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Abstract  
The University of Michigan Direct Brain Interface (UM-DBI) 
project seeks to detect voluntarily produced electrocortical 
activity (ECoG) related to actual or imagined movements in 
humans as the basis for a DBI.  In past work we have used cross-
correlation based template matching (CCTM) as the method for 
detecting event-related potentials (ERPs).  That approach ignores 
event-related spectral changes in the ECoG signal.  This paper 
discusses model-based signal detection methods that exploit 
event-related spectral changes.  In particular we propose a 
quadratic detector based on a two-class hypothesis test with 
different covariances for the two classes.  The covariance 
matrices are generated by fitting autoregressive (AR) models to 
training data.  Preliminary results show that the quadratic 
detector yields more channels with good detection performance 
than the CCTM method, particularly when we impose 
constraints on detection delay. 
 

I. INTRODUCTION 
 
A direct brain interface accepts voluntary commands directly 
from the human brain without requiring physical movement 
and can be used to operate a computer or other assistive 
technology.  The UM-DBI is based on detecting voluntarily 
generated changes in ECoG signals.  The short-term goal is an 
interface capable of operating single-switch assistive 
technologies.  The longer-term goal is to increase the accuracy 
of the interface and the number of useable control channels. 
This paper discusses signal detection strategies for ECoG 
signals. 
 

II. METHODS 
 
Data Collection 
The data used in this project has been collected from the 
epilepsy surgery programs at the University of Michigan 
Hospital in Ann Arbor and Henry Ford Hospital in Detroit. 
The subjects involved were either under evaluation or 
undergoing surgery for alleviation of intractable epilepsy. Up 
to 128 subdural electrodes were implanted on the surface of 
the cerebral cortex of each patient to record seizure activity 
and map cortical function. The 4 mm diameter electrodes were 
oriented in grids or strips, with a center-to-center distance of 
1 cm.  Electrode placement was selected solely for the purpose 
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of the epilepsy monitoring without regards for this project, and 
electrodes are not necessarily located on motor cortex.  Each 
subject performed sets of approximately fifty repetitions of a 
simple movement.  The movements were self-paced 
(unprompted) and spaced roughly five seconds apart.  For this 
study, no feedback was used.  The corresponding muscle 
activation was recorded with an EMG electrode for use as a 
reference. Most of the data was collected at a sampling rate of 
200 Hz, with some at 400 Hz. 
 
For simplicity, in this study we have focused on the problem 
of detecting event-related changes in ECoG signals recorded 
from a single electrode.  The extension of the methods to 
multiple channels will be considered in future work. 
 
Detection Algorithms 
Since our ECoG data comes from unprompted events, it 
appears as a long record of a sampled ECoG signal.  In this 
context, the goal of any signal detection method is to identify 
which portions of that signal correspond to motion events (as 
identified by the EMG channel triggers). 
 
CCTM Approach 
Initially, our group has used a cross-correlation based template 
matching (CCTM) method for signal detection.  From training 
data, we compute an ERP template using triggered averaging 
of the signals from about 25 events.  For test data, we cross-
correlate that ERP template with the ECoG signal and 
compare the output to a threshold.  We determine the 
threshold empirically from the training data so as to maximize 
the “HF-difference,” i.e., the difference between the “hit” 
percentage (percentage of events that were detected within an 
acceptance window around each trigger) minus the percentage 
of “false” detections.  (A classical ROC evaluation seems 
infeasible here due to the use of unprompted events and 
incompletely labeled data.) 
 
Fig. 1 shows an example of ECoG signals from 5 events and 
an ERP template formed by averaging 23 events.  A 
significant portion of the ERP template energy occurs well 
after the trigger (at time 0 seconds). 
 
The CCTM approach is based implicitly on a two hypothesis 
test for a signal block x with the following pair of hypotheses: 
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H0 : x ~ N(0, σ2 I) “rest” 
H1 : x ~ N(µ, σ 2 I) “task/event” (1) 

 
where µ denotes the template signal vector.  For this model, 
the Neyman-Pearson optimal detector, formed from the 
likelihood ratio, is the inner product x’µ.  When this detector 
is applied by sliding the signal block along the ECoG data 
stream, the resulting method is simply cross correlation 
(CCTM). 
 
However, the “white noise” signal model (1) ignores event-
related changes in the signal power.  Such changes have been 
reported for both EEG and ECoG signals, and successful 
detection methods have been based on power spectrum 
changes [3].  Some spectral changes have even been given 
names, such as event-related desynchronization 
(ERD) and event-related synchronization (ERS) [4]. 
 
Fig. 2 shows a moving-window power spectrum computed by 
fitting a 6th-order AR model to about 50 events.  Time “0” is 

the event trigger time.  The power spectrum changes 
significantly near event onset.  
 
The proximity of the spectral changes to the trigger time raises 
the hope of reduced detection delay.  These spectral changes 
are even more evident when we subtract a baseline power 
spectrum (corresponding to time -3 seconds) as shown in 
Fig. 3. 
 
Such spectral changes are visible even in moving window 
spectra from individual events as shown in Fig. 4. 
 

Fig. 1.  Example raw data and average of 23 repetitions to create 
 

 

Fig. 3.  Power spectrum differences relative to time -3 seconds.  
 

Fig. 4. Spectral changes from individual events.

Fig. 2. Power spectrum changes near event onset 
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Because of the prominence of such spectral changes, it is 
desirable to develop signal detection methods that can exploit 
them.  A possible strategy is “feature based” methods, where 
one extracts signal features such as band power or other 
spectral parameters, and then applies a feature-based classifier 
such as linear discriminant analysis (LDA).  Instead, here we 
consider a model-based approach in which we first postulate a 
signal model that aims to capture key signal characteristics, 
and then develop an “optimal” detector based on that model.  
(The optimality of the detector of course hinges on the 
accuracy of the model.) 
 
Two-Covariance Signal Model 
As an alternative to (1), we now assume the ECoG signal 
block x arises from one of the following two classes: 
 

H0 : x ~ N(0, K0) “rest” 
H1 : x ~ N(0, K1) “task/event” (2) 

 
where now we ignore the ERP component µ for simplicity. 
 
By the Neyman Pearson lemma, the most powerful test for 
such a detection problem is given by the likelihood ratio.  
Under the model (2), the likelihood ratio simplifies (to within 
irrelevant constants) to the following quadratic form: 
 

Λ(x) = x’ (K0
-1 - K1

-1) x. (3) 
 
The output of this quadratic detector is compared to a 
threshold for classification. 
 
Training 
The covariance matrices K0

 and K1 in (2) are not known a 
priori, so one must estimate them from training data.  If the 
length of the signal block is, say, 100 samples, corresponding 
to ½ seconds of ECoG data, then the covariance matrices are 
each 100 by 100.  This would be too many parameters to 
estimate from limited training data.  Therefore, we assume an 
autoregressive (AR) parametric model for the signal power 
spectrum.  For a 6th-order AR model, we must estimate 6 AR 
coefficients and a driving noise variance for each of the two 
signal states, for a total of 14 unknown parameters.  An 
additional complication is that our ECoG data is incompletely 
labeled due to having unprompted events.  The EMG signal 
triggers indicate when the event occurs, but presumably the 
brain is in the “task” state for some period (possibly) before 
and certainly after the signal trigger.  We use a joint 
maximum-likelihood (ML) estimation procedure to estimate 
both the AR parameters and the center and width of the 
interval containing the “task” signal samples around each 
trigger from the training data.  This joint labeling / training 
procedure requires an iterative search over the center and 
width parameters and repeated application of modified Yule 
Walker equations for finding the AR parameters. 
 
Quadratic detector implementation 
A direct implementation of the quadratic detector (3) would be 
inefficient due to the large matrix sizes.  Fortunately, when the 

signals are assumed to have an AR power spectrum, one can 
implement (3) using simple FIR filters. 
 
The block diagram in Fig. 5 summarizes the implementation 
of the quadratic detector.  The ECoG signal is passed through 
two FIR filters, each of which come from the reciprocal of the 
corresponding AR model.  Then a moving sum-of-squares 
computes the power of the innovation signal, which is 
normalized by the ML estimates of the driving variances.  The 
difference operation in essence compares “which model fits 
better.”  The output signal is the test statistic that is compared 
to a threshold. 
 
Fig. 6 shows how the variance of the innovations process 
works as a test statistic.  Near the trigger point the signal 
spectrum becomes that of the event class, so the event class 
innovations variance decreases whereas the rest class 
innovations variance rises, leading to a large test statistic 
value. 
 

III. RESULTS 
 

We compared the CCTM method and the quadratic detector 
(3) using a representative set of 20 datasets from 10 subjects, 
consisting of a total of 2184 channels.  The results were 
evaluated for various detection acceptance windows, thus 
various delays.  The length of the detection window after the 
trigger specifies the maximum allowed delay between the 
actual occurrence of an event and its detection by the 
algorithm.  Therefore, longer detection windows correspond to 

Fig. 5.  Quadratic detector implementation. 
 

Fig. 6. Average of variance of innovations process around the trigger 
point 
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greater detection delays.  These experiments used detection 
windows that started 0.5 s before the trigger and ended 1s, 
0.5s, 0.25s and 0s after the trigger point. 
 
Fig. 7. compares the HF-differences of the quadratic and 
CCTM detectors when the delay is constrained to be at most 
1s.  There are many more viable channels with the quadratic 
method. 
 
Fig. 8. shows the 0.5 s delay case.  For this short delay, 
detection performance degrades considerably, yet there are 
still several viable channels for the quadratic detector. 
 
For feedback studies, we would like to reduce the delay as 
much as possible.  Fig. 9 shows that even with a 0.25 second 
delay there are still some viable channels for the quadratic 
detector. 
 

IV. DISCUSSION 
 
We have described a quadratic detector for classifying ECoG 
signals.  The quadratic detector is based on a two-covariance 

signal model that captures event-related spectral changes in 
the signal.  The detector has a simple implementation that is 
suitable for real-time use.  Empirical results on real ECoG data 
showed that the quadratic detector offers improved detection 
accuracy relative to the CCTM method and can provide 
reduced detection delay. 
 
We have recently implemented this approach in our real time 
system, and feedback studies with imagined movements are 
forthcoming. 
 
There are several opportunities to improve the detection 
method further.  Thus far we have ignored the ERP component 
in the quadratic detector.  It can be included easily.  Judging 
from the spectrum shown in Fig. 2 – Fig. 4 above, there are at 
least three distinct spectral characteristics.  Separating these 
components rather than lumping them into just two classes 
may improve performance.  Alternatively, time-varying 
models (e.g., state-space or hidden Markov methods) might 
better capture how the spectral properties evolve over time.  
Extensions to multi-channel detection are also under 
consideration. 
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Fig. 7.  Quadratic and CCTM detection performance with maximum 
allowed delay of 1 second. 

 

Fig. 8.  Quadratic and CCTM detection performance with maximum 
allowed delay of 0.5 seconds. 

 

Fig. 9. Quadratic detector performance at differing maximum allowed 
delay. 
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