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Abstract— Iterative image reconstruction algorithms play an
increasingly important role in modern tomographic systems, espe-
cially in emission tomography. With the fast increase of the sizes
of the tomographic data, reduction of the computation demands
of the reconstruction algorithms is of great importance. Fourier-
based forward and back-projection methods have the potential
to considerably reduce the computation time in iterative recon-
struction. Additional substantial speed-up of those approaches
can be obtained utilizing powerful and cheap off-the-shelf FFT
processing hardware. The Fourier reconstruction approaches are
based on the relationship between the Fourier transform of the
image and Fourier transformation of the parallel-ray projections.
The critical two steps are the estimations of the samples of the
projection transform, on the central section through the origin
of Fourier space, from the samples of the transform of the
image, and vice versa for back-projection. Interpolation errors
are a limitation of Fourier-based reconstruction methods. We have
applied min-max optimized Kaiser-Bessel interpolation within the
non-uniform Fast Fourier transform (NUFFT) framework. This
approach is particularly well suited to the geometries of PET
scanners. Numerical and computer simulation results show that
the min-max NUFFT approach provides substantially lower ap-
proximation errors in tomographic forward and back-projection
than conventional interpolation methods, and that it is a viable
candidate for fast iterative image reconstruction.

Index Terms— Iterative tomographic reconstruction, forward
and back-projectors, non-uniform FFT, gridding, min-max inter-
polation.

I. INTRODUCTION

IT has been known for a long time that direct Fourier
methods (DFM), that build up the Fourier transform of the

object using the Fourier transforms of the projections [1]–[6],
have the potential for accurate and high speed reconstruction.
The Fourier-slice theorem was later proposed to be used as
a tool for the reprojection (e.g., [7], [8]). The crucial step
influencing the reconstruction quality and speed is the interpo-
lation between polar and Cartesian rasters in frequency space.
Gridding interpolation [9], [10], with proper interpolating [11]
and data weighting functions, as investigated in the MRI
literature [12]–[14], brought improvement in the direct Fourier
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reconstruction. Recently, the Fourier-based reprojection has
been applied for (noniterative) fully 3D PET reconstruction
[15] and for calculation of attenuation correction factors in PET
[16]. In these works, Kaiser-Bessel (KB) windows were used
for interpolation, which are known to be reasonably accurate
[9] but without explicitly evaluating the accuracy. The concept
of the non-uniform Fast Fourier transform (NUFFT) [17] used
in this paper is related to gridding methods for interpolation
in frequency space. The KB interpolation kernels used in this
work have been optimized using a min-max approach [18],
thus providing substantial improvement of the interpolation
accuracy.

In the previous works on gridding, the focus was on using
the interpolation to find a non-iterative approximate solution to
an inverse problem. In contrast, we use Fourier-based forward-
projection as a tool for calculating the forward problem, and
allow iterative reconstruction methods to solve the inverse
problem. Iterative algorithms need also the ability to compute
matrix-vector multiplication by the transpose of that matrix,
even though the matrix itself is not stored explicitly. It is
straightforward to reverse (not invert) the steps executed during
the forward-projection computation (see Fig. 1) to develop an
algorithm to perform multiplication by the transpose, corre-
sponding to the adjoint of the forward operator, which is a
form of back-projection.

II. NON-UNIFORM FAST FOURIER TRANSFORM

In the NUFFT method the input signal is given on the
uniform grid and the output signal is calculated on the non-
uniform grid of frequency locations. Applying the NUFFT
for calculation of the forward-projection within iterative to-
mographic reconstruction, the input signal represents an image
defined on the regular grid and the output signal represents
the frequency spectrum of the projections located on the polar
raster (in the 2D case), as given by the projection slice theorem
[2]. The projections are then obtained by inverse Fourier
transformation of the spectrum values located on the polar
lines. Direct evaluation of the samples on the spectrum grid
using nonuniform discrete Fourier transform (NDFT) would
require O(N4) operations for the 2D case. Nonuniform FFT
allows to substantially speed-up this process by requiring
only O(N2 log N) operations, compared to O(N3) needed by
the spatial forward-projection algorithms. Basic steps of the
NUFFT Forward-projection are (see Fig. 1):
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Fig. 1. Flowchart of iterative reconstruction using Fourier-based forward and back-projection. Discrepancy and Update operators are defined by a particular
iterative technique. For the 2D case, the Fourier transformations are 1D (I)FT of projections on data side and 2D (I)FT on image side. Interpolation
operations are performed between data (polar) and image (rectangular) spectrum grids. Scale, also known as the “correction function” in the gridding, is
scaling operation, where the scaling factors are designed to compensate for imperfections (departure from the ideal Sinc interpolation) in the interpolation step.
Basicfunctionfilter is spectral operation allowing efficient modeling of image basis function and detector resolution kernel.
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Fig. 2. Maximum error εmax of Kaiser-Bessel interpolator as a function of
the shape parameter α, for several interpolation kernel sizes J , Bessel order
m = 0 and using 100% zero-padding of the spatial domain (K/N = 2)
(NUFFT interpolator has been found to perform best for the KB orders close
to m = 0 - see Fig. 3). Note that the optimum ratio α/J is about 2.34 for
varying kernel sizes.

- image of size N is first pre-compensated (scaled) for imper-
fections for the subsequent frequency domain interpolation;
- calculation of the K-times oversampled FFT (image is ze-
ropadded before the FFT - for the efficient implemention of
the oversampled FFT see [18], Section III-D);
- interpolation onto the desired nonuniform frequency locations
using small local neighborhoods in the frequency domain;
- inverse FFTs on polar lines to obtain projections.

The discrete backprojection represents the same set of op-
erations executed in the reverse order. The crucial step for the
quality of the NUFFT is interpolation. We have utilized Kaiser-
Bessel (KB) interpolation kernel [19] which was optimized to
be optimal in the min-max sense of minimizing the worst-case
approximation error over all signals of unit norm using the
methodology described in [18].
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Fig. 3. Maximum error εmax of Kaiser-Bessel interpolator as a function
of the order m, for several sizes J , 100% zero-padding (K/N = 2) and
using optimum ratio α/J for each particular value of m. The optimum order
parameter m is slightly above 0 for all kernel sizes; αopt in the legend represent
global optimum of the α parameter for the given kernel size.

III. NUMERICAL ERROR ANALYSIS

We have calculated maximum error εmax for the range of
oversampling factors (K/N = 1, 1.5, 2, 3), interpolation kernel
sizes (J = 4, 5, 6, 7), orders of KB window (m = −2, ..., 2)
and KB shape (width) parameter (α, where α/J = 1, ..., 3).
The interpolation error is rapidly decreasing with the amount
of oversampling. We show only results (Figs. 2, 3, 4) for the
case K/N = 2 (a reasonable compromise between the speed
and quality). Behavior for other oversampling cases is similar.
The optimum order of the KB interpolator is close to zero for
all K/N , contrary to our previous experiences with the KB
window used as spatial image basis function [20]. At m = 0,
optimal values of α/J ratio are approximately constant over
range of KB kernel sizes (about 1.5 for K/N = 1, 2.05 for
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Fig. 4. Values of the optimum ratio (αopt/J) as a function of the KB order m,
for 100% zero-padding (K/N = 2). The values of optimum ratio for individual
kernel sizes cluster around similar value for order m = 0 and diverge for other
orders. Similar behavior have been observed for other values of K/N , but with
different value of the optimum ratio at m = 0.

KB Power spectra  -  J=6, m=0, K/N=2 
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Fig. 5. Power spectra of Kaiser-Bessel interpolation kernels of size J = 6
using optimum (alpha o) and suboptimum parameters for m = 0 and K/N =
2. alpha - and alpha + represent two subotimum KB kernels (α parameter
located on both sides from the optimum - star symbols in Fig. 2) providing
comparable maximum errors, which are about 6.5-times higher than in the
optimum case. For comparison, we show also alpha s representing typical KB
window having desirable properties for the spatial image representation [20],
but poor performance as the interpolation kernel.

K/N = 1.5, 2.34 for K/N = 2 and 2.6 for K/N = 3).
Figs. 5 and 6 show power spectra and profiles, respectively,

of optimal and suboptimal interpolation kernels. Note that the
reciprocal (spectral) domain for the NUFFT interpolators is
the spatial image domain. Consequently, the frequency 1.0
represents repetition image period given by the spectrum sam-
pling and 1-f Nq represents periodic repeat of the (left) image
boundary for the case of 100% oversampling (K/N = 2),
beyond which the interpolation kernel spectrum should be
effectively zero. Optimum interpolation kernel is a compromise
between the requirements that the main lobe of its transform
(spectrum) decays to negligible values at, or before, the image
periodic repeat 1-f Nq (limiting α from the top) and that its side

KB profiles  -  J=6, m=0, K/N=2
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Fig. 6. Profiles of four Kaiser-Bessel interpolation kernels of size J = 6 using
optimum (alpha o) and suboptimum parameters for m = 0 and K/N = 2
(see Fig. 5). It is interesting that although all of them have similar shape, they
provide quite dramatic difference in the NUFFT performance.

lobes are effectively zero beyond that point (requiring large
α). Any deviation from this compromise leads to a dramatic
increase of the interpolation errors (see star symbols in Fig. 2),
inspite of a very similar kernel shapes (Fig. 6).

IV. COMPUTER SIMULATION RESULTS

A. Forward-Projector

Additionally to numerical evaluation of NUFFT-based for-
ward projector for the worst case error, we have evaluated the
accuracy of the NUFFT-based forward projector using Zubal
digital phantom. The image size have been limited to 100x100
pixels (from 128x128) so that the phantom torso fully occupies
the whole image region in its wider dimension (to avoid any
extra zero-padding, other than that given by K/N ). We have
simulated a parallel-beam tomographic system, with a sinogram
size of 100 radial bins by 192 angles over 180◦, including
a rectangular detector response h(r) = rect(r) with width
equal to the pixel size, partially representing the finite detector
width in a PET system (rather than using overly idealized line
integrals). We have computed forward projections of this object
in three ways: using Fourier-based reprojection with exact (to
within double precision in Matlab) evaluation of the 2D FT,
using Fourier-based reprojection with the 2D NUFFT approxi-
mation to using min-max optimized Kaiser-Bessel interpolation
and using a bilinear interpolation. Based on the difference
between the exact FT and NUFFT method we have evaluated
Maximum Error, Root Mean Square Error and Mean Error. We
show only maximum error defined as the maximum absolute
difference between exact FT and NUFFT method in percent
of the maximum value of the exact FT method. Other errors
have been found to exhibit similar behavior. The errors have
been evaluated for the same set of the NUFFT parameters
as in the numerical analysis. Error curves as function of the
α (Fig. 7) show very similar behavior to the numerical case,
with nearly exactly same optima. The optima over m (Fig. 8)
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Fig. 7. Maximum interpolation error (% of projection maximum) of forward-
projection of modified Zubal phantom using NUFFT with Kaiser-Bessel
interpolator of several sizes J as a function of the parameter α. Same set
of parameters used as for the Fig. 2
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Fig. 8. Maximum interpolation error (% of projection maximum) of forward-
projection of modified Zubal phantom using NUFFT with Kaiser-Bessel
interpolator of several sizes J as a function of the KB order m. For each
individual m an optimum α was used. αopt in the legend represent global
optimum of the α parameter for the given kernel size.

are less consistent compared to the theoretical case (Fig. 3)
but the locations of the minimum of the worst case error
Emax are still clustered around the m = 0. The calculated
sinograms for the optimum values are visually indistinguishable
(from the exact FT approach) with errors smaller than 0.06%
for the K/N even for the smallest kernel size (J = 4). By
comparison, conventional bi-linear interpolation for the polar
to cartesian conversion gives about two orders of magnitude
higher maximum error for this choice of J.

B. Back-Projector

The adjoint operator (back-projector) of the NUFFT-based
forward projector using the Kaiser-Bessel interpolator have
been compared to the adjoint of the exact Fourier-based re-
projector when applied to a ramp-filtered ideal sinograms of
the modified Zubal phantom. The maximum error have been
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Fig. 9. Maximum interpolation error (% of phantom maximum) of discrete
back-projection using NUFFT with Kaiser-Bessel interpolator of several sizes
J as a function of the parameter α. Same set of parameters used as for the
Figs. 2, 7.

calculated within the phantom torso region as the percent error
of the maximum value in the Zubal phantom. Again, the error
curves (Fig. 9) are consistent with the previous cases and
the NUFFT approach agrees with the exact approach within
0.016%, even for the smallest kernel size (J = 4). Similar
behavior to forward-projection case have been observed also
for the error as the function of m.

C. Forward and Back-Projector within Iterative Reconstruction

Since iterative algorithms require repeated forward and back-
projections, it is conceivable that even small errors in the
reprojector could accumulate. To study practical performance
of the NUFFT forward and back-projector within the iterative
reconstruction following experiments have been performed. We
have simulated noisy PET sinogram measurements (including
attenuation, randoms and scatter) from the 128x128 Zubal
phantom shown in Fig. 11. We have simulated a parallel-beam
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Fig. 10. Maximum interpolation error (% of phantom maximum) of 17
iterations of QPWLS reconstruction using NUFFT forward and back-projectors
with Kaiser-Bessel interpolator of several sizes J as a function of the parameter
α. Same set of interpolation parameters used as for the Figs. 2, 7, 9.
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Fig. 11. FBP and QPWLS-CG reconstructions (17 iterations) of thorax
phantom using exact and NUFFT Fourier-based forward and back-projectors.
Parameters used for the NUFFT were K/N = 2, m = 0, J = 5, and
α/J = 2.34. The maximum error within the torso region was 0.009%. Note
that the α used in this example has been chosen based on the theoretical
min-max optimization and not based on the experimental optimization for the
particular data set.

tomographic system with a sinogram size of 160 radial bins
by 192 angles over 180◦ with a rectangular detector response
h(r) = rect(r) of equivalent width to the pixel size. We have
run 17 iterations of the conjugate gradient algorithm for a
data-weighted least-squares cost function [21] with a standard
quadratic first-order roughness penalty. The same set of the
NUFFT parameters have been used as in the previous cases and
the results have been compared to the reconstruction using exact
Fourier-based forward and back-projector. The maximum error
have been calculated within the phantom torso region as the
percent error of the maximum value in the phantom. The error
curves show again similar behavior, with the optimum slightly
shifted towards higher alpha values. This is probably caused by
the fact that the phantom does not cover the whole image region
(causing an additional zero-padding). The maximum error is
below 0.06% even for the smallest kernel size (J = 4).

Fig. 11 illustrates that the reconstructed images using exact
FT and NUFFT interpolators are visually indistinguishable. The
difference between the FBP image and the QPWLS-CG image
is not so dramatic in this 2D example. We expect that the
difference would be more significant for 3D acquisitions.

V. CONCLUSIONS

Our results show a very good agreement of the theoretical
min-max error analysis of the NUFFT forward and back-
projectors with their practical performance. We find that the
min-max approach is an excellent framework for the optimiza-
tion of the NUFFT interpolation parameters. Our results further
demonstrate that the NUFFT based forward and back-projectors
with the min-max optimized Kaiser-Bessel interpolation are
fast and extremely accurate and are therefore viable tools for
iterative tomographic reconstruction.
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