
 

      
Abstract-- 2D PET reconstructions by the ordered subsets version 
of the ML-EM algorithm (typically referred to as “OS-EM”) 
assume that the random- and scattered-corrected coincidence data 
retain their Poisson statistics.  Negative projection values, which 
are possible after these subtractive corrections, are either 
truncated at zero counts or accommodated by adding an offset to 
the projection data, and to the corresponding forward-projected 
values, during the algorithm.  These methods are effective due to 
the relatively low scatter and random fractions of most 2D PET 
acquisitions.  In 3D PET data, particularly in acquisitions in the 
body, the scatter and random fractions are much higher.  As a 
result, the OS-EM algorithm may not be the most appropriate for 
reconstruction for rebinned 3D PET data.  We have implemented 
an ordered-subsets version of the weighted least-squares 
expectation maximization (WLS-EM) algorithm, or WLS-OS-EM, 
which is based on a Gaussian approximation to the statistics of the 
rebinned data.  The weights used in the algorithm are based on 
the attenuation correction factors applied to the data.  WLS-OS-
EM exhibits faster, and more consistent, convergence than ML-
OS-EM for projection data sets with substantial negative 
projection values created by subtractive data corrections. 

I. INTRODUCTION 

HE ordered-subsets version of the ML-EM algorithm 
[1], typically referred to as “OS-EM” but referred to as 

“ML-OS-EM” in this paper, is commonly used for clinical PET 
image reconstruction.  2D ML-OS-EM has also been used in 
conjunction with Fourier Rebinning (FORE) as an alternative 
to fully three-dimensional iterative reconstruction [2,3].  The 
ML-EM algorithm, and by extension ML-OS-EM as well, is 
predicated on the assumption that each data element represents 
a statistically independent Poisson random variable.  While this 
is valid for raw coincidence data acquired by a PET scanner, 
each of the corrections applied to the data violates the 
assumption to some degree.  Attenuation correction is of 
particular concern, because it multiplies the data by large 
factors (50 or more in the abdomen of large patients) that may 
vary greatly from data element to data element, distorting the 
data statistics severely.  This problem can be alleviated by 
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incorporating the attenuation process into the iterative 
algorithm [4,5]. 

The corrections for random and scattered coincidences are 
also problematic.  This is because they are subtractive 
corrections, so there is a possibility that the data after 
correction will be negative.  Since Poisson random variables 
are by definition non-negative, any negative values must be 
eliminated before ML-EM or ML-OS-EM can be attempted.  
Truncating the data at zero counts will certainly eliminate the 
negative values, but doing so risks biasing the data, and hence 
the reconstructed image, upwards.  A better approach is to add 
an offset to the projection data equal in magnitude to the most 
negative data element, and add the same offset to the forward-
projected values during execution of the algorithm [6].  While 
this “shifted Poisson” technique makes the algorithm 
executable, large shift values will distort the data statistics and 
reduce the noise benefits of using iterative reconstruction.   
Since 3D PET acquisitions, particularly in the body, are 
characterized by high random and scattered coincidence 
fractions, the incidence of negative data values, and hence their 
consequences, may be expected to be greater in 3D than 2D 
data. 

In our initial experience with FORE+ML-OS-EM with the 
shifted Poisson technique we experienced difficulty in 
achieving consistent data convergence.  This is demonstrated in 
Fig. 1.  Each image in the figure is a transaxial slice from an 
image set reconstructed from data acquired on a GE Advance 
PET scanner.  The data was reconstructed using FORE (the 
sinograms were interpolated from 336 to 320 rows so that an 
efficient 5x2n FFT algorithm could be applied) and ML-OS-
EM using 2 iterations and 20 subsets.  These ML-OS-EM 
parameters nearly match the 2 iterations and 28 subsets 
typically used in clinical 2D PET reconstructions on the 
Advance.  The image of the NEMA NU-2 1994 scatter 
correction phantom (a 20 cm flood phantom with a 5 cm water-
filled cold spot), shown in the left panel of the figure, shows 
excellent convergence.  The center and right panels, a Derenzo 
hot spot phantom and a uniform slice of the IEC body 
phantom, respectively, do not.  If the reconstructions of these 
phantoms are continued to 8 iterations, good convergence is 
achieved, as shown in Fig. 2.  Slow convergence of 
FORE+ML-OS-EM reconstructions have also been reported by 
Liu, et al. [3]. 
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Clinical operation of a PET scanner requires consistent 
algorithm performance across a wide range of imaging 
conditions.  Short reconstruction times, which can be 
interpreted for the iterative algorithms as meaning a low 
iteration count, are also preferred in routine use.  Based on our 
initial experience, we concluded that an alternate formulation 
of the iterative reconstruction algorithm should be considered. 

II. WLS-EM AND WLS-OS-EM 
The WLS-EM algorithm seeks to minimize the least-squares 
cost function: 
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where x represents the image; y, the rebinned projection data; 
W, a diagonal weighting matrix; and G, the projection matrix 
from image to data.  The EM algorithm that minimizes this cost 
function is [7]: 
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where •+ indicates a floor of zero on the image elements (i.e., 
clipping the negative values), and D is a diagonal matrix whose 
elements are defined as: 
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The ordered subsets version of the WLS-EM algorithm that 
we have implemented is described by the equation: 
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where xn,s and xn,s+1 represent the image before and after the 
application of the s’th subset,  •S denotes the portion of the data 
or projection matrix specific to the subset, M is the number of 
subsets, and αn is an term designed to insure convergence of 
the algorithm as the iterations proceed.  If αn→0 as n→∞, 
Σnαn= ∞ and  Σnαn

2 <∞, then convergence is guaranteed [8]; 
the choice αn =k/(k+n) is an appropriate form for the relaxation 
term.  

III. ALGORITHM IMPLEMENTATION 
The algorithm is implemented in the following steps: 
1. Backproject the image xn,s along the lines corresponding 

to the s’th subset,  
2. Subtract the backprojected data from the input data, 
3. Apply the weights to this difference data. 
4. Forward project the weighted difference data. 

5. Scale each pixel by αnMdj (note that Mdj this can be 
precomputed), 

6. Add this to the image xn,s to produce the updated image 
xn,s+1. 

7. Clip any negative values in xn,s+1 to apply the non-
negativity constraint. 

This algorithm is comparable in complexity, and therefore 
computation time, to the ML-OS-EM algorithm.  The most 
striking difference between the two algorithms is that ML-OS-
EM uses division to compare the projected image to the data 
and multiplication to update the image in each subiteration, 
while WLS-OS-EM uses subtraction and addition, respectively.  
Each of these steps is comparable in complexity, and in both 
cases the processing time per iteration is dominated by the 
forward and backprojection steps.  

The weights wi we use in the algorithm are based on the 
attenuation correction factors corresponding to each ray iin the 
rebinned data: 
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where ai is defined as the ratio of attenuated to nonattenuated 
coincidence counts (i.e., ai is a number less than or equal to 
1.0).  These weights produce an algorithm which is identical to 
an unweighted least squares algorithm operating on data 
without attenuation correction (this is demonstrated in the 
Appendix), and therefore is a direct correlate to “attenuation 
weighted” ML-OS-EM algorithms.  While different weighting 
schemes are possible, and may the subject of future 
investigation, the weights described in Eq. 5 have provided 
satisfactory results to date. 

IV. RESULTS 
We performed a simulation study to explore the convergence 

of the WLS-OS-EM algorithm at a low iteration count.  We 
simulated 2D projection data sets of an elliptical object with 
several hot and cold features at count levels corresponding to 
100K, 1M and 10M counts, with varying amounts of additive 
“background” noise (representing scattered and random 
coincidences) ranging from 0% to 300% of the true counts.  An 
unbiased but noisy estimate of the background was subtracted 
from each sinogram to emulate the correction process, and the 
images were reconstructed using two iterations and 20 subsets 
of ML-OS-EM and WLS-OS-EM.  The sinograms generated 
for this experiment are shown in Fig. 3, and the resulting 
images from MLS-OS-EM and WLS-OS-EM are shown in Fig. 
4.  Each algorithm produces an artifact-free reconstruction of 
the 10M count images, even in the presence of substantial 
levels of background noise.  At lower total count levels, 
however, the ML images exhibit a significant artifact at the 
lateral edges of the phantom, and appear smoother, suggesting 
that they are not sufficiently converged.  This artifact is not 
present in the corresponding WLS images. 



 

Fig. 5 shows the results of applying FORE+WLS-OS-EM to 
the phantom data presented in Figs. 1 and 2.  Each phantom 
exhibits good convergence with 2 iterations and 20 subsets. 

V. CONCLUSION 
We have observed that WLS-OS-EM exhibits faster, and more 
consistent, convergence than ML-OS-EM with the shifted 
Poisson model for projection data sets with substantial negative 
projection values created by subtractive data corrections.  3D 
reconstruction using FORE+WLS-OS-EM has been 
implemented for the GE Advance PET scanner [9]. 

VI. APPENDIX 
We demonstrate here that WLS-EM with attenuation weights 

as defined in Eq. 5 is equivalent to an unweighted least squares 
EM algorithm applied to data without attenuation correction 
(denoted hereafter as “the alternate algorithm”).  The extension 
of this demonstration to the ordered subsets algorithm is 
straightforward. 

Consider the WLS-EM algorithm as described in Eq. 2, 
using weights as described in Eq. 5.  The algorithm is defined 
by the equation: 
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where G´ is used to designate the projection matrix for the 
system without compensation for attenuation, and A is a 
diagonal matrix holding the attenuation factors ai.  The 
alternate algorithm is formed if we substitute attenuated data 
(Ay) a projection matrix that accounts for attenuation (AG´) 
and unity weights into Eq. 2, forming: 
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It is clear that these two algorithms are identical if the value of 
D is the same in both equations. 

The elements of matrix D are defined by Eq. 3.  Using the 
attenuation weights, these elements are computed as: 
 

 ∑ ∑ 







′′=

i j
ijijij ggad 2 . (8) 

In the alternate algorithm, 
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Substituting this into Eq. 3, 
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We can factor ai
  out of the inner sum, reconciling Eq. 10 with 

Eq. 8 and establishing the equivalence of the two algorithms. 
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Figure 1. FORE+ML-OS-EM reconstructions of data from 
GE Advance, using 2 iterations and 20 subseets. 

 

 

 

Figure 2.  Reconstructions of the Derenzo and IEC 
phantoms from Fig. 1, using 8 iterations and 20 subsets. 
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Figure 3.  Sinograms used to investigate convergence 
properties of ML-OS-EM and WLS-OS-EM algorithms. 
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Figure 4.  Reconstructed images of the sinograms in Fig. 3 
using ML-OS-EM and WLS-OS-EM. 

 
 

 
Figure 5. FORE+WLS-OS-EM reconstructions of data 
from GE Advance, using 2 iterations and 20 subseets. 


