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ABSTRACT

We provide approximate expressions for the covariance ma-
trix of kinetic parameter estimators based on time activity
curve (TAC) reconstructions when TACs are modeled as a
linear combination of temporal basis functions such as B-
splines. The approximations are useful tools for assessing
and optimizing the basis functions for TACs and the tempo-
ral bins for data in terms of computation and efficiency. We
analyze a 1D temporal problem for simplicity, and we con-
sider a scenario where TACs are reconstructed by penalized-
likelihood (PL) estimation incorporating temporal regular-
ization, and kinetic parameters are obtained by maximum
likelihood (ML) estimation. We derive approximate formu-
las for the covariance of the kinetic parameter estimators
using 1) the mean and covariance approximations for im-
plicitly defined estimators in (Fessler, 1996) and 2) Cramér-
Rao bounds. The approximations apply to list-mode data as
well as bin-mode data.

1. INTRODUCTION

A primary application of dynamic PET or SPECT imaging
is to quantify parameters of tracer kinetic models or com-
partmental models representing specific physiological pro-
cesses. The goal is to estimate the kinetic parameters for
each region of interest (ROI) or voxel. Kinetic parameters
are conventionally estimated as follows [1]: a series of im-
ages are reconstructed frame-by-frame, ROIs are identified
and then kinetic parameters are obtained by fitting a com-
partmental model (with a measured or estimated blood input
function) to spatially-averaged reconstructed image values
for each ROI.

Recently have spatio-temporal reconstruction methods
been proposed to reconstruct time activity curves (TACs)
by modeling each TAC as a linear combination of cubic B-
splines [2]. Also, TAC reconstructions for each ROI ob-
tained using B-spline temporal basis functions have been
used to estimate kinetic parameters [3]. The performance,

This work was supported in part by the NIH under Grant CA-60711,
by the DOE under Grant DE-FG02-87ER60561, and by a Rackham
Predoctoral Fellowship.

such as bias and variance, of the kinetic parameter estima-
tors is affected by the choice of temporal basis functions
for TACs (e.g., the order of B-splines [3] and their knot lo-
cations). Although the effects of basis functions on TAC
reconstructions have been studied in [4, 5], the effects on
kinetic parameter estimators have little been analyzed [3,6].

In this paper we provide analytical approximate expres-
sions for the covariance of kinetic parameter estimators in
a simple 1D temporal “imaging” case. We do not analyze
bias since we estimate the kinetic parameters from TAC re-
constructions by (asymptotically) unbiased maximum like-
lihood (ML) estimators as opposed to widely-used (data-
weighted) least squares estimators. The approximation for-
mulas are very useful tools since they enable one to assess
and optimize temporal basis functions in terms of complex-
ity and variance without exhaustive simulations. They also
show the effects of temporal regularization in TAC recon-
struction.

Our approximations apply to list-mode data as well as
(temporal) bin-mode data. List-mode acquisitions are more
attractive than conventional frame-by-frame scans since all
temporal information is contained in the event list. Our ex-
pressions can be used to compute how much information is
lost through temporal binning compared to list-mode data.

2. PROBLEM

To focus on temporal aspects rather than interactions with
spatial distributions, we consider a single-voxel or single-
ROI object (containing a radiotracer) and a single detector
unit, recording list-mode data (the arrival times of detected
photons), or temporal bin-mode data. The model is not an
unrealistically simple one; for example, in planar dynamic
imaging, one could take a ROI and investigate the (average
or dominant) dynamic tracer behavior using corresponding
data. The goal is to estimate tracer kinetic parameters gov-
erning dynamic activity changes.

The photon emissions in the object can be modeled as an
inhomogeneous Poisson process whose rate function η(t;θ)
corresponds to a TAC parameterized by kinetic parameters
θ = [θ1 . . . θp]′ where ′ denotes vector and matrix trans-



pose [2]. Suppose {τk}K
k=1 denotes list-mode data, that is,

event arrival times. Then the log-likelihood of θ given the
list-mode data is [7, p. 57]

L(θ, {τk}K
k=1) =

K∑
k=1

log{α(η(τk;θ) + r(τk))}

−
∫ T

0

α(η(t;θ) + r(t))dt

where r(t) is the rate function of the background process
such as scatters and randoms, T denotes the total scan time,
and α denotes a constant factor proportional to a radioiso-
tope dosage. Although the background process r(t) can be
a function of α, we neglect the dependence for simplicity.
One can obtain the Fisher information matrix Iτ (θ) for es-
timating θ from {τk}K

k=1 as [7, p. 81]

[Iτ (θ)]ij = α

∫ T

0

∂η(t;θ)
∂θi

∂η(t;θ)
∂θj

1
η(t;θ) + r(t)

dt.

The inverse of Iτ (θ) can serve as an approximation to the
baseline covariance of the direct estimator of θ (without
TAC reconstruction) based on list-mode data. However, in
cases where the kinetic model is under development, it can
be preferable to first estimate a TAC, and then fit various
kinetic models to the TAC reconstruction.

Next, we describe the procedure of TAC reconstruction
using temporal basis functions followed by kinetic parame-
ter estimation.

2.1. TAC Reconstruction

We model the rate function as a linear combination of tem-
poral basis functions {Bl(t)}L

l=1, which for example can be
B-splines, as

η(t) ∼=
L∑

l=1

wlBl(t),

and we reconstruct the coefficients by penalized-likelihood
(PL) estimation.

For simplicity we consider temporal bin-mode data y =
[y1 . . . yN ]′ where yn is the number of events detected in
the nth temporal bin (note N ≥ L or possibly N � L);
the list-mode data is a limiting case where N → ∞ and the
bin widths approach zero [4]. The bin-mode data y are in-
dependent Poisson random variables, and the mean of each
element is given by

ȳn(θ)
�
= E[yn] = αpn(θ) (1)

pn(θ) =
∫ tn

tn−1

η(t;θ)dt + rn (2)

where tn−1 and tn are the end points of the nth temporal
bin, and rn represents background contributions. The log-
likelihood of w given y can be obtained, ignoring constants

independent of w, as

L(w,y)=
N∑

n=1

{yn log(αp̃n(w)) − αp̃n(w)}

where
p̃n(w) = [Bw]n + rn.

The N × L matrix B has the (n, l)th entry as

bnl =
∫ tn

tn−1

Bl(t)dt.

We assume that the {rn} are known (see [2] for methods of
estimating randoms and scatters).

A PL estimate of w is obtained finding the following
maximizer:

ŵ(y) = arg max
w∈W

Φ(w,y) (3)

where

Φ(w,y) = L(w,y) − β

2
w′Rw (4)

and

W =

{
w :

L∑
l=1

wlBl(t) ≥ 0, ∀t ∈ [0, T ]

}
. (5)

The last term in (4) represents a roughness penalty encour-
aging temporal smoothness [2, 4], R is a symmetric non-
negative definite matrix, and β is a regularization parame-
ter. The set in (5) represents the nonnegativity constraint on
reconstructed TACs, η̂(t) =

∑L
l=1 ŵlBl(t).

2.2. Kinetic Parameter Estimation

To estimate kinetic parameters θ from ŵ in (3), we assume
ŵ is Gaussian-distributed as

ŵ ∼ N (µŵ(θ),Kŵ(θ)) (6)

where µŵ and Kŵ are the mean and the covariance ma-
trix of the estimator ŵ, respectively. The higher counts per
time (or temporal bin), the more the Gaussian assumption
becomes accurate. Then one can compute a ML estimate of
θ as follows:

θ̂(ŵ) = arg max
θ∈Θ

Ψ(θ, ŵ) (7)

where Θ is a set of feasible θ, and the log-likelihood of θ
given ŵ can be obtained, neglecting constants independent
of θ, as

Ψ(θ, ŵ) = −1
2
(ŵ − µŵ(θ))′[Kŵ(θ)]−1(ŵ − µŵ(θ))

− 1
2

log |Kŵ(θ)| (8)



where | · | denotes determinant. Generally, the TAC estima-
tor η̂(t) =

∑L
l=1 ŵlBl(t) from (3) is not consistent since it

can be a case that η(t;θtrue) �= ∑L
l=1 wlBl(t) for all wl’s;

even in such a case, however, the ML kinetic parameter es-
timator θ̂ in (7) can be (nearly) unbiased as shown in Sec. 4.
Therefore, the Cramér-Rao bound, that is, the inverse of the
Fisher information matrix, which is shown in the next sec-
tion, can serve as an approximation to the covariance of θ̂.

3. COVARIANCE OF KINETIC PARAMETER
ESTIMATORS

3.1. Derivation

First, we need approximate expressions for µŵ and Kŵ in
(6). Using a first-order Taylor approximation of ŵ(y) at
ȳ = [ȳ1 . . . ȳN ]′ in (1), the chain rule and the implicit func-
tion theorem with some reasonable assumptions [8], one can
obtain the following approximations:

µŵ(θ) ∼= ŵ(ȳ(θ))
�
= w̌(θ) (9)

and

Kŵ(θ)

∼= 1
α

[
F bin(θ) +

β

α
R

]−1

F bin(θ)
[
F bin(θ) +

β

α
R

]−1

(10)

�
=[F̃ (θ)]−1

where

F bin(θ) = B′diag

{
pn(θ)

p̃2
n(w̌(θ))

}
B.

Now one can compute the Fisher information matrix
from (8) by replacing µŵ and Kŵ with their approxima-
tions in (9) and (10). Some manipulation leads to our final
expression for the Fisher information matrix for estimating
θ from ŵ,

Iŵ,bin(θ) = Eθ[−∇2
θ Ψ(θ, ŵ)]

∼= [∇θw̌(θ)]′F̃ (θ)∇θw̌(θ)

=α[∇θp(θ)]′diag

{
1

p̃n(w̌(θ))

}
B[F bin(θ)]−1

B′diag

{
1

p̃n(w̌(θ))

}
∇θp(θ) (11)

where ∇θ = [ ∂
∂θ1

. . . ∂
∂θp

] denotes the row gradient opera-

tors, ∇2
θ denotes the Hessian operator, and p = [p1 . . . pN ]′

is defined in (2). The information matrix Iŵ,bin(θ) de-
pends implicitly on temporal regularization only through
p̃n(w̌(θ)) [see (3), (4) and (9)].

3.2. Information Matrix for List-Mode Data

By increasing the number of bins N to ∞ and decreasing
the bin widths to 0 in (11), one can obtain the following
information matrix for list-mode data:

[Iŵ,list(θ)]ij ∼= α

L∑
p=1

L∑
q=1

[F list(θ)−1]pq·
∫ T

0

∂η(t;θ)
∂θi

Bp(t)∑L
l=1 w̌l(θ)Bl(t) + r(t)

dt ·
∫ T

0

∂η(t;θ)
∂θj

Bq(t)∑L
l=1 w̌l(θ)Bl(t) + r(t)

dt (12)

where

[F list(θ)]ij =
∫ T

0

Bi(t)Bj(t)
η(t;θ) + r(t)(∑L

l=1 w̌l(θ)Bl(t) + r(t)
)2 dt.

If temporal basis functions are constant B-splines as

Bl(t) = I[tl−1, tl](t)

where I[tl−1, tl] is an indicator function, then the informa-
tion matrix in (12) becomes

Iŵ,list(θ) ∼= α[∇θp(θ)]′diag

{
1

pn(θ)

}
∇θp(θ). (13)

This information matrix is independent of temporal regu-
larization! One can also obtain the same result as (13) from
(11) by making temporal bins agree with the constant B-
spline basis functions {Bl(t)}. In this case B and F are
diagonal, and the regularization-related terms p̃n(w̌(θ)) are
canceled out in (11). In fact, the equality happens to hold in
(13) [7, p. 81].

4. RESULTS

To assess the accuracy of the approximation for the covari-
ance of kinetic parameter estimators given by the inverse of
(11), we simulated dynamic imaging data. The simulated
TAC was given by

η(t;θ) = θ2 exp(−θ1t)

for t ≥ 0 to mimic the response of a one tissue compart-
ment model, and the input function was considered an ideal
impulse δ(t) for simplicity. The total scan time T was set to
15 min, and the true kinetic parameters were set as θtrue

1 =
0.15 and θtrue

2 = 0.7. The total counts were 10K, and rn

corresponded to a temporally uniform field of 10% of back-
ground events. The data were acquired using 30 uniform
temporal bins (N = 30). We used the uniform quadratic
penalty with β = 10, and 10 B-spline basis functions of



different orders (constant, linear, quadratic, and cubic) with
uniformly spaced knots for TAC reconstruction (L = 10).
Given temporal basis functions and given (simulated) noisy
data, ŵ was estimated by (3) with linear constraints Bw ≥
0 as a reasonable approximation to (5), and then θ̂ was esti-
mated by (7) with (8) using (9) and (10) with nonnegativity
constraints θ ≥ 0. We computed the sample mean and the
sample covariance of θ̂ from 200 realizations for each set of
basis functions. For maximization in (3) and (7), we used
separable surrogates [9], and the fmincon and quadprog
functions of Matlab.

Sample means of the parameter estimators θ̂ agreed with
true values θtrue within 0.5% error for all basis function sets
used in this paper; this shows that the estimators are unbi-
ased.

Table 1 shows that predicted standard deviations of θ̂
obtained from the inverse of (11) were reasonably close to
empirical sample standard deviations. It is interesting that
the standard deviations of θ̂ were very similar regardless
of the order of B-spline basis functions for this simulation,
which needs investigation.

5. CONCLUSION

We derived the covariance matrix (the inverse of the Fisher
information matrix) of kinetic parameter estimators based
on TAC reconstructions using temporal basis functions for
list-mode data as well as bin-mode data in a 1D temporal
problem. We demonstrated the covariance approximation
predicts reasonably well the empirical covariance. We plan
to perform extensive comparison of temporal basis func-
tions and to extend the results to the case where tomographic
spatial aspects are incorporated. Future work will also in-
clude optimizing B-spline knot locations in terms of the co-
variance or mean squared error of kinetic parameter estima-
tors.
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