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Abstract A more “edge-preserving” penalty results if one replaces the
yadratic penalty function in (2) with a nonquadratic function
(that increases less rapidly than the quadratic function for
regfficiently large arguments, such as the Huber function [1]:

Tomographic image reconstruction using statistical methofl
can provide more accurate system modeling, statisti
models, and physical constraints than the conventional filte

backprojection (FBP) method. d8ause of thell-posedness L

of the reconstruction problem, a roughness penalty is often V() = /‘/’(Wf(xmd*” (3)
imposed on the solution. To avoid smoothing of edges, df df

which are important image attributes, various edge-preservingr V(f) = /1/) ( T > ¥+ ...+ /1/) ( p > dz,

regularization schemes have been proposed. Most of these
schemes rely on information from a local neighborhood to t2/2, It| <6
determine the presence of edges. In this paper, we prop rey(t) = { Slt| —d2/2, |t| > 6.
an objective function that incorporates non-local boundary This function increases linearly, instead of quadratically,

information .|nto thg 3-D_regular|z§1t|on method. W.e.u.s?or arguments larger thad. Thus the objective function
an altgrnatmg _m'|n|.m|zat|on algorithm V.V'th. determm's“fpenalizes large differences between neighboring pixels less
.ar?nealmg.to minimize the proposed objective _functu_)n Qeverely than the quadratic penalty, while maintaining the
jointly estimate region bpundary sgdes a}nd object p'xel.same level of penalty for small differences. This property
values. We apply variational technlques. implemented USB8ows sharper edges in the reconstructed image. However,
level sets to update the boundary estimates; then, USHI% type of approach only relies on information from theal

the most. recentboupdary mformaﬂqn, we minimize a neighborhoodo determine the presence of an edge locally.
space-variant quadratic objective functionugpdate the image

estimate. We present three-dimensional reconstructions from

real PET transmission data.
EDGE-PRESERVING REGULARIZATION

|. INTRODUCTION :
We propose aon-local penaltythat incorporates boundary
The problem of reconstructing an unknown imafirom  and region information into the regularization. We assume

a measurement vectgr is usually ill-posed. Knowledge of that the actual object to be reconstructed is everywhere
the direct model is rarely sufficient to determine a satisfactogyfferentiable (and thus continuous). We also assume that
solution. If we obtain the maximum likelihood estimate (MLE):he Object consists of regions that are piecewise smooth
of the image by maximizing the log-likelihood functidiif; y),  everywhere except very close to the region boundaries where
then the resulting image is very noisy. Thus it ecassary t0 the object intensity changes rapidly but continuously to values
regularize the solution by imposiregpriori assumptions. One in, jts neighboring region(s). Thus an edge-preserving penalty
simple regularization method supposes that images are globalliction should penalize local gradients that are witbath
smooth, and enforces a roughness penalty on the solutionrByion more than local gradients that are very close to a
addlng a quadraticfunction tothe negative |Og-|lke|lh00d SUbeundary_ Furthermore, we assume that the boundara&gf
a “penalized” likelihood objective function has the fO”OWin%eparating the regions are smooth.
form:

[I. THREE-DIMENSIONAL NON-LOCAL

The objective function we propose also consists of a data-

®(f) = ~L{fiy) + BV (), (1) fit term and a penalty term. However, our penalty considers

where not only the image values but also the characteristics of region
V(f) = / |V f(Z)|2di (2) boundaries withinthe image. Following the convention in PDE-

based image analysis literature, we present a non-discretized

is a measure of image roughness. The image estimatefagnulation. Letf denote the object, € G denote the:th
obtained byf = arg mins ®(f), where the minimization with boundary sueice, and? denote the domain of the image. Let
regard tof is often restricted to the nonnegative values. Th&(I') C 23 denote thenth region, where eacR,, does not
function given in (2) is often unsatisfactory, due to the fadtclude its boundary, hence they are open sets. The regions are
that many images are not globally smooth. They have regisaparated by boundary sacesI’, wherel' = UK T';. We
boundaries across which the image values can vary rapidigsume that the number of boundary aneSK is fixed (and
The quadratic regularization in (2) causes edges to becokwowna priori) and that the boundary sades do not touch
blurred. each otheri.e. T'y, N Ty, = 0 if k1 # ko, which is reasonable

for transmission tomography.
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We propose the following objective function of the obj¢ct derivatives numerically. The functional derivative $f must

and the boundarids [2]: point in the normal direction of the curve, as any movement in
the tangential direction would not change the curve. We use a
J(f,T) = —L(f;y) +V(f,T) (4) scheme similar to the central difference method for evaluating
K local derivatives. (Central differences are usually accurate to
V(f,T) = Z [BJz(f,k,F) + pJ1(T'y) (5) a higher order than one-sided differences.) For a given point
k=1 po on the contoud’, we define a functiore which is zero
B except in the neighborhood ¢f and for whichI + z differs
NfTw) = T, 45 ©) from I only in the normal direction. (We can imagine some
force being exerted on the curve; this force is nonzero only in
Jo(f, k,T) = /Qhk(&c(f, )|V f(Z)|*d. (7)  the neighborhood ofiy; if we exert this force in the normal

direction of the curve af, for an infinitesimal period of time,
The first term —L(f;y) is the negative log-likelihood that then we will have a small perturbation of the curvepgatin
measures the “faithfulness” of the reconstructed object the normal direction). Using this idea, we approximate the
the measured data The termfrk dS penalizes the area of functional derivative of/»(I") at v = pj, as follows:
the boundary sudce, so that théoundary sudces remain
smooth. The term(f, k, T'), which is rotationally invariant, 972 1B +2) — (I~ 2)

2

penalizes local gradients inside each region more than locaf? 2 Ao

gradients close to the boundary; : R® x G¥ — R is the _ 1 (Jz(r +2) = L) LT -2 - Jz(r)>
signed distance of to I if the closest point o to % lies 2 Ao Ao

on I'y, otherwise, the function is zero (hence all locatians A

whered,(z,T") is nonzero are necessarily in the two regions = (11)
that are separated Hy;). The functionhy : R — [0, 1] maps
small arguments to values near zero and larger argumentsvtere Ao is the area lying between the cunle and the

values near unity. For simplicity, we only usg'’s that belong perturbed curvé' + z [3].

to C*(—00,+00). The J, term has a similar effect on the £y the Jast term inf; (), the direction in which the curve
reconstructed image as the penalty described by Eqn (3); Rfigth decreases most rapidly is when [4]:
in J2, how much the local gradients at a specific location is
penalized is decided by where this location is with regard to the or N (12)
boundary, hence the penalty is “nonlocal”. ot ’

We use alternating minimization to jointly minimize thej e the speed of the evolution at any point is the curvature of
objective function given in (4) ovef andr’, i.e., we first hold the poundary at that point, and the curve evolves in the inward
f constant and minimiz& with regard tol, then using the normal direction. Combining (10), (11), and (12), we evolve

most recent estimate df, we minimize® with regard tof;  the boundary using the level set method [4a6¢ording to the
we alternate between these two steps until convergence. Wigbwing:

ov’

f is fixed, the second and third terms dependlonwe must di Ty
minimize the following objective: i —(ur + E)N" (13)
K Evolving the curve according to (13) yields a curve that
Jp) = Z (BJg(f,k,F) + M/ ds> (8) approximately minimizeg/;; we call this step the “boundary

k=1 estimation” step.

et = arg min J» (I'), 9) The force exerted byl in (8) is nearly zero in smooth
regions, and is only significant close to the actual boundary
where J, was defined in (7). As is common in PDE-basethere local gradients are large. Fig. 1 illustrates this property
image analysis, we perform steepest descent with respétt tan one dimension. Letf’ denote the derivative of in the
For any pointy = (z, y) on the boundary' we evolve that point z direction; letT', denote the old boundary at 0.3 adig
according to the following differential equation: denote the new boundary at 0.35. Moving the boundary
. from 0.3 to 0.35 would changé(d(-,T)) from h(é(-,Ty))
@ _ _Mf(r), (10) to h(4(-,Tv)), i.e, the “valley” of h(4(-,T)) is moved from
dt ov 0.3 to 0.35, but the change in the roughness penaiy,
where the right-hand side is the negative functional derivatiyé?(9(#,T'n)) — h(é(z,T)))|f’|dz, would be very small.
of the objective. Since it is difficult to analytically derive Thus evolution according to (13) alone would require a fairly
the functional derivatives off,, we evaluate its functional Close initialization to the actual boundary. We circumvent this
_ problem by using the initialization procedure for the boundary
The 3-D measurement can be a stack of 2-D measurements, that employs another forcé; (from a global measure) which

there is no inter-slice rays as in the case of 2.5-D transmission sCali§sures that the boundary moves no matter where the contour
or it can be truly 3-D.
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is: monotonically decrease the objective as defined in (4). In
v 2 addition, the objective is bounded below, so the algorithm will
Ta(f) 2 Z 7/ £(@) - Jr,, F(@)dZ presumably converge toward a local minimum.
m=1 YEBRm me dz The proposed regularization method allows edge-preserving

J3 penalizes the difference between every pixel value and the?constr'uctmn of piecewise smooth. objects such as PET
enuation maps. It does not require any textbook values

average pixel value of its region. Thisis a global m re whi : o 4 .
gep 9 9 casure r the attenuation coefficients, and, as illustrated in the

exerts a force on the curve no matter how close the boundaﬁg Its bel it all ¢ ” it i Hicient
estimate is to the image gradients. results below, it allows for nonuniform attenuation coefficients

in regions such as the lungs, in contrast to some forms of

1\'g ) segmentation methods. Qualitatively, the method produces
0.9r %, i . A?g/(%lo)) 1 good attenuation maps even from 3-minute transmission scans.
osf ! h(x.r ) { Quantitatively, the bias-variance tradeoffs of the proposed
o7l ! ] method (in 2D results not shown) are superior to statistical

j i reconstruction with the “conventional” local Huber penalty
go'e' ' B 1 over the spectrum of regularization parameters. The principal
~osf | / 1 disadvantages of the proposed method are implementation
Coa L [ ] complexity and computation time, although with an optimized

osh L ] implementation the computation associated with the level

' R sets should be less than the forward and backprojection
0.2} Vil 1 computations.

o1} Ll
00 ‘ 0?5 1 1:5 2
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Figure 1: Plot of change id> when the “curve” is very far from the
actual boundary

For the second stage of the minimization, we Hofiiked at
its previous estimatE™ and minimize with regard tg. When
T" is held fixed, the relevant terms in the objective function (4)
are the following:

K

Jo(f) = —L(fiy) +B8> B(fkT)  (14) ‘
k=1

Jo(f, kD) = / h (64 (2, T)) |V £(2)|2d.

Hence we minimize/r (f) with regard tof as follows:

fr+ = argmin Je- (/). (15)

When updating the boundary using (9), thefunction in

Jo pushes the boundary toward image locations where the

gradient is large; when updating the objectifeusing (15), Figure 2: Slice No. 6: left column, 3-minute scan; right column,
the h function imposes a space-varying weighting of th&0-minute scan; top row, FBP reconstruction; middle row, 3-D Huber
penalty on local gradients. This weighting depends on tignalty; bottom row, proposed penalty

signed distance from each pixel to the nearest estimated

boundary. Every term in (14) is quadratic fnexcept possibly 1. RESULTS

the log-likelihood term, which involves logarithms in the , . . .
case of Poisson measurements. Therefore, the minimizationVe OPtained a 10-minute transmission scan of a real patient

problem (15) is a standard penalized likelihood problenc?n a CTl 921 PET scanner, then we thinned this data to the

and we can minimize/r over f using methods such as theequwalent of a 3-minute transmission scan. The image consists

conjugate gradient method [7,8] (if quadratic) or the paraboloff 134x134x47 pixels; the sinogram has 47 slicesach

surrogates/coordinate ascent method (if not) [9]. consisting of 192 radial samples and 160 angular samples.
] i Figs. 4 and 5. show the reconstructions using the proposed

We iteratively alternate between the two steps (9) and (15)

Both these two steps will, under ideal circumstaﬁpe@i”imization of (8) according to a discretized version of (10) may not
be exactly monotonic. Such effects are inevitable when continuous

2Under realistic circumstances, wheteis taken to be finite, the formulations are discretized.
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penalty. Fig. 2 compares the 6th slice of the reconstruction
using FBP, the Huber penalty, and the proposed penalty. Fig. 3
shows the boundary sades extracted using the gposed
penalty.
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V. DISCUSSION ANDCONCLUSION

We have presented a new regularization method for
tomographic image reconstruction based on a nonlocal penalty
function. Simulations show that the nonlocal penalty produces
transmission reconstructions with better ROl bias/variance
tradeoffs than a local Huber penalty; when these transmission
reconstructions are applied to ideal emission data, the nonlocal
penalty used for transmission reconstruction produces emission @)
images with smaller variances (for a fixed spatial resolution)
for most pixels in the image [10]. However, reconstruction
using the proposed penalty is more time consuming than using
“conventional” local penaltieg,e., 7-10 times the time using
local penalties.

———=

1
/

Currently, theh functions are chosen experimentallye.,
trial and error. A more systematic approach in choosing
h functions, so that the transition in pixel values between
neighboring regions can be carefully controlled, will make this
method much easier to use.
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Figure 4: Reconstruction using proposed 3-D penalty: slices 1-24 Figure 5: Reconstruction using proposed 3-D penalty: slices 25-47
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