
Simplified statistical image reconstruction algorithm
for polyenergetic X-ray CT

Somesh Srivastava, Student member, IEEE, and Jeffrey A. Fessler, Senior member, IEEE

Abstract— In X-ray computed tomography (CT), bony struc-
tures cause beam-hardening artifacts that appear on the recon-
structed image as streaks and shadows. Currently, there are two
classes of methods for correcting for bone-related beam hardening.
The standard approach used with filtered backprojection (FBP)
reconstruction is the Joseph and Spital (JS) method [1]. In the
current simulation study (which is inspired by a clinical head
scan), the JS method requires a simple table or polynomial model
for correcting water-related beam hardening, and two additional
tuning parameters to compensate for bone. Like all FBP methods,
it is sensitive to data noise. Statistical methods have also been pro-
posed recently for image reconstruction from noisy polyenergetic
X-ray data, [2], [3]. However, these methods have required more
knowledge of the X-ray spectrum than is needed in the JS method,
hampering their use in practice. This paper proposes a simplified
statistical image reconstruction approach for polyenergetic X-ray
CT that uses the same calibration data and tuning parameters
used in the JS method, thereby facilitating its practical use.
Simulation results indicate that the proposed method provides
improved image quality (reduced beam hardening artifacts and
noise) compared to the JS method, at the price of increased
computation. The results also indicate that the image quality of
the proposed method is comparable to a method requiring more
beam-hardening information [3].

Index Terms— X-ray computed tomography, beam-hardening,
Joseph-Spital method, statistical reconstruction techniques.

I. INTRODUCTION

BEAM hardening causes artifacts in X-ray CT images.
These artifacts manifest themselves as “cupping” due

to water-related beam-hardening and as “streaks” or “shad-
ows” due to bone-related beam-hardening. Current X-ray CT
systems are well-calibrated to compensate for water-related
beam-hardening. Additional calibration for bone-related beam-
hardening is not required as use of a few tuning parameters in
addition to the above calibration during the reconstruction phase
(using the JS method) is sufficient to compensate for bone-
related beam-hardening. As we shall see in a later section, the
number of additional parameters required depends on the image
viewing range and amount of soft-tissue and bone in the subject
being scanned. Earlier statistical methods of [2], [3] require
more information about the X-ray spectrum and/or materials
being imaged than is available to the standard JS method.
Consequently, these algorithms are less easily incorporated into
the current X-ray CT systems. This paper proposes a statistical
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reconstruction algorithm that uses the same beam-hardening
information as the JS method.

II. MODEL

Polyenergetic X-ray CT measurements for the ith ray through
the object are assumed to be generated according to the
following statistical model :

yi ∼ Poisson

{
∫

Ii(E)e
−

R

Li
µ(x,y,E)d`

dE + ri

}

,

where, Ii(E) is the energy spectrum of the incident X-rays,
µ(x, y, E) is the X-ray attenuation coefficient for energy E at
location (x, y) in the object, Li denotes the ith ray through
the object and ri denotes scatter. We assume a two-material
model (soft-tissue and bone1) and express the X-ray attenuation
coefficient as the product of mass attenuation coefficient, m(E)

and material density, ρ(x, y). Thus, we have,

yi ∼ Poisson

{

bie
−fi(TS,i,TB,i) + ri

}

, (1)

fi(TS,i, TB,i)
4

= − log

∫

Ii(E)

bi
e(−mS(E)TS,i−mB(E)TB,i)dE ,

TS,i
4

=

∫

Li

ρS(x, y)d`
4

= [GISρ]i,

TB,i
4

=

∫

Li

ρB(x, y)d`
4

= [GIBρ]i,

where, bi
4

=
∫

Ii(E)dE , ρ is a vector consisting of densities for
each pixel, IS and IB are diagonal matrices representing the
image-domain masks for soft-tissue and bone respectively and
G is the forward projection operator. Note that fi(TS , TB) is
equal to the logarithm of the incident intensity of the X-ray
spectrum to the exit intensity. In principle, this table could be
measured using step phantoms. We call f(TS, TB)

2 the water
and bone correction table, and f(TS , 0)

4

= fS(TS) the water
correction table.

The method of [3] uses the entire water and bone correction
table. This method will be called the Exact method from now
on. The JS method utilizes the water correction table and a few
tuning parameters. The purpose of the additional parameters is
to suitably extrapolate the water correction table to approximate
the water and bone correction table within the tolerable error

1The terms soft-tissue and water are used interchangably because the two
materials have similar X-ray attenuation properties.

2The subscript i is dropped as each ray has the same incident energy
spectrum.

0-7803-9221-3/05/$20.00 ©2005 IEEE

2005 IEEE Nuclear Science Symposium Conference Record M03-97

1551



0

20

40

60

051015202530

0

5

10

15

20

T
  B

T
  S

Fig. 1. Plot of f(TS , TB). Units of TS and TB are g/cm2.
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Fig. 2. Plot of γ(TS , TB). Units of TS and TB are g/cm2.

range. The proposed method uses the same approximation as
the JS method.

This paper is organized as follows. Section III describes
the conditions under which f(TS, TB) can be approximated
using two tuning parameters. Section IV describes the pro-
posed method (the 2-parameter method) and other choices of
statistical methods that can be used to eliminate noise and
beam-hardening artifacts. The simulation setup is described in
Section V and the results and a discussion of the results is
presented in Section VI.

III. APPROXIMATING THE WATER AND BONE CORRECTION
TABLE

The water and bone correction table, f(TS , TB), can be
computed exactly in simulations and is shown in Fig. 1. Note
that the non-linearity of f(TS, TB) is the source of the beam-
hardening artifacts. In the current study, f(TS, TB) is computed
for a 80kVp spectrum and two materials, soft-tissue and bone.

We use the one-to-one nature of the water correction table

 

Fig. 3. Image of the true phantom (1024 × 1024pixels). Window = 400HU.

fS in order to rewrite f(TS , TB) as :

f(TS, TB) = f(TS + γ(TS, TB)TB , 0)

= fS(TS + γ(TS, TB)TB),

where,

γ(TS , TB)
4

=

{

f−1
S

(f(TS ,TB))−TS

TB
TB 6= 0,

limT→0

f−1
S

(f(TS ,T ))−TS

T TB = 0.

This formulation takes full advantage of the water correction
table fS . Fig. 2 shows the plot of γ(TS, TB) corresponding
to the f(TS , TB) shown in Fig. 1. The function γ(TS, TB)

is equivalent to λL defined in Eq.(13) of [1]. An accurate
approximation of γ(TS, TB) by a function of two variables (TS

and TB) involving the tuning parameters is required for a good
reconstruction.

The number of tuning parameters needed for the approxi-
mation to γ(TS , TB) depends on the amount of tolerable error.
The error tolerance depends on the image viewing window. We
focus here on a 400 HU window (or 0.4g/cc in density units).
The phantom also plays a role in the choice of number of tuning
parameters. This is because the approximation to γ(TS, TB)

has to be good over the range of TS and TB determined by the
amounts of soft-tissue and bone in the phantom. The phantom
in this simulation study is designed based on a clinical case.

In the current study, we use the following approximation for
γ(TS, TB) :

γ(TS, TB) ≈ A − BTB , (2)

which is identical to Eq.(22) of [1]. The plot of γ(TS, TB)

in Fig. 2 suggests that the above approximation could be
reasonable. It will be shown through simulations that this
approximation works well for the head phantom. The thick-
ness of bone mineral in the head phantom is around 1.5mm.
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Increasing the bone mineral thickness to about 2.5mm causes
this approximation to fail, necessitating the use of more tuning
parameters. We consider only the 1.5mm case in this paper.

IV. STATISTICAL RECONSTRUCTION METHODS

We compare the following statistical reconstruction methods.

1) 1-parameter method
We use a constant to approximate γ(TS, TB) instead of
using (2), i.e., set B = 0. This is equivalent to Eq.(20)
of [1]. This method is used to verify that the amount of
bone in the phantom is significant from the point of view
of beam-hardening, and more than one tuning parameter
is required for the approximation to be good.

2) 2-parameter method
This is the proposed method and uses (2) to approximate
γ(TS, TB).

3) Exact method
The exact value of γ(TS , TB), hence the exact value
of f(TS , TB), is known in simulations. This method is
almost identical to [3].

4) Ad hoc method
In this method, we perform the statistical reconstruction
assuming a water-correction model and process the ob-
tained image by the JS method. We assume that the noise
can be removed by including the water correction model
(i.e. set A = 1 and B = 0) only in the measurement
model. Now, the JS method is used to get rid of the beam-
hardening artifacts. This is not a systematically derived
method but is attractive due to its simplicity. It is included
here for the purpose of comparison with the 2-parameter
method.

A. 1-parameter and Ad hoc methods

The negative log-likelihood for these methods are written as

−L(ρ) =

nd
∑

i=1

hi(fS([G1ρ]i)),

hi(t)
4

= (bie
−t

+ ri) − yi log(bie
−t

+ ri),

G1

4

=

{

G Ad hoc method
G(IS + AIB) 1-parameter method.

The function hi appears in Poisson transmission tomography
problems and a quadratic surrogate for it was computed in [4].
The problem is regularized by a adding an edge-preserving
(Huber) penalty function to the negative log-likelihood to create
the final cost function. The cost function can be reduced
monotonically by the use of quadratic surrogates [4]. Using the
optimal curvatures computed in [4], the surrogate is expressed

as

Q1(ρ; ρ(n)
) =

nd
∑

i=1

hi(fS([G1ρ
(n)

]i))+

h′

i(fS([G1ρ
(n)

]i))×

(fS([G1ρ]i) − fS([G1ρ
(n)

]i))+

1
2 c̆i(fS([G1ρ]i) − fS([G1ρ

(n)
]i))

2.

Observations of fS(TS) suggest that it is a concave function.
Using Lemmas 3 and 4 of [4] we can prove the following :

f ′

S(T
(n)

S )(TS − T
(n)

S ) ≥ fS(TS) − fS(T
(n)

S ),
∣

∣

∣

∣

∣

fS(T
(n)

S )

T
(n)

S

∣

∣

∣

∣

∣

|TS − T
(n)

S | ≥ |fS(TS) − fS(T
(n)

S )|.

Observations of fS(TS) also suggest that f ′

S(0) ≥ |
fS(T

(n)
S

)

T
(n)
S

|.
Thus, we have the final form for the surrogate :

Q2(ρ; ρ(n)
) =

nd
∑

i=1

hi(fS([G1ρ
(n)

]i))+

h′

i(fS([G1ρ
(n)

]i))×

f ′

S([G1ρ
(n)

]i)[G1(ρ − ρ(n)
)]i+

1
2 c̆i(f

′

S(0))
2
[G1(ρ − ρ(n)

)]
2

i .

A conjugate gradient method is used to reduce the value of
Q2(ρ; ρ(n)

) at every iteration. These methods will not have
nice convergence properties like monotonicity due to the beam-
hardening approximations made to the exact measurement
model and the use of masks IS and IB . A certain number
of iterations are run and the iterate with the best image quality
is taken as the final reconstruction. The 1-parameter method is
initialized with a 1-parameter JS reconstruction and the Ad hoc
method is initialized with a water-corrected FBP reconstruction.

B. 2-parameter and Exact methods

The negative log-likelihood for these methods are written as

−L(ρ) =

nd
∑

i=1

hi(f([GISρ]i, [GIBρ]i)).

It might be possible to derive an exact 2-D surrogate for
this negative log-likelihood along the lines of [4] but the
procedure appears to be very complicated. A simpler way is
to approximate f(TS , TB) by a local Taylor series expansion
for every pair of (T n

S , T n
B) at the current iterate and hope that

this approximation holds for the step sizes generated.

f(TS , TB) ≈ f(T n
S , T n

B)+

[

ḟ1,0(T
n
S , T n

B) ḟ0,1(T
n
S , T n

B)
]

[

TS − T n
S

TB − T n
B

]

.
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The quadratic approximation can be now written as :
Q3(ρ; ρ(n)

) = K + (G2
T
ḣ)

T
(ρ − ρ(n)

)

+
1

2
(ρ − ρ(n)

)
T G2

T diag(c̆i)G2(ρ − ρ(n)
),

[ḣ]i
4

= ḣi(f([GISρ(n)
]i, [GIBρ(n)

]i)),

G2

4

=
[

diag(ḟ1,0) diag(ḟ0,1)
]

[

G 0

0 G

] [

IS

IB

]

.

The problem is regularized by adding an edge-preserving
(Huber) penalty function to the negative log-likelihood and a
conjugate gradient method is used to reduce the value of the
surrogate at every iteration. Due to the Taylor series expansion
and use of masks, these algorithms are not guaranteed to
be monotonic. However, they have been found to perform
satisfactorily in practice. The 2-parameter method is initialized
by a 2-parameter JS reconstruction and the Exact method is
initialized by a JS method using the water and bone correction
table.

1-parameter and Ad hoc methods require one forward projec-
tion and one back-projection every iteration. The 2-parameter
and Exact methods require two forward and back-projections
every iteration.

V. SIMULATION SETUP

A 2-D fan-beam X-ray CT scanner was simulated. The
geometry of the scanner is similar to the central slice of a GE
Lightspeed Pro scanner. Sinogram data was collected over a
360

◦ rotation over a 50cm field-of-view (FOV). The sinogram
dimensions were 984 angles by 888 bins per angle. An 80kVp
spectrum was used and the blank scan count summed over the
entire X-ray spectrum was 1.1 × 10

6 per bin. ri were set to
zero for this study. The phantom size was 1024× 1024 pixels
and the reconstruction was done on a 256× 256 grid. A 1024

size grid permits the phantom to have an average bone mineral
width of about 1.5mm.

VI. RESULTS AND DISCUSSION

The reconstruction from the water-corrected FBP method
(Fig. 4 and Fig. 5) is noisy and contains a streak artifact in the
center of the image. The 1-parameter method (Fig. 6) provides
a reconstruction which is free from noise but it still contains the
streak. The reconstruction from the 2-parameter method (Fig. 7)
is rid of the noise as well as the streak artifact. The image
quality is comparable to that of the Exact method (Fig. 8).
The Ad hoc method (Fig. 9) provides an image quality slightly
worse than the 2-parameter method. The 2-parameter method
should be the method of choice when compared to the Ad hoc
method as it follows the measurement model more closely and
uses the same beam-hardening information (water-correction
table and tuning parameters).
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Fig. 4. Water-corrected FBP reconstruction.

 

Fig. 5. Water-corrected FBP reconstruction (zoomed in).
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Fig. 6. Reconstruction using the 1-parameter method. Window = 400HU. Left, full image. Right, central part of the image.

  

Fig. 7. Reconstruction using the 2-parameter method. Window = 400HU. Left, full image. Right, central part of the image.

  

Fig. 8. Reconstruction using the Exact method. Window = 400HU. Left, full image. Right, central part of the image.

  

Fig. 9. Reconstruction using the Ad hoc method. Window = 400HU. Left, full image. Right, central part of the image.
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