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Abstract— This paper summarizes considerations in developing
statistical reconstruction algorithms for polyenergetic X-ray CT.
The algorithms are based on Poisson statistics and polyenergetic
X-ray attenuation physics and object models. In single-kVp scans,
object models enable estimates of the contributions of bone and
soft tissue at every pixel, based on prior assumptions about the
tissue properties. In dual-kVp scans, one can estimate water and
bone images independently. Preliminary results with fan-beam
data from two cone beam systems show better accuracy for
iterative methods over FBP.

Index Terms— X-ray computed tomography, dual-energy imag-
ing, penalized-likelihood image reconstruction, tomography, max-
imum a posteriori (MAP) estimation.

I. INTRODUCTION

We are developing a class of statistical algorithms for polyen-
ergetic transmission measurements that account for polyener-
getic X-ray sources and attenuation [1]–[5]. The single-kVp
and dual-kVp algorithms significantly reduce beam hardening
artifacts, and are promising for quantitative applications.

II. MODELS

The quantity of interest in 2D X-ray CT image reconstruction
is the linear attenuation coefficient µ(x, y; E), where (x, y) de-
note spatial coordinates and E denotes energy. The fundamental
challenge is that µ is a function of three variables whereas a
single-kVp sinogram is only two dimensional. Evidently there
is a shortage of data.

A. Monoenergetic case

In the case of a monoenergetic source with energy E0, such as
is used in radioisotope transmission scans, e.g., [6], the quantity
of interest simplifies to µ(x, y; E0), In this case reconstruction
is feasible, i.e., suffers from only the “usual” amount of ill-
posedness in tomography.

B. Single material case

If the object consists of materials that all have the same
properties in terms of the energy dependence, then we can
model the linear attenuation coefficient as follows:

µ(x, y; E) = m(E)ρ(x, y), (1)

Supported in part by NIH grant CA-60711.
I. A. Elbakri is with Fischer Imaging, Denver, CO, L. Chen is with

Pfizer BioImaging Center, Ann Arbor, MI, Y. Zhang, N. H. Clinthorne,
and J. A. Fessler are with The University of Michigan, Ann Arbor, MI.
fessler@umich.edu

where m(E) is the (assumed known) mass attenuation coef-
ficient of the material(s), and ρ(x, y) is the unknown density
map. For example, in clinical X-ray CT it is common to pretend
that the object consists only of soft tissue and that all soft
tissue has the spectral properties of water; only the material
density varies. Under this assumption, we can reconstruct the
density map ρ(x, y) from a single-kVp sinogram even for a
polyenergetic source spectrum using statistical methods, e.g.,
[1]. However, if the object also contains materials (such as
bone) with spectral properties that differ substantially from
those of water, then use of the single-material model (1) will
lead to undesirable beam hardening artifacts.

C. Two-material models

A preferable model for clinical X-ray CT would account for
the presence of both water-like and bone-like materials, such
as the following:

µ(x, y; E) = mw(E)ρw(x, y) + mb(E)ρb(x, y), (2)

where mw and mb denote the (known) mass attenuation
coefficients of water and bone, respectively, and ρw and ρb

denote the (unknown) densities of water and bone at spatial
location (x, y) respectively. Unfortunately, this model has two
sets of unknowns, {ρw(·)} and {ρb(·)}; it seems it would
be particularly ill-posed to try to estimate independently both
images from a single-kVp scan.

We have explored two options for this situation. The simpler
option is to perform a preliminary reconstruction of µ and
then to segment that image into water and bone pixels. In
other words, we somehow determine the fractions fw(x, y) and
fb(x, y) of water and bone in each voxel. In this case, we can
replace (2) with the model

µ(x, y; E) = [mw(E)fw(x, y) + mb(E)fb(x, y)] ρ(x, y),

where everything on the right-hand side is known except
ρ(x, y). We can reconstruct the density map ρ(x, y) from a
polyenergetic single-kVp sinogram using statistical methods
[1], [7].

A drawback of that approach is that there can be segmenta-
tion errors that will corrupt the estimates of the fractions fw

and fb, degrading the resulting estimates of the density map
ρ(x, y). Our approach to circumvent this problem is to model
the fractions fw and fb as functions of ρ; functions that we
must choose. Generally speaking, for values of ρ less than a bit
more than 1 gm/cc, we want the spectral properties to be those



of water, i.e., fw = 1 and fb = 0. When ρ � 1, we want the
spectral properties to be those of bone, i.e., fw = 0 and fb = 1.
The intermediate values depend on modeling assumptions [2],
[4]. The resulting model has the form

µ(x, y; E) = [mw(E)fw(ρ(x, y)) + mb(E)fb(ρ(x, y))] ρ(x, y),
(3)

where fw(ρ) and fb(ρ) must be chosen by the algorithm
designer. This approach cannot be perfect in all situations
since it only allows one degree of freedom per voxel, but
it can produce better results in the single-kVp case than
conventional water/bone correction methods [8], [9]. Despite
the additional nonlinearities present in the model (3), statistical
image reconstruction is feasible [2].

D. Dual-kVp case

In the case of dual-kVp (also known as dual-energy) scans,
we have two sinograms available, so it becomes feasible to
estimate both ρw(·) and ρb(·) using statistical methods, e.g.,
[5].

E. Algorithms

In all cases, for statistical reconstruction we must discretize
the density map(s). Let x denote the coefficients of the dis-
cretize map(s). Then one can derive algorithms of the form

x(n+1) =
[
x(n) − D(x(n))∇Ψ(x(n))

]
+

,

where Ψ is the penalized-likelihood cost function, ∇Ψ its
gradient, and D a diagonal preconditioning matrix. The oper-
ator [·]+ denotes the nonnegativity constraint. One can choose
preconditioners that ensure monotone convergence [1], [2], or
close approximations thereof. It is straightforward to implement
the methods using ordered-subsets acceleration.

III. DISCUSSION

To illustrate the use of statistical image reconstruction al-
gorithms for X-ray CT with polyenergetic source modeling,
we reconstructed fan beam data from a commercial microCT
scanner (GE Genomics and Molecular Imaging) that is used
routinely to assess disease progress by quantifying BMD in
small animals at Pfizer BioImaging Center. We reconstructed
the central fan beam slice from the cone-beam data.

We reconstructed 50 kVp data acquired from scanning a
small phantom containing water, air, bone mimic and fat
mimic on the microCT scanner. Relative to the FBP method
available on the scanner, the statistical approach significantly
reduces beam hardening artifacts. The statistical reconstruction
estimates water and bone densities within a 5% error. The fat
mimic density is not known, but the error relative to the value
of fat density provided on the NIST website is 21%. This is
not surprising, since fat is not a mineral-water solution and
its spectral attenuation properties deviate somewhat from water
and similar soft tissues. Ring artifacts appear in the iterative
image. Close examination reveals similar artifacts in the FBP

image, obscured by the higher noise level. These artifacts are
most likely caused by some detector effect that is not accounted
for in the reconstruction.

Preliminary results suggest that the statistical algorithm is
more accurate than FBP in quantitatively estimating the density.

To further improve the accuracy of the proposed algorithm,
we must estimate the scatter contamination of the data. This
may be a relatively minor consideration for animal CT scanners,
but it is important for larger objects imaged with large area
detectors.
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Fig. 1. Phantom reconstruction from microCT. Left: FBP reconstruction. Right: Statistical reconstruction. Window level=-250 HU and width=1500 HU.


