
 

      
Abstract-- In SPECT, accurate emission reconstruction 

requires attenuation compensation with high-quality attenuation 
maps. Resolution loss in transmission maps could cause blurring 
and artifacts in emission reconstruction. For a transmission 
system employing parallel-hole collimators and a sheet source, 
distance-dependent blurring is caused by the non-ideal source 
and camera collimations, and the finite intrinsic resolution of the 
detector. These can be approximately modeled by an incremental-
blurring model. To compensate for this blurring in iterative 
transmission reconstruction, we incorporated the incremental 
blurring model in the forward projector of the OSTR algorithm 
but did not include the blur in the backprojector. To evaluate our 
approach, we simulated transmission projections of the MCAT 
phantom using a ray-tracing projector, in which the rays coming 
out from a source point form a narrow cone.  The geometric 
blurring due to the non-ideal source and camera collimations was 
simulated by multiplying the counts along each cone-beam ray 
with a weight calculated from the overall geometric response 
function (assumed a two-dimensional Gaussian function), and 
then summing the weighted counts into projections. The resulting 
projections were convolved with the intrinsic response (another 
two-dimensional Gaussian) to simulate the total system blurring 
of transmission imaging. Poisson noise was then added to the 
projection data. We also acquired two sets of transmission 
measurements of an air-filled Data Spectrum Deluxe SPECT 
phantom on a Prism 2000 scanning-line-source transmission 
system. We reconstructed the simulations using the OSTR 
algorithm, with and without modeling of the incremental blur in 
the projector. The scaling parameter of the penalty prior was 
optimized in each case by minimizing the root-mean-square error 
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(RMSE). Reconstructions showed that modeling the incremental 
blur improved the resolution of the attenuation map and 
quantitative accuracy.  

I. INTRODUCTION 

N SPECT, accurate emission reconstruction requires 
performing attenuation compensation with high quality 

attenuation maps [1-3]. Attenuation maps are usually obtained 
through transmission imaging systems which could employ 
various transmission sources and imaging geometries. The 
finite resolution of a transmission system causes discrepancies 
in the origins and detected locations of transmission photons, 
which results in the blurring of attenuation maps. The 
resolution of transmission systems has been studied mostly for 
optimization of system designs [4, 5]. However, there have 
been some investigations into compensating for the blurring in 
transmission reconstruction [6-8]. It is challenging to model 
both the distance-dependent blurring and Poisson statistical 
nature of the transmission imaging in reconstruction 
algorithms, since the measurement model is non-linear in 
terms of the linear attenuation coefficient.  
 In [7], we proposed and evaluated an approximate method 
which models the average blurring of an object in the ordered-
subset transmission (OSTR) algorithm [9]. In this manuscript, 
we proposed an alternative method which more accurately 
models the blurring of a transmission imaging system than the 
method of modeling the average blurring. Under the frame-
work of using an unmatched projector/backprojector pair [10], 
we investigated a method of modeling the incremental blurring 
through the Gaussian diffusion technique [11] in the OSTR 
algorithm. The incremental blurring was modeled only when 
calculating the average transmission projections (in the 
projector), not in the backprojector. Though our method could 
be extended to other geometries, throughout this work we 
focus on the transmission system employing SPECT camera 
with the sheet source and parallel-hole collimation. In such a 
system, the recorded counts are the superposition of the 
contributions from many positions in the photon source. An 
ideal approach would treat this like an "overlapping beams" 
model [12]. The overlapping beams method works well when 
there are just a few photon sources. Herein there is a 
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continuum of sources so the overlapping beams approach 
becomes computationally inconvenient. Instead, we 
approximate the effects of the superposition by modifying the 
forward projector. This is an approximation because of the 
nonlinearity of Beer's law, and such models cannot account for 
the "exponential edge-gradient effect" [13].  

II. METHODS 

A. Modeling of the Distance-Dependent Blurring of 
Parallel-Hole Collimated Transmission System by Using an 
Incremental Slice-by-Slice Blurring Model  
For a transmission system that uses sheet source and 

parallel-hole camera collimator (as shown in Fig. 1), the sheet 
source is usually collimated by parallel-hole source collimator. 
In Figure 1, the attenuating object is divided into slices which 
are of equal thickness (∆d) and parallel to camera. An arbitrary 
oblique ray is investigated to evaluate the blurring due to the 
non-ideal source and camera collimations. We assumed that 
the distance between the sheet source and source collimator is 
negligible, and so is the distance between camera and camera 
collimator. D is the distance from the source to camera. D1, 
and D2 are the distances from the first and second slice to 
camera, respectively. Dlast is the distance from the last slice to 
camera. ∆d is the slice thickness, one pixel is our current 
choice. t1, t2, and t3 are the in-plane offsets from distances D, 
D1, D2 on the oblique ray to the intersection, respectively. 

We assumed that the geometric response function for the 
source collimator is a two-dimensional (2D) Gaussian with 
sigma of sσ , and the geometric response function for the 
camera collimator is another (2D) Gaussian with sigma of cσ . 
Considering a photon traveling along the arbitrary oblique path 
as the solid line in Figure 1, the chance of the photon passing 
through both source and camera collimators is the 
multiplication of the chances passing through each alone. It is 
straightforward to show that the overall geometric response 
function is a 2D Gaussian with sigma of 

22 /1/1/1 csg σσσ += ,      (1) 
which depends on the distance D between the source and 
camera, because sσ and cσ depend on D. Since a 2D Gaussian 
can be separated into two 1D Gaussians along each dimension, 
we focus the investigations on just the in-plane dimension (as 
in Fig. 1) and will extend our reasoning to the other dimension 
without further explanations.  
  We could model the blurring due to the non-ideal source and 
camera collimations as overlapping cone-beams which are 
irradiated from each source bin with the probability determined 
by the overall geometric response function. In iterative 
reconstruction this overlapping cone-beam approach is too 
computational expensive. Thus we need find an approximate 
approach which traces photon paths only parallel to 
collimation. As inspired by the incremental blurring model in 
emission imaging [11, 14], we proposed to model the 
geometric blur in transmission imaging with an incremental 
attenuating and blurring model. In each angular view, the 
object is divided into equally-thick slices parallel to the camera 

surface. This is achieved through the 2D Gaussian rotator [15] 
which rotates the image grids with the camera head. For 
photons along the oblique ray shown in Figure 1, the chance of 
passing through the first slice (imagine there is only one slice 
and there is no scattering) and arriving at the detector is 
proportional to )2/( 22

gte σ−  which is equal to 
)2
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1 σte− or )2
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2 σte− , where gDD σσ )/( 11 =  and gDD σσ )/( 22 =  

(see Fig. 1). This indicates that the geometric blur is 
proportional to the distance from the camera, as is well known. 
The incremental blur in the first slice could be approximated 
by a Gaussian with sigma of 2

2
2
11 σσσ −=∆ . Similarly we 

move on to the next slice, and so on. In tracing the rays 
through the object the transmission photons go through a series 
of incremental attenuation and blurring steps.  
 

 
 
Fig. 1. Drawing of a transmission system that uses a sheet source collimated 
by a parallel-hole collimator and a parallel-hole collimator on the opposed 
camera head. The attenuating object is divided into slices which are of equal 
thickness (∆d, one pixel herein) and parallel to the camera. An arbitrary 
oblique ray is investigated to evaluate the blur due to the non-ideal source and 
camera collimations.  
 
At the last slice blur due to the intrinsic resolution (with sigma 
of iσ ) should be taken into account. The resultant sigma for the 

last slice is 22
ilastlast σσσ +=∆ , where glastlast DD σσ )/(= . In brief 

with our approach, there are two parameters describing the 
blurring of a transmission system: the slope Dg /σ , and the 
intercept iσ . 
  The ordered-subset transmission algorithm (OSTR) [9] is 
derived from the Poisson statistical model, and can be easily 
incorporated with smoothness priors. In the OSTR algorithm, 
the average counts for each detector bin are calculated from the 
known flood and the estimated attenuation map. In calculation 
of the average transmission projections, we use a ray-driven 
projector that models the slice-by slice incremental attenuation 



 

and blurring of photons. In the backprojector, the blurring is 
neglected.  

Smoothness priors are normally used in the OSTR algorithm 
to penalize the roughness of the attenuation maps 
reconstructed, and to generate a physical solution to the ill-
posed inverse problem built in the reconstruction. The 
smoothness prior we used is an edge-preserving prior with the 
potential function of the form 

)1/1()( 222 −+= δβδψ tt ,   (2) 
where β  is a scaling parameter which will be determined 
through the MCAT simulations, and σ is the threshold that is 
empirically set as 1/20 the attenuation coefficient of lungs at 
140 keV (about 0.0025 cm-1) [16]. 

B.   The MCAT Phantom Simulations and Optimization of 
Scaling Parameter of the Smoothness Prior 
We simulated a 180-degree transmission acquisition of the 

MCAT phantom using overlapping cone-beams, modeling the 
geometric response, intrinsic resolution, and attenuation (Fig. 
2). A uniform flood was assumed of 36 counts per pixel (with 
0.416 cm pixel size), which was about the count-level for a 
standard 20-minute scan on Prism 2000 system. The distance 
between the transmission source and the detector was assumed 
D = 60 cm. Photons come out from each source bin as from a 
point-source, and follow cone-beam paths arriving at the 
detector. The effect of collimations is reflected in the overall 
geometric response function ( 02.0/ =Dgσ ). Counts along each 
cone-beam ray were initially equal to the flood strength 
multiplied by the geometric response function, then attenuated 
by the object, and finally summed into each detector bin to 
form projection data. The linear integral of the attenuation 
coefficient was calculated by a ray-driven projector. The 
projection data were convolved with the intrinsic response 
( cmi 12.0=σ ) to simulate the intrinsic blur of the detector. 
Poisson noise was then added to the projection data, which 
consisted of 60 views of 128 x128 pixels. The noisy projection 
data were reconstructed with 50 iterations of the OSTR 
algorithm, with and without modeling the incremental blurring. 
For each case the scaling parameter of the smoothness prior 
was optimized in terms of the root-mean-square error (RMSE). 
The RMSE was defined in a 3D region-of-interest (ROI) 
including the entire thorax as  

N
RMSE ROIi

true
ii∑ −
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2)( µµ
,   (3) 

where N is the number of voxels inside the ROI, iµ and 
true
iµ are the reconstructed and true values of the linear 

attenuation coefficient at voxel i, respectively. With and 
without modeling the incremental blurring, an optimal β was 
found in each case using the minimum RMSE as the criterion. 
The attenuation maps reconstructed with the optimal β stands 
for the most accurate results which can be achieved in each 
case. The minimum RMSE with and without modeling 
distance-dependent resolution were compared with each other, 

and also with the minimum RMSE obtained with modeling the 
average blurring [7]. On the attenuation maps reconstructed 
with the optimal β , the RMSE on each slice was also 
calculated by  

Z
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where ROIZ is the region of interest on the slice Z (Z = 20, 21, 
22, …, 100), Nz is the number of voxels inside ROIZ. The 
RMSEZ was compared on every slice for the three cases 
described earlier. 
 

 
Fig. 2. The transmission system with sheet source and parallel-hole camera 
collimation as used in simulation. The cone-beam rays in the simulation are 
plotted in red solid lines. Counts were summed into each detector bin through 
the cone-beam rays, modeling geometric response, attenuation, and the 
intrinsic resolution of the camera.  
 

C. Experimental Study with the Air-Filled Deluxe SPECT 
Phantom  
Two 30 minute transmission acquisitions of the air-filled 

Data Spectrum Deluxe SPECT phantom were performed on a 
PRISM 2000 SPECT system [17] which uses a scanning line-
source for transmission imaging. The two acquisitions differed 
from each other by the radius of rotation (ROR) employed: 
18.5 cm in one case, and 30 cm the other. Each acquisition was 
reconstructed with 50 iterations of the OSTR algorithm with 
and without modeling the incremental blurring. Since we are 
interested herein in the in-plane resolution only, we treated the 
scanning line-source system as a sheet-source system, 
assuming the same in-plane and axial resolution. The 
parameters describing the incremental blurring were chosen 
as 02.0/ =Dgσ , and cmi 12.0=σ . The scaling parameter β  was 
chosen such that the best reconstruction of the air-filled deluxe 
SPECT phantom was obtained visually.  



 

III. RESULTS 

A. The MCAT Phantom Simulations and Optimization of the 
Scaling Parameter of the Smoothness Prior 
The simulated transmission projections were reconstructed 

with a range of β from 0 to 10000 with a step-size of 500, with 
and without modeling the incremental blurring. The RMSE in 
the 3D ROI is plotted versus the scaling parameter β in Figure 
3. In the case of not modeling the blurring, the minimum 
RMSE was obtained at β = 4000, with a value of 0.027 cm-1. In 
case of modeling the incremental blurring, the minimum 
RMSE was 0.020 cm-1, with β = 5000. Modeling of the 
incremental blurring helped increase the accuracy of the 
reconstruction. However, compared with reconstruction of the 
same data with modeling the average blurring [7], in which the 
minimum RMSE was 0.017 cm-1, modeling of the incremental 
blurring was sub-optimal.  

 

 
 
Fig. 3. Optimization of the scaling parameter of the smoothness prior in 
reconstruction of the MCAT phantom simulation, using 50 iterations of the 
OSTR, with and without modeling the incremental blurring. The minimum 
RMSE that can be achieved is smaller with modeling the incremental blurring 
(0.020 cm-1) than without modeling the incremental blurring (0.027 cm-1).   
 
 
 The attenuation maps reconstructed with the optimal scaling 
parameter β are shown in Figure 4. The map reconstructed 
with modeling the incremental blurring is smoother yet has a 
better outline of the body and lungs than the attenuation map 
reconstructed without modeling the blurring. The root-mean-
square error on each slice (RMSEZ in Eq. 4) is plotted versus 
the slice Z in Figure 5, for modeling the incremental blurring 
and without blurring. Also is plotted  
the RMSEZ for modeling the average blurring. Among the 
three cases, modeling of the average blurring gives the least  
 

 
 
Fig. 4. Reconstruction of the projection data simulated for the transmission 
system shown in Fig. 2, with the optimal scaling parameter β of the 
smoothness prior determined as that which minimized the root-mean-square 
error (RMSE) in each case (Fig. 3). (Left) Two slices of the original MCAT 
phantom. (Middle) The same slices from 50 iterations of the OSTR without 
modeling the incremental blurring (β = 4000). (Right) The same slices from 50 
iterations of the OSTR with modeling the incremental blurring (β = 5000).  
 

 
 
Fig. 5. The root-mean-square error on each slice (RMSEZ in Eq. 4) is plotted 
versus the slice index Z for modeling no blurring (dashed line), modeling the 
average blurring (solid line), and modeling the incremental blurring (dotted 
line). 
 
RMSEZ on every slice. Yet modeling of the incremental 
blurring shows smaller RMSEZ on every slice than modeling 
of no blurring. In each case reduced RMSEZ was observed in 
the slice range containing the uniform soft tissue. An abrupt 
dropping of the RMSEZ happens in the transition range where 
the lungs become too small to contribute much to RMSEZ, and 
finally vanish. Before the abrupt decrease, the RMSEZ has a 
tendency of increasing with the slice index for each case since 
the lungs become smaller and smaller. This causes an 
increasing partial volume effect which reduces the overall 
accuracy.  



 

B. Experimental Study with the Air-Filled Deluxe SPECT 
Phantom  
The results of reconstructing the measurements of the air-

filled Deluxe SPECT phantom are shown in Figure 6. Better 
resolution is seen on the reconstructions with modeling the 
incremental blurring, as shown in the right row in Figure 6.  
 

 
 
Fig. 6. Reconstruction of experimental data for the air-filled Data Spectrum 
Deluxe SPECT phantom. (Upper left) From acquisition using a 18.5 cm ROR, 
without modeling the blurring. (Upper right) From acquisition using a 18.5 cm 
ROR, with modeling the incremental blurring. (Lower left) From acquisition 
using a 30 cm ROR, without modeling the blurring. (Upper right) From 
acquisition using a 30 cm ROR, with modeling the incremental blurring.  

IV. DISCUSSION 
The method of modeling the incremental blurring in the 

projector only shows improved reconstruction accuracy over 
modeling no blurring. Yet it is shown less accurate than 
modeling the average blurring while using matched 
projector/backprojector in the OSTR algorithm. A possible 
remedy could be modeling the incremental blurring in 
projector and modeling the average blurring in the 
backprojector. 

V. CONCLUSION 
Modeling of the distance-dependent blurring using the 

incremental blurring model in the OSTR algorithm increases 
the resolution and quantitative accuracy of the transmission 
reconstruction for a parallel-hole collimated SPECT system. 
With the improved attenuation map, more accurate attenuation 
correction might be achieved. 
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