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I. INTRODUCTION

OST iterative reconstruction algorithms are based on a

cost function combined with an optimization approach
to iteratively find the optimum (we’ll assume minimum for
convenience) of that cost function. The cost function includes
a data fit term, requiring the calculated sinogram to be similar
to the measured sinogram, and often also a prior term or a
regularization term, requiring the image to satisfy some desired
properties based on prior knowledge. Ideally, the cost function
completely defines the reconstructed image, meaning that the
actual minimization approach finds the global minimum of
the cost function. Even though this is theoretically obvious in
the absence of local minima and for convergent algorithms,
it has (to our knowledge) never been demonstrated for non-
trivial problems, that multiple completely different optimization
approaches indeed result in the same reconstructed images, and
in a reasonable number of iterations. In this work, we compare
an iterative coordinate descent approach (ICD) [1], a conjugate
gradient approach (CG) [2-3], a separable parabolic surrogate
approach with ordered subsets (OS) [4], and a convergent
ordered subsets approach (COS) [5]. In addition to showing that
- if applied with care - all approaches result in the same final
image, we also give an indication of the number of iterations
and time to convergence for the studied approaches.

II. ALGORITHMS

Statistical tomographic reconstruction is based on the maxi-
mization of the log-posterior probability (also called maximum
a posteriori or MAP):

MAP = log P(measurement | image) + log P(image). (1)

The first term is called the likelihood and can be formulated by
combining a model for the acquisition P(calculated | image)
and a noise model P(measurement | calculated). The second
term is called the prior (or regularizer). We use the following
acquisition model:
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where p; is the calculated sinogram value for projection line
1, pj; is the reconstructed value in image pixel j, and I;; is
the projection coefficient for pixel 7 and projection line i. We
used a distance-driven projector and backprojector [6], which
are matched, so [l;; is also the backprojection coefficient. We
used a Gaussian noise model :
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where p; is the real measurement for projection line ¢ and o;
is the corresponding standard deviation. We used a quadratic
prior with strength 3 and neighborhood weights 7;;.. These as-
sumptions reduce the MAP problem into a penalized weighted
least squares minimization problem with the following cost :
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where each weight w; is the inverse of the standard deviation
on measurement <.

The iterative coordinate descent approach (ICD) [1] can
be described as follows. In every iteration n we sequentially
address every image pixel j in a random (but fixed) order and
we compute its attenuation 7 as

P(pilp:) =

arg min Oy, G e, (5)
j
The solution is easily obtained by requiring
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resulting in
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We used no under- or over-relaxation.

The conjugate gradients approach (CG) [2-3] can be sum-
marized as follows. The direction of each new update step is
computed as
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The actual update step is given by

" = xn—l 4 ad™ (10)
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with
(11)

& = argmin C(z" ! + ad™).
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We did not use a pre-conditioner.

The ordered subsets (OS) approach can be derived by defin-
ing separable parabolic surrogate functions for the cost function
[4] and is described as follows.
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We studied various numbers of subsets, including the limiting
case of one subset, and we studied different relaxation factors.
The convergent ordered subset approach (COS) [5], also
referred to as transmission reconstruction by incremental op-
timization transfer (TRIOT), can be summarized as follows.
First the cost function is expressed as the sum of a number
of terms, one for each subset. For every subset iteration, the
gradient for that particular subset is re-computed. Finally, the
image is updated by finding an optimal combination of the most
recent gradients.

III. EXPERIMENTS

For evaluation, we used an axial measurement of a thorax
phantom on a GE Lightspeed CT scanner and we reconstructed
only the central slice to limit the problem to 2D. We used FBP
as initial estimate for the reconstruction. We performed 200
iterations and we analyzed the cost and the reconstructed image
after convergence. We also estimated the number of iterations
and the computation time required to reach certain convergence
criteria.

Most experiments were performed with a non-negativity
constraint. Because our CG implementation did not allow for a
non-negativity constraint, we did a separate experiment without
this constraint, resulting in a similar but different cost (as
expected). For easy comparison, all the costs without non-
negativity are shown shifted by a small DC offset to match
the results with non-negativity.

The first series of experiments includes 200 iterations of ICD,
CG, OS with 41 subsets and COS. The results in Figure 1 show
the relative convergence properties. OS gets stuck in a limit
cycle behavior, resulting in a higher cost and a discrepancy
of about 7HU. All other approaches converge to the same
minimum cost. We also analyzed the images and the difference
was smaller than 1HU. The final images are shown in Figure 2
for ICD and OS, and their difference is shown in Figure 3. The
images look visually identical but the difference image shows
the small (less than 7HU) discrepancy for OS.

In a second series of experiments, we showed that OS can
be made to converge by switching to one single subset. This is
illustrated in Figure 4 (solid line). We showed that switching
to a lower relaxation factor of 0.1 results in a lower cost
much closer to the global minimum (not shown). We also
performed 25 iterations of OS followed by 175 iterations of
COS and showed that this combination results in favorable
convergence properties (dashed line). We performed additional
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Fig. 1. Total cost as a function of iteration number for 200 iterations of

ICD (red +), CG (purple x), OS with 41 subsets (blue solid), and COS (green
dashed).

Fig. 2. Image after 200 iterations of ICD (left) and OS (right). The level
is 930HU and the window 116HU. No attempt was made to optimize cost
function or image quality. The OS image has a discrepancy of about 7HU (not
visible).

Fig. 3. Difference between OS and ICD after 200 iterations each. The level
is OHU and the window 20HU. There is a clear difference mainly in the
neighborhood of the patient table edges.
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Fig. 4. Total cost as a function of iteration number for 200 iterations of ICD
(red +), CG (purple x), OS switching from 41 subsets to 1 subset (blue solid),
and COS initialized with 25 iterations of OS (green dashed).

OS reconstructions with an over-relaxation factor of 1.95 and
with 82 subsets. In both cases, the required number of iterations
for convergence decreases but the final cost and discrepancy
increase, as expected. These results suggests that a gradually
decreasing subset and relaxation schedule would be desirable.

In an additional experiment, we used a blank image as initial
estimate instead of FBP. Only ICD significantly suffered from
this. This is consistent with the understanding that ICD results
in fast convergence of the high frequencies, while the low
frequencies converge more slowly.

ICD required about 10 to 20 iterations (depending on the
convergence criterion). OS with 41 subsets required 3 times
more iterations, and CG 6 times more. Even though the number
of required iterations was very different for all approaches, this
was compensated by the respective times per iteration, and the
actual computation times were of the same order of magnitude.
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However, none of the implementations were optimized for
performance, and the timing results are only included as a
rough indication. For all approaches, the reconstruction time
for a 512x512 image based on a 888x984 sinogram was about
10 minutes on a 3GHz Pentium Xeon, using distance-driven
projection-backprojection.

IV. CONCLUSIONS

We studied four different minimization approaches for itera-
tive reconstruction in CT and showed that all four result in the
same reconstructed image after convergence. No attempt was
made to optimize the cost function or the corresponding image
quality. The regular ordered subsets approach was indeed non-
convergent (limit cycle behavior), unless we reduced the num-
ber of subsets or the relaxation factor, or unless we switched
to the convergent ordered subsets method. While the number
of required iterations varies between the different methods,
the time per iteration usually goes in the other direction, and

consequently the computation times were all of the same order
of magnitude.
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