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Abstract— This paper addresses the application of optimization trans- attractive candidate, since it requires only convex optimization
fer to simultaneous statistical estimation of attenuation and activity images techniques. With this method, one minimizes a sequence of con-
in tomographic image reconstruction. Although the technique we propose . . _
has wider applicability, we focus on the problem of reconstructing from \{ex surrogatefunctions WhICh are tangent t‘? the true cost func
data acquired via a post-injection transmission scan protocol. In this pro- tion. The sequence of minimizers monotonically reduce the cost

tocol, emission scan data is supplemented with transmission scan data thatfynction as desired.

is acquired after the patient has received the injection of radio-tracer. The . . . .

negative loglikelihood function for this data is a complicated function of To |mplement the (_)pt|m|zat|on tr?'nSfer method, one ml.JSt f'”P'
the activity and attenuation images, leading to an objective function for the @ surrogate for the given cost function. Some tools for doing this
model that is difficult to minimize for the purpose of estimation. for the post-injection problem cost function were developed in

Previous work on this problem showed that when either the attenuation [2] and [3] There paraboloidal surrogates were identified for
or activity image was held fixed, a paraboloidal surrogate could be found ’ ’

for the negative loglikelihood as a function of the remaining variables. This i‘plain" transmiss_ion and emission tom_OQrath- Then; r_eco_gniz-
led to an algorithm in which the model’'s objective function is alterately ing that when eithep, or A was held fixed, the post-injection
minimized as a function of the attenuation and activity, using the optimiza- model’s negative logliklihood resembled a plain transmission or
tion transfer technique. In the work we present here, however, we develop .. del. it ted t th boloidal
bivariate surrogates for the loglikelihood, i.e., functions that serve as sur- emission model, t was gu_gg_es ed 1o use_ .eS? parabolol a. sur-
rogates with respect to both the attenuation and activity variables. Hence, rogates to alternately minimize the post-injection cost function
simultaneous minimization in all variables can be carried out, potentially with respect tqu and .
leading to convergence in fewer surrogate minimizations. . T . . . .
T o o A possible limitation of this approach is that it constrains the
Keywords—optimization transfer, surrogate, post-injection, bivariate L . .
minimization to take steps ip and A separately rather than si-
multaneously. This could, conceivably, slow convergence. As
an alternative to this, we indicate several ways in which bivari-
The material presented here revisits work done in [3] on tlaée surrogates can be derived, i.e., functions which are surro-
application of optimization transfer to simultaneous statisticghtes with respect teoth. andX. Consequently, both variables
estimation of attenuation and activity images in tomographic iraan be updated simultaneously in the minimizations, possibly
age reconstruction. As in [3], we treat this problem in the spteading to convergence using fewer optimization transfers.
cific context of the post-injection transmission data acquisition In what follows, we present these methods and test their per-
protocol (although our technique could be applied to other fermance. For simplicity, we consider unregularized maximum
construction problems of a similar form). In this protocol, emidikelihood estimation, although the concepts extend readily to
sion scan data is supplemented by transmission data acqupedalized likelihood estimation.
after the patient has received the injection of radio-tracer. This
protocol has advantages such as increased patient throughput Il. PRELIMINARIES

and reduced misregistration due to patient motion. Since radio-

tracer is present in the patient during the transmission scan, et # @nd A respectively denote vectors of attenuation and
vity image values for a tomographically scanned object. In

emits photons that contaminate the transmission data. Usﬂ%_ ) .
both sets of data, one wishes to estimate simultaneously thRdglition, lety denote the vector of measured projection data

with componentsgy;, and lety be the statistical mean gf. In

Statistical estimation usually involves minimizing a cost fun(general,g depends oru and/orA in a manner specific to the

tion, one term of which is the negative loglikelihood. For thgystem m.odel. o o

post-injection problem, the negative loglikelihood, and henceOr Plain transmission and emission tomography, commonly

also the total cost function, is a non-convex functiop@ind), Cconsidered models are,

making global minimization difficult. One way to address this ~ L)

is to start with reasonable estimatespoéind \ (obtained, say, Yilp) = bie "W 4y 1)

from an analytical reconstruction), and apply a monotonic itera- gi(N) sipi(A\) + 74 (2)

tive algorithm to descend to a local minimum. In taking this ap-

proach, one hopes that the initial estimates lie sufficiently closethe abovel; (1) andp;()\) denote discrete geometric forward

to the global minimizers so that local and global minimizatioprojections of images into bin Equation (1) models transmis-

coincide. sion tomography data with blank scan datand mean random
To implement the technique, one desires a monotonic mieBuntsr;. Equation (2) is a model for emission tomography data

mization algorithm. The method of optimization transfer is awith a priori known attenuation effects in.

I. INTRODUCTION

priori unknown attenuation and activity imagesnd.



In [5], the following generalization of (1) was covered, satisfyingF'(x,) > F(zn+1). Repeating this iteratively results
in a sequencéx,, } which monotonically reduceB. When the
gi(p) = Z [bim exp(=17" ()] + 74- (3) cost function is differentiable (which will always be the case
meM; here), itis also true th&¥ Q(z,,) = VF(x,), i.e.,Q(zy) is tan-
oo gent toF'(z,,). When the iterations are judiciously initialized,
It models the case whgrg the counts indiasult froma sel; o may hope thatz,,} converges to a global minimizer.
of overlapping transmission source beams. _In[2], [3], and [4], it was shown how paraboloidal surrogates
In the post-injection transmission scan protocol, one acquitgsy 4 pe generated for the transmission and emission tomogra-
emission datg"” and transmission dag’, both while radio- phy cost functions (when the means had the forms in (1) and
tracer is present in the patient. These data have statistical me@yﬁ In [5], an extension of these results was made for the over-

given by lapping beams transmission tomography problem (correspond-
B _ BB —li(n), B ing to equation (3)). In [3], the post-injection problem was also
g (1: ) 7o (eie piA) +77) (4) considered. There, an approach was proposed based on the ob-
fT( A\ = TdT(b' —li(w) T . .
Yi (W, T a; (D€ T3 servation that both (4) and (5) have the form of (1) wheis

+hieie Wp (). (5) held fixed, and the form of (2) whep is held fixed. Since
paraboloidal surrogates for these simpler models had been previ-
Herer”, d, andrf” respectively denote emission scan acquisusly identified in [3], the optimization transfer technique could
tion time, dead time factors, and mean random counts (and SE@'applied to alternately minimize (7) with respecptand.
ilarly for the transmission Scan). In addltl(bn are blank scan Our work proposes an alternative to this by observing that
data,e; are detector efficiency factors, ahdare contamination (4) and (5) can be converted into (3). To do so, we first let
factors determining the contribution i of photons emitted pi(\) = X, car 9imAm Wherem is an index for image voxels
from the radio-tracer. andM; = {m| gim > 0}.
For a given model ofj, the Poisson negative loglikelihood Making the change of variables,,

— (1) 77(2>ﬂm Where
function has the form e (

they(1, () > 0 are constant scale factors), we substitute into

N (4) yielding,
L(ﬂl) = Z hz(gz) (6) U™ (uy 1)
=1 e e
B, o BgBe o AWy (1) + 7P fim)
(s = T7d; €iGim e

whereh,;(t) 24— y; log t. Maximum likelihood estimation cor- i ) m;w[(—w ]
responds to treating as a cost function and minimimizing it as ’ bim
a function ofy, and/or, depending on which of these variables +7Edfrf 9)

are unknown.
For the post-injection problem, (6) can be written

T4

Equation (9) can now be likened to (3) wherés replaced by

L)) = Z[h?(giT(u’)\)) +REGE(w,N)]  (7) the augmented vectdy, i) andr;, by, andi*(p, i) are as
, shown.
_ 7T E A similar transformation can be applied to (5). The overall
= LN +10wA) ®) result is that the functions® (u, 1), LT (i, ii), and hence also
where we have let L(u, iv) are negative loglikelihoods for overlapping beam mod-
els. We shall see that it is possible to develop surrogates for this
RE(t) R yPlogt transformed problem in several ways.
hi (t) = t —yl logt IV. A BIVARIATE PARABOLOIDAL SURROGATE
LE(u, \) 2 Z hE (G2 (1, ) Using the transform technique of section ¥ (u, ii) and
p LT (11, i) become cost functions for overlapping beam models.
T T T Paraboloidal surrogates were developed for such functions in
Lo, ) = Z hi (gi (1, A)) [5], and can be used here to get bivariate paraboloidal surrogates
t for LZ(u, i) and LT (u, j1). We briefly outline the construction
on the right hand side of (7) and (8). of these surrogates.
For theL” component of the cost function, the transform was
[1l. REPARAMETRIZATION TECHNIQUE AND accomplished, as we have shown, by letting,
OPTIMIZATION TRANSFER 5 L
. N . bim = 77dfeigimy™
The technique for minimizing the cost function that we con- v BgE.E
. i1

sider here (conceptually illustrated in Fig. 1) is that of optimiza-
tion transfer. Given a generic cost functidt{z) and a point i) = L) + 7 fin- (10)
xn, We shall say that a differentiable, convex funct®@(; z,,)
is asurrogatefor F generated at,, if Q(z;x,) > F(x) with
equality atz,,. Minimization of @ results in a new point,, .1 . = 1", fin)

Proceeding as in [5], we make the following definitions,



Lo Y(wi) = Y [y log (u i) + vl log g/ (1, 1) (14)

i

are both differentiable, convex functions. By linearizing
T (p, &) at(pn, fin), we have from the gradient inequality

- - - JAN - -
L(p, 1) < Qs 5 pins fin) = Ty 1) — Y (pany fin)
—< V;AT(le]n): H— pn >
—< vﬁT(ﬂnyﬁn)a B— fin, >

» and clearlyQ(u, i; un, i) is a bivariate, but non-paraboloidal
T Shiogas ax, surrogate for.(u, i) generated atu,,, fin ).
- Sumogateatx, To minimize @, we will typically require the gradient¥,Q
andV;Q, with respect tqu andji. Let us define system matrices
A andG such thaf;(\) = [A\]; andp;(\) = [GA]; and letV;
andV, denote gradients with respect to projection arraygsd
3 p;. Noting thatl’ and Y depend oru only throughi;, it then
mz Tt follows from the chain rule that

Fig. 1. Conceptual 1D illustration of the optimization transfer method for a . T
hypothetica| cost functiom/($)_ VMQ(M? )\7 ILLTH )\n) = A [VZF(,U, )\) - vlT(/‘an )\n)] (15)

Furthermore, noting from the chain rule thag = -y AoV,

Ui, = bimexp(=1i,) +1i/| M| (here,® denotes component-wise multiplication) then we also
Ui = D Ui have
Z;Mi V;EQ(/%)\; AU'TL?)‘TL) =
T _ m
Vi = e bim YOI\, © VAT (lin, An) = A O VAT (1, A)].  (186)
mo= %n Equations (15) and (16) show that the surrogate gradients can be
Ug, computed straightforwardly in the origin@l, A) space.
gr.() = et ) —yFlogbl et + 7)) V'I:rhe Sli\rrogatg)\paraéne;ers t(})\ beocbomput?g ?nd stored are
Bnl) = G (l5) + 30 () (1 — 12) L(tn: An) BNAA, © VAY (jin; An)- Observe that,
1 E —E
where the optimal choice for the curvatueds, is given in [5], T 057 (11ms An)
equation (30). With these definitions, one can show that +—F Yi Yi Win, An (17)
ur Y; (NmAn) ol;
i meM,; Jvm P e ZLE(NmAn) 8p1
is a bivariate paraboloidal surrogate f&F(u, i) generated vl 0yr (i, Mn) (18)
at (un, in). An analogous surrogate can be developed for +§iT(Mm>\n) Op;
LT (i, i) and the sum of the two surrogates is a surrogate for VAT (s An) = GTV,Y (1t An) (19)
sy - y4 sy .

L(p, f1).

An immediately apparent drawback to this approach is the see in (17) and (18) that once the means and their deriva-
the arraycy,, of curvature parameters is the same size as s are computed (a seemingly inevitable step in any loglikeli-
sparse matrix of projection weighi,,. Itis clear thatit will 554 hased algorithm) then only 3 multiplications and 1 addition
involve time consuming operations to compute, a difficulty €%er projection data element are required to find” andV, Y.
acerbated by the fact that it must be computed on the fly for e"’@BmputingvAT via (19) requires a backprojection. However,
new surrogate. we will see that a reconstruction typically requires two surro-
gate minimizations at most, making this additional computa-

_ _ tional burden marginal. The burden can also be offset by parallel
Observe that the transformed cost function can be written computation.

V. A BIVARIATE NON-PARABOLOIDAL SURROGATE

L(tu’v:a) = F(/L,ﬁ) - T(,LL,/NJ,) (12) VI. RESULTS
where In this section, we compare the performance of optimization
T(pj) = Z[%E(M’ﬂ) + 7 (u, )] (13) transfer using the bivariate surrogates proposed in sections IV

and V, and the alternating descent scheme proposed in [3] on

%



simulated data. Two sets of data were considered, which \
label D1 and D2. Both sets were generated by first forwa 2%
projecting simulated attenuation and activity images of a tor:
phantom, then using (4) and (5) to generate mean data, anc SN i e

nally adding Poisson noise. Images we8 x 128 while pro- AN X Noneersbuioidel Sumogets |
jections were discretized into 60 equi-spaced angles and 185

dial bins. For both thé;(x) andp;(\) forward projectors, dis-
crete approximations to line integrals were used.

For D1, the mean total counts for both the emission and trar
mission data was 0.5 million. In D2, the noisier set, the mes
total counts was 0.05 million. In all cases, dead time was i
nored, and uniform detector efficiency and blank scan data we
assumed. Mean randoms count rates for all data were 30% i
a 3% contamination factor was used.

Iterative reconstructions were initialized using analytical re
constructions, obtained by substituting the measured project  _,,, ‘ ‘ ‘ ! ‘
data in place ofjZ and 7 into (4) and (5). These equations oot e B 3 se s
were then solved fot; (1) andp; () (incorporating smoothing
and thresholding where appropriate) whereupon fitered btk , Conarun o yueueTes s o e dlen, ooialen v
projection was used to reconstruct an initial pjag, o). Sur- it - Thep
rogate minimization was implemented using the Conjugate Bar-
rier iterative algorithm [1]. Many sub-iterations were runtoen
sure that the surrogates were approximately minimized. !

For the purposes of transformation betwéen\) and(y, ix)

|
g
Q
]
T

-3.04-

Negative Loglikelihood

-3.06 -

-3.08

Outer Iteration No.

2
I

space; (V) was set to an upper bound on the activity (assum N

known). Some preliminary trial and error was used to dete | \ . 1

mine a good working value foy(?). When bivariate surrogates _,| AN ~5~ Afternating Descent |
LT . R N *- Non-Paraboloidal Surrogate

were used, the activity imagewas constrained to have a small 5 N 4 Bivariate Paraboloidal Surrogate

strictly positive lower bound, so as to prevent situations whe£

i might approach infinity. '
Plots comparing convergence rates appear in Figs. 2 ancg
For each of the three optimization transfer techniques cons g~
ered, the descent of the cost function as a function of outer
erations is shown. For the bivariate surrogate methods an ot
iteration refers to one surrogate minimization. For the alterne 7|
ing descent method, an outer iteration refers to two surrog:
minimizations, one to update the attenuation image and one
update the activity image. T e e e e T
We see that the non-paraboloidal surrogate approach mi Outer lteration No.

mizes the cost function in essentially one outer iteration for both i ) o
Fig. 3. Comparison of convergence rates of the different optimization transfer

. . g
datf"‘ sets. For D1, thIS_ approach qnly shghtly outperforms alter= approaches for D2. The plot shows cost function descent with outer itera-
nating descent (see Fig. 2). This is seemingly because the dataons.

is non-noisy. Hence, the initial analytically reconstructed point

is sufficiently close to the maximum likelihood estimate that Al- ) ]
ternating Descent can also achieve the minimum in essentidf§nerated at the resulting point. In both cases, we see that the

one outer iteration. For the noisier data D2 (see Fig. 3), the ifon-paraboloidal surrogate closely approximates the cost func-
tial point is farther away and convergence is slower compared'y? Whereas the paraboloidal surrogate provides a poor, high
the non-paraboloidal surrogate approach. curvature approximation. This accounts for their differing con-
The performance of the bivariate paraboloidal surrogate {§'9€nce rates. It also shows that the effectiveness of the non-
significantly poorer than the two other alternatives in terms Braboloidal surrogate persists as the generating point is dis-

convergence rate. It is also slow in terms of computation tini@"c€d from the cost function minimum, possibly explaining its

as discussed in section IV, making it all the more unattractive'OPUSt performance under increased noise in Fig. 3.

The above findings are corroborated by trends in Figs. 4
and 5, which show sample 1D profiles of the cost function for
D1 together with profiles of the two bivariate surrogates. For For statistical tomographic image reconstruction problems
Fig. 4, surrogates were generated at the initial analytically nehere both the attentuation and activity images are unknown,
constructed point. For Fig. 5, this point was distanced from tlne have proposed a transform methodology which effectively
minimum by applying a scale factor of 0.5 and surrogates werens the model into a familiar form from transmission tomogra-
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VIl. CONCLUSIONS
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Fig. 4. Comparitive profiles of the cost function for D1 and the bivariate surr
gates generated at an analytically reconstructed point in image space.
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hopefully, will allow one to quickly minimize the surrogates
and, hence, exploit their full potential.

Future work could also include extending the techniques pro-
posed here from unregularized maximum likelihood to penal-
ized likelihood reconstruction. This may require that one define
roughness penalties on the transformed activity imaggnce
the transformation of variables that we have proposed will not
generally preserve the convexity of penalty functions defined on
A

Finally, the findings in this work, as well as humerous other
tests not shown, indicate that the non-paraboloidal surrogate
approach typically requires only the first surrogate to approxi-
mately achieve the minimum. This might mean that the first sur-
rogate calculation amounts to an analytical procedure for turn-
ing the non-convex post-injection problem into an equivalent
convex one. This implication might follow for pure transmis-
sion tomography models (e.g. (1) and (3)), as well, since the
Yame surrogate technique applies.
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Fig. 5. Comparitive profiles of the cost function for D1 and the bivariate surro-
gates. In generating the surrogates, a point in image space was analytically
reconstructed and then perturbed to a more distant location.

phy. This allowed us to obtain bivariate paraboloidal surrogates
for the post-injection cost function based on previous work, as
well as non-paraboloidal ones.

We compared the performance of these surrogates to an alter-
nating descent method previously proposed in [3]. The bivari-
ate paraboloidal surrogate proved unattractive in terms of both
computation and convergence rate. The convergence rate of the
non-paraboloidal surrogate approach proved competitive with
the alternating descent method when convergence rate was mea-
sured in outer iterations (number of surrogate minimizations).
Also, the computational effort required to generate surrogates
was similar in both.

Thus far, we have not made any effort to optimize the com-
putational effort involved in minimizing the surrogates, so it re-
mains to be seen whether the non-paraboloidal surrogates ap-
proach can be exploited to reduce overall CPU time. However,
various ordered subsets algorithms are now available which,



