difference, d) Clusters of identified centers, f) Estimated vs. true deformation scale

3. PRECISION AND ACCURACY OF LOCATION AND SCALE

In the next experiment, we deformed an image (dimensions 236 × 330) using a locally affine geometric deforma-
tion10 at five different locations and four different scales. We applied each deformation independently (20 cases,
one location and scale at a time) and the computed the mismatch vector. A typical deformation is shown in Fig.
(5a) centered at ‘+’ with a deformation spread width10 = 27 pixel units. The circle drawn has a radius equal to
twice this width. The corresponding warped image is Fig. (5b) and the absolute intensity difference before and
after warp is shown in Fig. (5c).

The circles in Fig. (5d) show the original location of the deformation center and the numbers show the esti-
mated centers for each location. Note that the five numbered markings each are well clustered. Accuracy can be
seen visually by the proximity of the markings to the circles. However it possible that regions that are maximally
mismatched in intensity may not lie exactly at circle locations, i.e, locations of maximum geometric deformation
error norms may not coincide with maximum intensity mismatch so accuracy measurement quantitatively is
not possible here but the combined vector precision was found to be small (1.71 pixels) and was computed as
the mean deviation of estimated locations from their respective cluster mean vector. Fig. (5e) compares the
estimated outer scale with the true scale(kernel width) of the deformation. The scale estimation error was found
to be 0.87 pixel units.



4. CONCLUSION

We have shown that mismatched regions in image pairs can be identified by their position and scale based on
peaks in joint entropy through a range of outer scales computed at every pixel location. This can be used to
parameterize the deformation model for registration, e.g., control point position and support can be initialized
for a compact radial basis function. An initialization step of this sort followed by registration may be performed
iteratively until no further mismatch is detected or improvement in cost is negligible.
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