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ABSTRACT

Statistical methods for tomographic image reconstrudimre shown considerable potential for improving image-gual
ity in X-ray CT. Penalized-likelihood (PL) image recongttion methods require maximizing an objective functiont tha
is based on the log-likelihood of the sinogram measuremamison a roughness penalty function to control noise. In
transmission tomography, PL methods (and MAP methods)doaseonventional quadratic regularization functions lead
to nonuniform and anisotropic spatial resolution, evenidealized shift-invariant imaging systems. We have presip
addressed this problem for parallel-beam emission tonpbgray designing data-dependent, shift-variant regutasithat
improve resolution uniformity. This paper extends thosehods to the fan-beam geometry used in X-ray CT imaging.
Simulation results demonstrate that the new method forlaeigation design requires very modest computation andslea
to nearly uniform and isotropic spatial resolution in the-fleam geometry when using quadratic regularization.
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1. INTRODUCTION

There is growing interest in the use of statistical imagemstruction methods for X-ray CT imaging due to the
potential for reducing patient dose, reducing artifacte ttm beam hardening and metal objects, and to accommodate
scanning geometries that are poorly suited to conventiBB& reconstruction. Maximum likelihood methods for image
reconstruction lead to excessively noisy images, so ond malside some form of noise control, such as adopting a
penalized-likelihood (PL) approach, or similarly a maximma posteriori(MAP) method.

Although PL methods can control noise effectively, if onesigs conventional quadratic roughness penalty then the
resulting reconstructed images will have nonuniform andatropic spatial resolution, even for idealized shiftariant
imaging systems, due to interactions between the non-gtiad?oisson log-likelihood and the regularization terrh [1
For shift-variant systems, including the fan-beam geoynesed in X-ray CT, there will be additional variation in Spht
resolution over the field of view (FOV). This “problem” coulg circumvented by using a conventional quadratically-
penalizedunweightedeast-squares (QPULS) estimation method, but QPULS imla@es poor noise properties (akin to
FBP in fact) because theeighting which is explicit in PWLS methods [2] and implicit in penai-likelihood methods,
is a central advantage of statistical methods over FBP. \&@quisly described a method for designing quadratic regula
izers that improve the resolution uniformity and isotropyeconstructed images f@arallel-beamsystems, focusing on
emission tomography [3]. This paper addresse$ahebeamgeometry for transmission tomography.

2. SPATIAL RESOLUTION ANALYSISAND REG. DESIGN

We use two key concepts from previous work. One concefadal shift invariance[4—6]. Although fan-beam to-
mography systems are shift variant, the system and recmtistn method are often approximately shift invariant ie th
local neighborhood around any given pixel. This charastierenables “local Fourier analysis” of the spatial resohu
properties. The other concept is that for any given pixed,dffect of (implicit or explicit) ray-dependent weightinga
statistical reconstruction method can be approximatedieweeight per projection view [6].
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2.1. Local impulseresponse

One can quantify spatial resolution properties of imagemstruction methods using the local impulse response.ylLet
denote the projection measurement vectbrthe system matrix, angt the unknown object vector (pixel values), where
y ~ Ax. For an estimatog(y), we define the local impulse response for jttepixel to be
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This PSF shows how a pertubation in ik pixel affects other pixels, and is our tool for regulatiaa design.

2.2. Regularized reconstruction
Penalized likelihood reconstruction methods have the form

& = argmin L(Az,y) + R(x),
whereL denotes the negative log-likelihood aRdx) denotes a roughness penalty function that regularizesrtizgm.

We focus here on quadratic roughness penalties of the (@) = la’Rx, whereR is the Hessian of the penalty
function.

For such estimators, the local impulse response is [1, 7]:
V= [AV*L(A#,y)A+ R] " A [-V''L(A#,y)] Ae;.
For typical log-likelihoods, this simplifies as follows [7]
I =[AWA+ R]"' AW Ae;,

where W is a diagonal matrix that depends on the log-likelihood gndFor transmission tomography with the usual
Poisson modelW = diag{y;} [7].

2.3. Regularization design

Our goal is to choose the penalty coefficients= (r1,...,7.) (and henceR) so that the local impulse response at each
pixel j closely matches some target PRFExperience has shown that reasonable target PSFs hawitie f

! = [G'G+ Ro)” G'Ge;,
whereG denotes a shift-invariant system that approximates thsilplgsshift-varying system moded, and R, denotes a
conventional shift-invariant regularizer. In other warde would like to choosé (by choosing{r? }) such that
[AWA + R AW Ae; ~ [G'G + Ry] ' G'Ge;.

Achieving this goal should lead to nearly uniform and anigpic spatial resolution.
Motivated by continuous-space analogs not shown, we “aragtply,” rearrange the matrices, and simplify, yielding

ROAWAEJ‘ ~ RG’Gej.

(Since all circulant matrices commute, matrices thatlacally shift invariant will commute approximately.) Roughly
speaking then, we would like to solve

?miz |RoAW Ae; — RG'Ge;|, (1)
ri

J

where R depends or{r7}, for some type of norm. Instead of solving this minimizatjmoblem using matrix-vector
operations, we follow the philosophy of [3] and replacelad imatrices above with corresponding continuous-spacedfou
domain expressions. We then solve féranalytically in the Fourier domain.



In the above expression&’G is the cascade of forward and back-projection operationscohtinuous-space, this
ideally would correspond to convolution withy» or multiplication by1/p in the Fourier domain, wherg, ) denotes
polar coordinates in frequency space. A more reasonableinaadounts at least for some “typical” detector response,
such as in the following approximation:
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where B(-) denotes some user-selected frequency response, cordasgpan the “typical” radial blur functione.g, the
blur at the center of a single projection view. For shift vagysystems, Ieb{;,(r) denote the detector response at angle
local to where thgth pixel projects onto the detector at that angle. (For @-&hhriant systend(r) would be independent
of p andj.) Let Bi,(p) denote the corresponding (local) frequency response. |&8lilet w,(r) denote the diagonal
“element” of W corresponding to anglg and radial positiom, and define the following effective “certainty” at angle
for the jth pixel (cf. [6, eq. (19))]): ,

0 pi
() & Lo RO Lo ©)
I || ar

Using continuous-space analogies, one can show
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We refer toA W A as the Gram operator.

Previous work [3] continues from this point and leads to all@agzer design method that yields nearly uniform and
isotropic spatial resolution for the parallel beam casaeHee transformu’ () to fit a fan beam geometry. Then we can
substitute our newly computed’ () into the previous design method. This results in a corredipgnregularizer that
yields nearly uniform and isotropic spatial resolution tfee fan beam case.

3. FAN BEAM GEOMETRY

Many contemporary tomographic imaging systems Hawebeamgeometries, including commercial X-ray CT scan-
ners and some collimators for SPECT systems. For hypotietintinuous measurements, one could transform fan-beam
projections into parallel-beam projections by a simplengfeaof variables. For discrete, noisy measuremeatsnning
fan-beam measurements into parallel-beam projectiongresgan interpolation operation that could degrade dpatsa-
lution. To avoid such rebinning, one can derive reconsimnainethods (and regularization methods) directly in teains
the fan-beam coordinates.

Fig. 1 illustrates the fan-beam geometry that will be coased here. Since it can be challenging mechanically to
ensure that the line between the X-ray source and the mitlpbthe detector passes through the exact center of rotation
we allow an offset,g between that line and the center [8]. Ll2tdenote the point along that line that intersects the circle
of radiusr.g centered at the rotation isocentély denotes the distance from the poidtto the detectorD, denotes the
distance from the X-ray source 18, and Dy denotes the distance from the X-ray source to the focal wditite detector
arc. DefineD. £ D4 + Dy to be the total distance from the X-ray source to the centénefletector. This formulation
allows the detector focal point to differ from the X-ray soeiocation to encompass a variety of system configurations.
For flat detectorsDy = oo. For third-generation X-ray CT systemB; = 0. For fourth generation X-ray CT systems,
Dy = —Ds.

In our notation, the distancd3,; and D, are constants, rather than being functions of apigl&eneralizations exist to
allow non-circular source trajectories [9].

Let s € [—smax, Smax] denote the (signedrc lengthalong the detector, with = 0 corresponding the detector center.
Arc length is the natural parameterization for detectomelets that are spaced equally along the detector. (For a flat
detector withD; = oo, the arc lengths is simply the position along the detector.) The various esfjiave the following
relationships:

(4)

a(s) s (D¢ + Ds) sin a(s) ) ’

= = tan"
D.+ Dy’ 7(s) = tan ((DC + Dy) cosa(s) — Dy
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Figure 1. lllustration of fan beam geometry.

where the two most important cases are

tany(s) = { 1) D=0 ®

The (inverse) relationship betweegrands is:

_ { (D + Ds) [’y - arcsin(Dﬂfo sin’y)} , 0< D <0 (6)

D, tanv, Dy = o0.
The ray corresponding to angteand detector elementis
L(s,B) =A{(z,y) s xcosp(s,B) +ysinp(s,B) =r(s)},

where

©(s, B)

r(s)

B+(s)
Dy sinvy(s) + 7o cosy(s)

\/ D2+ g sin(y(s) + forr), )

where we defin@,g = Z(Dg, rogt). The range of- is limited inherently by the position of the X-ray source dhd extent
of the detector:

> 1>

|7‘(3)| < Tmax £ Ds Sin'Ymaxa (8)

Wherevmax = 7(Smax) @Ndsmayx is half of the total arc length of the detector. The radiyg, defines the circulafield
of viewof the imaging system: the subset of the plane that is medsn@pletely. (We assume th&% > 7., Since
otherwise even the detector center would limit the field efw) The angl@~,,. is called thefan angle



The line-integral projectiop(s, 3) of f alongL(s, 3) is*

p(s,8) = / e

/ f(z,y) 6(x cosp(s, B) +y sinp(s, B) —r(s)) dz dy, 9)

for |s| < smax aNd0 < 8 < Biax. We assum@p,.x > m + 29max t0 ensure complete sampling. The FBP reconstruction
problem is to estimatg¢ from the fan-beam projectiod® (s, 3)}.

4. ANALYSISOF GRAM OPERATOR IN THE FAN BEAM CASE

The usual inner product for fan-beam projection space is

p17 p2 /

This is the natural inner product when considering the usasé of samples that are equally-spaced in arc lengttd in
source anglg. For this inner product, the adjoint @ is given by

Bmax
/ p1(s, B) pa(s, B) ds dB.

Smax

am
(P*p)(x,y) / (2 cos p(s, B) +ysin (s, B) —r(s)) p(s, ) ds dp,

wherer(s) andy(s, 3) were defined in (7).
Define a “diagonal” weighting operatdV by
(Wh)(s, B) = w(s, B) p(s, B),

wherew(s, ) is a user-selected nonnegative weighting function. TheraBQPWLS estimator for this continuous-space
version of the image reconstruction problem has the form

f=argmin|lp — P flipi2 + R(f) (10)
fec
where )
R = 545 R f) = 5 [P(VEG.®) 72 6| (12)

andC £ {f € Lo(R%) : /22 + 92 > riax = f(z,7) = 0} , the subset of objects that are nonzero only within the field
of view. (Without this restriction, it seems unlikely thaetminimizer would be unique.)

We assume hereafter thafs, 3) is chosen such that(s, 3) = 0 whenf > [h.x. Thus we can assunm®,.x = 27
for the analysis, yet the results are still applicable tootshscans providedu(s, 5) is chosen appropriately. To analyze
the impulse response of the Gram operd3MV P, consider an impulse objed(z,y) = 6(z — zo,y — yo) as follows:

h(z,y;20,90) = (P"WPd) (x,y)
27 Smax
/ / d(x cos (s, B) +ysing(s, B) —r(s))

o d(zo cos (s, B) +yo sinp(s, B) —r(s)) w(s,B) dsdg.

*Practically speaking, the integral should be restricted to the field of w'éw?. + 32 < rmax, but this restriction would complicate
analysis by introducing a shift variance into the problem, so we ignore it.




For convenience, we express the pding, yo) in polar coordinategrg, ¢y). Now make the change of variables =
Dgsinn(s), ¢’ = 8+ v(s) as defined in (7), assuming hereafter that = 0. Using the corresponding Jacobian determi-
nant ,the impulse response expression becomes

27 fTmax
h(z,?J;IO»yO) = / / xcoscp/ersincp/ *T/)
Tmax
-6(ro cos(¢’ — o) =) w(s’, 5') J(s') dr’ dy’

27
/ §(z cosp’ +ysing’ —r() w(s', 3) J(s') 1{‘T, I<r }dga’,
0 0] =Tmax

where, using (6) and (7):

ry = rocos(¢ — o)
! Df ,r,/
s’ = (D¢ + Ds) |arcsin r_0> — arcsin<4—0
( 0 [ (Ds D, + Dy D,
/
/ / : "o
- To ) 12
I} ' — arcsin <Ds> (12)

Hereafter we focus on points within the FOV whege< ... In the spirit of local shift invariance, consider the folimg
local impulse response

ho(r.p) 2 h(wo + 1 cosp, yo + rsing; o, o)

" 5(r cos(p — @) w(s', ) J(s') dg!

0

= [w(s’,m J(s") T wls, ) I(s)

p'=ptm/2

w’=sa—7r/2] .
Thus, similar to the parallel-beam case, for the fan-bease tize local impulse response of the Gram operator is

ho(r, ) = wo(p +7/2),

S
|
where the angular-dependent weighting is

wo(p) £ w(s', 6 J(s) + (s, B) J(s) : (13)

p'=e p'=p—m
It follows then, that the the local frequency response ofGnem operator is
1
Ho(p, ®) = mwo(q’)-

It is interesting that the local impulse response and fragueesponse have the same form in the fan-beam and parallel-
beam cases.

In the equiangular case, whekg = 0, we have the following simplifications:

ro = =rocos(p — o)
s’ = =+D.arcsin (TOCOS(S’H’QO)>
Dy
, o — arcsin(4m Coﬁi_wo) >7 ry = “+rocos(e — o)
v b

T COS(w—sao))
D » T

s

— 7T+ arcsm(

J(s") = —\/1— o cos2(¢_¢0), (14)

from which we can compute, () easily using (13).



5. SIMULATION RESULTS

We simulate a 2D fan-beam CT system that images a 240mmx24&een The center of our object is 408.075mm
from the detector, and the source is 949.075mm from the wetethe axis of rotation is at the center of the object. The
simulated imaging system has 280 rays per view spaced 4mry apd 100 evenly spaced view angles over a 2ull
rotation. The reconstructed images consisted Bftax 120 grid of 2mm pixels.

We chose a target spatial resolution of 2.6 pixels or eqeintl 5.2 mm. Fig. 2 and Fig. 3 show the ideal local impulse
response, the local impulse response for a conventionalanégation method, and the local impulse response thattees
from regularization with our proposed Fourier-based degigthod for a pixel located at an offset of (20,10) and (-15) -
pixels respectively from the center of the image. As is cfeam the figure, the proposed regularization scheme yields
more isotropic impulse responses.

The penalty coefficients yielding these results are showkign4. The top images show coefficients in the horizontal
and vertical neighbors, and the bottom images show coeffifer diagonal neighbors.

We simulated a noiseless fan-beam sinogram using the trageim shown in Fig. 5. We reconstructed images
using three methods. Fig. 5 shows the image resulting fromeighted reconstruction (QPULS), conventional requétiz
weighted least squares reconstruction and our Fouriedbasgilarized reconstruction. One can see that the ringsein t
conventionally reconstructed image have less uniformhinigss than the image reconstructed by our proposed method.
Fig. 6 shows profiles around the rings of the reconstructedyas, verifying that our proposed scheme improves resoluto
uniformity.

Local impulse response functions at (20,10)

Contours
5 Target Standard Proposed
0 I |
_5 — -

Figure 2. impulse responses

6. SUMMARY

This paper has summarized an extension of previous Foaised regularization design [3] to the fan-beam case. This
extension is suprisingly simple and relatively easy to cotpSimulation results show that the method improvesapgtr



Local impulse response functions at (-15,-15)

Contours
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Figure 3. impulse responses

and uniformity of spatial resolution properties compared¢dnventional quadratic regularization schemes. Futuméw
includes generalization to spatially variant blur, 3D @siens to cone beam CT, and application to real X-ray CT data.
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