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ABSTRACT

This paper describes a statistical iterative reconstruction method
for X-ray CT based on a physical model that accounts for
the polyenergetic X-ray source spectrum and the measure-
ment nonlinearities caused by energy-dependentattenuation.
The algorithm accommodates mixtures of tissues with known
mass attenuation coefficients but unknown densities. We
formulate a penalized-likelihood approach for this polyen-
ergetic model based on Poisson statistics.

1. INTRODUCTION

There has been recently a surge of interest in applying statis-
tical reconstruction techniques to X-ray computed tomogra-
phy [1, 2]. Statistical techniques are better suited than the
classical filtered backprojection for cone-beam and helical
scanning geometries. They also offer better bias-variance
performance, lower dose, and can incorporate accurate mod-
els of data acquisition and the physics involved [3, 4, 5].
Their main drawback (relative to FBP) is longer computa-
tion times.

Most prior statistical CT reconstruction algorithms as-
sume monoenergetic X-ray beams, which is incompatible
with clinical systems. Using a monoenergetic algorithm for
polyenergetic data results in severe beam hardening artifacts
[6, 7]. In this paper we present and demonstrate the effec-
tiveness of a statistical reconstruction algorithm for X-ray
CT that is based on a polyenergetic model.

The classical beam hardening correction method described
by Joseph and Spital (henceforth referred to as JS) [8], cor-
rects for distortions caused by soft-tissue and high Z mate-
rials (bone). It requires knowledge of the X-ray spectrum
and a pre-segmented initial image. It involves linearization
and a final reconstruction.

In earlier work [7, 6], we proposed a statistical algo-
rithm for beam hardening correction that required knowl-
edge of the X-ray spectrum and, like JS, required a pre-
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segmented initial image (usually obtainable from a good
FBP image). The approach assumed that the different tis-
sue types in the object did not overlap.

Recently, De Man et al. suggested an alternative sta-
tistical approach [9] that models the object attenuation as a
linear combination of the Compton scatter and photoelec-
tric effect of two base substances. Prior knowledge of the
X-ray spectrum is required, but a pre-segmented image is
not. The algorithm can reconstruct mixed pixels but is not
guaranteed to be monotonic.

In this paper, we generalize our earlier model by al-
lowing pixels to contain tissue mixtures. We introduce an
improved object model that eliminates the need for pre-
segmenting bone and soft tissue. The algorithm iteratively
minimizes surrogate functions to the Poisson likelihood. Or-
dered subsets accelerate the algorithm. The algorithm can
accommodate scatter and one version thereof is monotonic.

2. POLYENERGETIC X-RAY CT

The linear attenuation coefficient µ(x, y, z, E) characterizes
the overall attenuation property of an object. It depends on
the spatial coordinates (x, y, z) and the beam energy E , and
has units of inverse distance. For a ray Li of infinitesimal
width, the projection measurement Yi recorded by the ith
detector would ideally be

Yi =

∫
Ii(E)e

−
∫
Li
µ(x,y,z,E)dl

dE . (1)

Ii(E) incorporates the energy dependence of the incident
ray and the detector sensitivity. The goal of CT reconstruc-
tion is to recover the attenuation coefficient from measured
projection data {Yi}Ni=1, where N is the number of rays. In
reality, the measurements suffer from scatter and noise.

If the reconstruction algorithm disregards the energy de-
pendence of µ in (1), artifacts such as dark streaks between
bones and cupping in soft tissue appear [10, 8].

In this section we summarize an object model for polyen-
ergetic X-ray attenuation and a statistical model for the data.

8280-7803-7584-X/02/$17.00 ©2002 IEEE



2.1. Polyenergetic Object Model

We assume that each pixel in the object may contain a mix-
ture of up to K materials. We model the attenuation co-
efficient of the jth pixel as the sum over K materials of
the product of the (known) energy-dependent mass atten-
uation coefficient mk(E) (cm2/g), the (unknown) energy-
independent density ρj (g/cm3) [11, 8, 12] and the material
fraction at the pixel fkj . Expressed mathematically in the
discrete domain,

µ(x, y; E) =
p∑
j=1

µj(E)bj(x, y)

=

p∑
j=1

K∑
k=1

mk(E)ρjf
k
j (ρj)bj(x, y) (2)

where bj(x, y) is an appropriate spatial basis function, e.g.,
voxels. We require that fkj (ρj) ≥ 0, and

∑
k f
k
j = 1.

We denote the system matrix byA = {aij}where aij =∫
Li
bj(x, y)dl. The line integral of the attenuation coeffi-

cient is

∫
Li

µ(x, y; E) dl =
p∑
j=1

K∑
k=1

mk(E)ρjf
k
j (ρj)aij . (3)

By defining ski (ρ)
�
=
∑p
j=1 aijf

k
j (ρj)ρj and si(ρ) =

(s1i , s
2
i , ..., s

K
i ) we express the mean of the measured data

along path Li as

E[Yi] =

∫
Ii(E)e

−m′(E)si(ρ)dE+ri
�
= Ȳi(si(ρ))+ri (4)

where ri represents scatter and other background signal, and
m′(E) = [m1(E), ...,mK(E)]. We have expressed the mea-
surements as a function of the vector si which has as its
elements the line integrals of the K different material den-
sities. Given the X-ray spectrum, we tabulate the values of
Ȳi(·) and its gradient ∇Ȳi(·) over the range of arguments
(s1, . . . , sK) that correspond to representative objects for
later use in the iterative algorithm [7].

To keep the number of unknowns equal to p, we let the
material fractions be functions of pixel density. We next
explore the form of these functions f kj (ρj) forK = 2.

2.2. Tissue Fraction Functions {f jk(ρj)}

Fig. 1 illustrates the normalized mass attenuation coeffi-
cients of several human tissues in the diagnostic X-ray en-
ergy range [13]. Most soft tissue have spectral characteris-
tics and densities that are very similar to those of water. We
therefore use water and bone as our base materials. More
base substances, such as Iodine, can be added as needed.

40 60 80 100 120 140 160
0.2

0.4

0.6

0.8

1 fat
breast
water
lung
blood
ovary
brain
bone

KeV

Fig. 1. Mass attenuation coefficient of human tissues nor-
malized at 40 KeV
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Fig. 2. Water and bone coefficient computed using con-
strained weighted least squares

We set K = 2 in (2) and model the attenuation coefficient
of tissue with the following approximation:

µ(x, y; E) ≈
p∑
j=1

(
m1(E)f

j
1 (ρj) +m2(E)f

j
2 (ρj)

)
ρjbj(x, y)

where m1(E) and m2(E) are the mass attenuation coeffi-
cients of water and bone, respectively. The pixel tissue frac-
tion functions f j1 and f j2 determine to what extent the tissue
in pixel j is spectrally water-like or bone-like respectively,
depending on the tissue density.

To gain insight into possible forms of f 1j and f2j we use
weighted (by the beam spectrum) least squares to compute
the coefficients f1 and f2 in

m(E) = m1(E)f1 +m2(E)f2 (5)

for the substances shown in Fig. 1. The coefficients were
constrained to lie in the interval [0, 1] and to satisfy f1 +
f2 = 1. The results are plotted in Fig. 2 as a function of
density.

One possibility that emerges from Fig. 2 would be to
set f1(ρ) = 1 below a certain density threshold and 0 oth-
erwise. This would segment all pixels into either bone or
water, and does not permit mixtures, which is essentially
our earlier approach [6, 7].
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Another approach would be to linearly interpolate by
making the fkj (ρj) functions piecewise linear. This effec-
tively assumes that all substances lie on a straight line be-
tween the water (density 1.0 g/cm3) and bone (density 1.92
g/cm3) coefficients. This is similar to the approach of De
Man et al., [9]. A disadvantage of this piecewise linear ap-
proach is that the derivatives of fkj (ρj) would have compli-
cating discontinuities.

To model mixed pixels, we propose using the functions
plotted in Fig. 2 using the solid and dotted lines. These are
third order polynomials functions of the tissue density that
have continuous first and second derivatives, and that satisfy
f1(ρ) + f2(ρ) = 1. This choice essentially models tissues
that have densities close to that of water and that are spec-
trally similar to water as ‘dense water’. The model allows
these tissues to have densities different from water, while
assuming that they are spectrally ‘similar’ to water. The
data if Fig. 2 shows that this model agrees with published
values better than linear interpolation.

2.3. Statistical Model and Iterative Algorithm

We use a penalized-likelihood approach to reconstruct the
data. For simplicity, we model the measurements as inde-
pendently distributed Poisson random variables with mean
given by (4), but the method easily generalizes [14]. The
Poisson negative log-likelihood is:

−L(ρ) =
N∑
i=1

hi(Ȳi(si(ρ)) + ri) (6)

where hi(t)
�
= −Yi log t + t. The reconstruction problem

now is to find an estimate that minimizes−L(ρ) given such
physical constraints as nonnegativity. To derive an itera-
tive algorithm that minimizes the cost function, we use op-
timization transfer techniques similar to those in [7, 5]. The
final update step takes the form:

ρnew = ρold −D−1∇′L(ρold) (7)

where D is a diagonal matrix whose entries affect conver-
gence. In practice, we include regularization because the
problem is ill-conditioned and use ordered-subsets to accel-
erate the algorithm.

3. PRELIMINARY RESULTS

We simulated parallel-beam transmission Poisson data of
the density phantom in Fig. 3a [15] with a spectrum that
has mean 67.12 keV and standard deviation 17.76 keV [16].
The bones and soft tissue have densities 1.8 − 2.0 g/cm3

and 0.2 − 1.0 g/cm3 respectively. The FOV is 51 cm and
the sinogram has 1200 radial bins and 1200 angular steps
over 180o. We did not simulate background events. The

blank scan value was 4.87×106 counts/detector. The origi-
nal phantom was 1024×1024 but we reconstructed the data
on a 512 × 512 grid to generate the effect of mixed pixels.
Uncorrected FBP, JS-corrected FBP and the iterative algo-
rithm were applied to the data. The iterative algorithm ran
for 10 iterations with 50 subsets and used edge-preserving
shift-variant regularization [17].

Fig. 3 shows the results. The uncorrected FBP image
(not shown) suffered from severe beam hardening artifacts.
The statistical iterative reconstruction exhibits significantly
better artifact reduction than the Joseph and Spital image be-
cause it inherently models the nonlinearity and reconstructs
the data accordingly.

4. SUMMARY

We present and demonstrate the effectiveness of a polyen-
ergetic statistical X-ray CT reconstruction algorithm. The
algorithm outperforms the JS classical approach in the case
of a soft tissue and bone phantom. In future work, we will
apply the algorithm to read data and will further refine the
physical model.
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