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Abstract

A method has been developed for List Mode EM
reconstructiorof Comptonscatteringcameraimagesin 3-D,
using a previously reported2-D techniqueand refining and
adapting it to three dimensions. Spatial variation in the
systemsensitvity is determinedoy an approximatenumerical
integration which accountsfor solid angle effects, absorption
and escapeprobabilities, and variation in the differential
angularscatteringcrosssection. The methodfor computing
the systemtransition probabilitiesusesa similar method to
determinevaluesin pixels along exact back-projectedcones
for each detectedevent, and uses pre-computedvalues of
the inherent system resolution (which includes the effects
of spatial and enegy measurementesolution and Doppler
broadening)to model the responsén pixels neighboringthe
back-projectedcone. The algorithm has been parallelized,
permitting reconstructionof imagesusing larger number of
detectedeventsin relatively constantime by addingadditional
processorsResultsarepresentedising3-D simulateddata.

. INTRODUCTION

List-mode Expectation Maximization (EM) methods
[1, 2, 3] have recentlybeenappliedto the Comptoncamera
reconstructionproblem [4, 5]. The methodis particularly
appealingfor this problem becausethe number of system
variables is limited to N,N2, if N, is the number of
detectedeventsand N is the dimensionof the image space.
By contrast, the number of combinationsof position and
enegy measurementahich describea Comptoncamerain a
traditionaliterative reconstructiorapproachcanbe aslarge as
10billion for eachN?3 pixels.

The list-mode Maximum Likelihood problem is posed
asfollows: Let Y be all possiblemeasuredorojection data,
accumulatedsindividual measurement®;, andtakingY; — 1
for eachdetectegarticle,andY; — 0 for theinfinite numberof
possibleeventsnot detectedn the currentmeasurementThe
maximizationstepcanthenbewritten as
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In the above s; is the probability that a photonemitted from
pixel j is detectedarywhere,and ¢;; the probability that -;
was emittedfrom pixel j. Barrettet al[2] and Parra[3] have
proventhatthis treatmenbf Y holds(herewe ignoreary time
dependencef themeasurementjyith the conditionthatasthe
detectedr; do notspanthe spaceof all possiblesvents,s; must
be computedastheintegral over all possibledetectedeventsi,
includingthosefor whichY; = 0.

In earlier work [4, 5], a techniquefor determiningthe
requiredsystenmatrix coeficientsneededn the EM algorithm
was developed,in which relative transition probabilities ¢;;
werecomputedandstoredfor only thosepixelsintersectinghe
back-projectedcone correspondingo eachdetectedparticle.
Transitionprobabilitiesfor pixelswithin a givenangularrange
of theintersectegixelswerethencomputedon the fly ateach
iteration step, with valuesbasedon the inherentcone-spread
function for the device, which is a function of the enegy and
spatial resolutionin the detectors,as well as the degree of
Doppler broadeningof the Comptonscatteredohotonenegy
spectrum. In 2-D, this approximationreducesthe average
number of elementst;; which must be stored to roughly
2NN, but still allows for modeling of the entire N2N,
system. The sensitvities s; were computedby performinga
crudenumericalintegral over thefirst detectovolumefor each
pixel j andassuminguniform responseén the seconddetector
Use of this reduceddataset permitsa full EM iterationto be
computedin aboutl minute on a high end Unix workstation,
for a500,000countproblemsolvedon a64 x 64 imagespace.
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[l. METHODS

In the currentwork we deploy more accuratecomputation
of the sensitvities and the systemmatrix coeficients; apply
the method to the 3-D case; and parallelize the algorithm
using the MPI package[6] to permit running on multiple
networked workstations. Sincethe efficacy of the algorithm
hasbeenshawn to be limited by datasize ratherthan speed,
parallelization brings a linear increasein the size of the
problemwhich canbetreatedwith constantomputatiorspeed
(limited to messag@assingoverhead).

A measurement in a Compton camerasystemconsists
of a first detectorinteraction position z;, a seconddetector
interaction position z3, and an enegy of interactionin the
scatterdetectorE. Thefactorscontributing to the computation
of the probability of the emissionof a gammain pixel j



resulting in a measuremeni include terms relating to the
emissionprobability, theinteractionandescapeorobabilitiesin

thedetectorsthe scatteringanglessubtendedby theinteraction
positions,Dopplerbroadeningof the scatteredyammaenegy,

anduncertaintiesntroducedin the measuremerdandrecording
process,amongother things. For the sake of simplicity, we

choosehereto ignoreerrorsin themeasurementf thedetected
positionsand scatteringin the source. It canbe shavn then
that[7]
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In the above expression,P(z1, 23, E|2g) is the probability of

a particle emittedat 23 (which is containedin voxel j) being
measuredas having interactedat positions z; and 23 with

enegy FE; ’L—f the ratio of the Comptonto total absorption
crosssectionin the first detector; 2411, the distancetraveled
in the first detectorbeforethe interaction; z412, the distance
traversedin leaving the detectorafter the scatter; z42, the
distanceraveledin the capturedetectorprior to theinteraction;
d?,, the distanceto the first interaction;and d2,, the distance
to the second;cos(¢1), the angleof incidenceon the face of

the first detectorand cos(¢2 ), the angleon hitting the second;
and fq(6, E), the probability of scatteringthrough 6 with

enegy E. Thisfunctionincludesthe corvolution of the enegy

measurementesolution with the doubly differential cross
sectionwhich combinesthe Klein-Nishina crosssectionwith

the Doppler broadenedspectra. The sensitvities s; can be
calculatedthen by integrating P(z1, 73, E|25) over the pixel

(20), volume of the first detector(z1), volume of the second
detector(z3), andall possibleenegies(FE) betweenthe upper
andlower thresholdn the system,
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In the currentwork, theseintegralsare computedby a simple
numericalintegration,in which P(z3, 23, E|Z)) is evaluatedat
4 meshpointsinside eachpixel, 4 over eachof the individual
elementsof the scatter detectoy and 120 points over the
larger area capture detector Most of the componentsof
the expressionin (5) can be determinedeasily and tables
of fa(6,E) can be preparedin advanceand for eachpoint
in the numericalintegral (¢ is definedexactly by the three
positions).For thecurrentwork, however, the effect of Doppler
broadeningon the sensitvities is ignored,andso fq (0, E) is
taken as just the Klein-Nishina crosssectioncorvolved with
the systemenengy resolution. Theintegral of (5) thusbecomes
a triple sum over the pixel j andthe detectorvolumesof the
factorsin theexpressiorfor P(z1, 23, E|Zp).

The system transition probabilities t;; are given by
the integral of P(zi, 73, E|z5) over the emitting pixel j.
As describedin a previous work [5], to avoid the lengthy
computationinvolved in performing this integral over every
pixel for every particleandto avoid having to storethis large
numberof transitionprobabilities,we computeonly the track

through the image spaceof the back-projectionassuming
perfect data, and assumethat the relative weights of the
neighboringpixels can be inferred from the inherentsystem
resolution,which is computedin advance. We are left then
with simply integrating the expressionfor P(z1, 23, E|%)

over the pixel volume. In the currentwork, againthe Doppler
broadenings ignored,andthe integral over the pixel volume
is approximatedoy assumingthat P(z1, 23, E|Zg) is constant
overtherelatively smallandusuallydistantpixel volume.

The application of the methodabove to 3-D is straight-
forward. We simply apply the 2-D algorithmdescribedabore
to successie planesin theimagespace.We thereforeincrease
the numberof elementdor which we muststoredataelements
in going from the 2-D to the 3-D caseby a factor equalto
the dimensionof the image space to approximately2 N2 N,.
There are two potential dravbacksto this method, however.
First, as the 2-D methodis basedon the intersectionsof
conicswith planesin theimagespacethe current3-D method
involves computationsof weightsfor areaelementsin given
planes ratherthanvolume elementsn the imagespace.Thus
weightsare computeddifferently for nearestneighborvoxels
dependingon whetherthe neighboris lateralin theinitial 2-D
referenceplaneor the next referenceplane. Secondwhenthe
track of theinitial particleis almostparallelto the orientation
of the image plane, the numerical uncertainty involved in
computingthe conicintersectionwith the planeis solargethat
thedatamustberotatedandthe computatiordonein a different
orientation,and thenusedin that alternatve orientationwhen
computingneighboringweights during the iterations. Based
on the resultsfrom for perfectpoint sourcespresentedater,
neither of theseproblemsappearto have significant effects.
Indeed,imagesof point sourcessymmetricin both lateraland
longitudinaldimensions.

The recursion formula of (3) lends itself easily to
parallelization,even though the sumsare over pixels in one
caseand projectiondatain the other The datais split by
dividing the particlesamongthe processors.This allows for
sometime saving in the computationof the weightst;;, as,in
fact, differentprocessorsieednot have accesgo the weights
computedby eachother For aproblemwith M processorand
N., photonsjn the currentimplementationgachprocessofirst
computedor its allocationof N,,/M photonstheweightst;; it
requires,and a synchronizatiorof the nodesis thenimposed.
Next, eachprocessocomputeghesumin theiterationformula,
ZM,- Yitij/ > tik)\g). Another synchronizatioris imposed,
andtheseresultsarethencollectedandtakulatedby the master
processarwhich then solves (3) for )\g.l“). Valuesof this
updatedback-projections thenbroadcasto all theslave nodes,
which then updatetheir local copiesof -, tik)\g) for the
N.,/M photonswhich they areprocessingThus,theonly data
thatmustbe transferedbetweenthe processorarethe M sets
of the N3 valuesof ZM,- Yitij/ >4 t,-k)\g) which mustpassed
up by eachslave, andthe N3 valuesof )\;.Hl) broadcasby the
controlling processat eachupdate. The 2N, N2 /M weights
arelocal to eachprocessarFor memorylimited problemssuch
as this, this organizationallocatesresourceamost efficiently.



The MPI (Message-Bssinglnterface) [6] software was used
to perform the interprocessorcommunicationtasksrequired
here.

I1l. RESULTS

Results are given here for simulated data generated
by Monte Carlo using a geometry similar to that of the
C-SPRINTI[8] system.C-SPRINTconsistsof a 32 by 8 array
of 1.4 mm silicon detectorelements3 mm thick asthe scatter
detectorand the SPRINT seconddetector Projection data
was generatedoy Monte Carlo simulationusing the program
SKEPTIC[9], which hasbeenextensiely employedandtested
in the simulationof Comptonscattercamerag8, 4].

Two phantomshave beenmodeled. The first consistsof
two point sourcesin a cold background,one centeredwith
respecto thethefront faceof C-SPRINT andoneata position
.24 cm behindand .16 cm to the right of the centerpoint.
3-D measurementsvere simulated by performing separate
simulationsof rotationsof the phantomthrough36 equal 10
degree steps. A 31x31x31image spacewith .02 cm pixels
was used in the reconstructions,with 8208 photons from
the central point and 7491 events from the off-axis point
modeled. For the purposesof validating the method, exact
enegy andposition measuremendatawas used,and Doppler
broadeningof the scatteredyjammaenegy wasignored. The
initial back-projectionand computationof the weights took
approximately3 minuteson a SparcUlItra 1 workstationand
each iteration roughly 20 seconds. No parallelizationwas
required.

Resultsof reconstructionarepresentedn figuresl through
3. All imagesare from the 20" iteration, and representhe
slicesat Z = 0.0, .12, and .24 cm. It is quite clear from
the figures that the methodis able to producepoint images
with the correctpositionin all threedimensionsandthat the
imagesaresymmetricin all threeaxes. Further the computed
relative intensityof thetwo pointsis .916,whichis in excellent
agreementvith the .913 ratio betweenthe input datapoints.
Theimagesfrom the slice betweerthe planesof the pointsare
zeroto within 12 ordersof magnitude.
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Fig. 1Z = 0.0slice, 20" iteration

The secondphantomis a cylinder of radius2.5 cm and
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Fig. 2 Z = +.12slice,20%" iteration
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Fig. 3Z = +.24slice,20t" iteration

backgroundntensity 1, with two hot spotsof relative intensity
10. andtwo cold spotsof intensity0. The hot and cold spots
are centered1.5 cm from the origin, and have radii of .2
and .4 cm. The heightof the cylinder is to 2.5 cm. Monte
Carlo simulationswere doneandreconstructionperformedin
parallel,using100,000particleson eachof 2 Unix workstations
and a 3x32x32grid of .2 cm pixels. Resultsfor the central
slice are presentedor the 10", 20", and 40%" iterationsin
figure 4 through6. Both hot spotsareclearlyvisible,andasthe
iteration corverges,they approachtheir expectedrelative size
andintensities. The is more clearly demonstratedh figure 7,
which s a crosssectionalplot throughthe hot spots. The cold
spotsare also visible thoughless discernible. Further with
increasingiterations,becauseno regularizationwas used, the
level of noiseblursthe effect.

IVV. CONCLUSIONS

A techniquefor list-mode EM reconstructiorof Compton
scattercameramagesn 3-D hasbeendeveloped.Themethod,
which providesorderof N saving in memoryrequirementhas
beenimplementedn parallelusing the MPI message-passing
interface. Images reconstructedfrom distributed source
phantom data generatedby Monte Carlo simulation are
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Fig. 5 Centralslice, cylindrical phantom20*” iteration

presenteddemonstratingalidity of the technique.Using this

algorithm,a problemwith 100,000particlesto bereconstructed

on 64x64x64imagespacewould still require5 1 GB nodesin
orderto fit into memory Furtherwork is requiredbeforethe
methodcouldbeappliedto morerealisticproblems.
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