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ABSTRACT tion map image with a local smoothing penalty and repro-

_ject them to obtain ACFs. These ACFs are then used in

In positron emission tomography (PET), positron emis- the penalized-likelihood reconstruction of the emission data
sion from radiolabeled compounds yields two high energy by incorporating them in the emission data statistical model
photons emitted in opposing directions. However, often the [2]. Both of these methods employ a sequential approach.
photons are not detected due to attenuation within the pa-First, ACFs are obtained from transmission scans and then
tient. This attenuation is nonuniform and must be corrected emission data is reconstructed using the ACFs.
to obtain quantitativelyaccurate e.mission images. To mea- In this paper, we propose a different approach to image
sure attenuation effects, one typically acquires a PET trans+econstruction which attempts to utilize all the information
mission scan before or after the injection of radiotracer. In i, transmission and emission scans. Post-injection trans-
commercially available PET scanners, image reconstructionmnission scans are corrupted by emission counts, so there is
is performed sequentially in two steps regardless of the re-jnormation about the emission parameters in the transmis-
construction method: 1. Attenuation correction factor com- ginny scan. On the other hand, in an emission scan, there is
putation (ACF) from transmission scans, 2. Emission im- nformation about the attenuation properties of the medium,
age reconstruction using the computed ACFs. This two- gince the measurements are affected by the attenuation in
step reconstruction scheme does not use all the informay,e body. Thus, to make optimal use of the information
tion in the transmission and emission scans. Post-injectionj, these two scans, one can derive a joint objective func-
transmission scans contain emission contamination that in+ion, pased on both scans to jointly estimate attenuation and
cludes information about emission parameters. Similarly, smission parameters. This approach should yield better re-

emission scans contain information about the attenuatingg,jis than the standard sequential estimation strategy.
medium. To use all the available information, we propose

a joint estimation approach that estimates the attenuation

map and the emission image simultaneously from these two 2. THE MODEL

scans. The penalized-likelihood objective function is non-

convex for this prOblem. We propose an algorithm based Let A = [)\1, ol )‘p] denote the vector of unknown emis-
on paraboloidal surrogates that alternates between updatingjon counts originating from image pixels, ame-= [1, . . ., 11,)]

emission and attenuation parameters and is guaranteed tge the vector of linear attenuation coefficients (having units

monotonically decrease the objective function. of inverse length). Ley” = [y7,...,y%] denote the vec-
tor of post-injection transmission scan counts, gffd =

1. INTRODUCTION [y¥,...,y%] denote the vector of emission scan counts .

We assume that thgl andy? are realizations of statisti-

For a quantitativelyaccurate PET image, two scans are re- Cally independent random variables having Poisson distri-

quired: transmission and emission scans. Transmission scaR¥tions and with expectation§ andy;”:

are performed to estimate the attenuation characteristics of

the medium. The attenuation information gathered from gF (A i) = be )+ kip(A)e 0 4 T
transmission scans are used to correct for its effects on the
emission data to reconstruct emission images. Conventional %E(A, ) = pi()\)e—li(ﬂ) + 7“1-E7

method consists of linear processing (smoothing) of trans-

mission data to obtain attenuation correction factors (ACFs) fori = 1... N, and where

and multiplying the smoothed emission data with these fac-

tors to correct for the effects of attenuation [1]. Statisti- ()) = N\ () = .
. oo pi(A) = aijA; andl;(p) = Gijls,

cal penalized-likelihood methods reconstruct the attenua- EJ: " 2]: m
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wherea;; represent the emission projection geometry in- penalty terms.
cluding the detector efficiencies, apg; represent the to- .
mographic system geometry for attenuation. Hégeare [ A ] — ardmin & ([ A ] _ [ y¥ ])
the time adjusted blank scan coungs,andl; are the raw 1 " w| |yt ’
projegtions of true emission and attenuation parametgrs, B
andr;* are background counts in their respective scans, Ay T E
is the fraction of emission counts in the transmission scan ® ([ i ] ’ [ yT ]) =& (1, A) + &7(, A),
for each rayi, ande;’s are the detector efficiencies. - 5 . o
Our final goal is to estimata from the measurements. WNere®™ (4, A) and®™(y, A) are penalized-likelihood ob-

However, the unknown attenuation magor the ACFs) has jective functions for transmission and emission scans re-

to be estimated to get an accurate estimata.ofhe goal spectively:

of any reconstruction algorithmis to improve the quality of N

the reconstructed emission image. &7 (1, \) = Zh;r(li(ﬂ),pi()\)) + BuRu(p)
=1

3. SEQUENTIAL METHODS and

N

Conventional PET image reconstruction with post-injection OF(u, \) = Z RE(Li(1), pi(N) + BaRA(N),

transmission scans consists of the following steps [3, 4]. im1

First, scaled emission counts are subtracted from the trans- ] ] ) o
mission scan. Scaling accounts for deadtime, scan duraWhere we view the marginal negative log-likelihood func-
tions, radioactive decay and rod windowing to estimate the tionsh; andhf as a function of the projectioris andp;.
emission contamination accurately. An attenuation o~ 1he objective function only depends on the parameters
reconstructed from the subtracted data next. Finally, attenu-2ndy through their projections; andl; :
ation correction factors are formed and applied to emission T 7 P
sinogram to reconstruct the emission image hi (i pi) = 5 (i pi) — ; logy (L pi)

Although this subtraction based approach might give gng
satisfactory results for the brain scans where attenuation
is almost uniform, it is suboptimal for thorax scans due to RE (i, ps) = 5F (i, pi) — yE log 5F (I;, pi).
nonuniform attenuation. This method disregards measure-
ment noise statistics, namely the Poisson nature of the mea-  Note that the mean values of two measuremgfitand
surement data. Subtraction further destroys Poisson statisy? both contain the emission and attenuation projectipns
tics of transmission sinogram. This approach harms the re-andp; in them. In general the objective is nonconvex and
construction most for high attenuation rays, since the trans-the global minimization is hard.
mission counts are typically lower for those rays. Subtrac-
tion result_s in negatives in tran_smission sinogram which is 5. OPTIMIZATION METHOD
problematic as well. Transmission scan data can be smoothed

to reducg noise in_expen§e of reduced spatial resol_ution andye propose to achieve a local minimum of the objective
artifacts in the emission image. Because of the noise prob-fnctiond by alternatingly updating the emission and atten-
lems, this method might require unreasonably long trans-ation images. We make use of the paraboloidal surrogates
mission scans for whole-body studies. [5] idea to obtain an algorithm that monotonically decreases
the objective function assuring convergence to a local min-
imum. First we make this observation: Once eithesr 1
4. JOINT ESTIMATION is fixed, the form of the functions? and k¥ are similar
to their counterparts in penalized-likelihood estimation for
Joint estimation is theoretically more advantageous as com-the other parameter. We use this observation to derive the
pared to sequential methods since all the data is used tdollowing algorithm.
estimate all the unknown parameters. In this method, we  We describe the algorithmusing induction. Initial atten-
minimize one joint objective function to find the optimum uation and emission images and\° are found using the
values fory and X. We simply concatenate the measure- conventional sequential method. Spy= p™ andA = A"
mentsy® andy” to form the measurement vector and also are the current estimates of two parameters obtained after
A andu to form the parameter vector. Since, emission and iterationn. We fix the terms\™ at their current value and
transmission counts are independent freah other, ajoint ~ allow only the termg: to change. Our aim is to find:
penalized likelihood objective function can be written by _— . & N T N
summing up individual log-likelihoods and the individual B = arggg)mq’ (ks A™) + @7 (1, A").
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We denote the current values of the projectiongjﬁsé (dropping sub and super scripts):
pi(A™) and(? 2 I;(u™). The form of the mean values for h(0) — h(I™) + (1"
both scans when theterms are fixed and assumed constant [2 @E ] . 1" >0,
is: c= N
75 = ASe™l + B, for S € {T, E}. (1) ['fl(o)} : = 0.
+

S _ S S i .
where A7 = A7(p) and B;” are constants independent ¢ can be shown that for the attenuation parameter update,

s s
of /;. FurthermoreAy > 0 and B > 0 for both scans.  \hen the mean is given by (1), we get the following opti-
These conditions satisfy the conditions in Theorem 1 of ,um curvature expressiafi*t(l, A, B, y)

[5], and we can find surrogate parabotgds!;) andq¢” (I;)

that lie abovehr! (I;) and h¥(l;) and tangent to them at 2 A+ B ylAe™!

the current projectiord?. The sum of these two parabo- [1_2 (Af(l) —ylog Ae-'+ B + Ae—l + B>]+’ >0,
las gi(1;) £ ¢7(I;) + ¢Z(I;) is also a parabola. Once the A1 By

curvature and gradient of the parabola is determined, they (A+B)? )], ’
can be fed into the paraboloidal surrogates coordinate de-

scent (PSCD) [5] or paraboloidal surrogates ordered subsetsvheref(l) = 1 —e~! —le~!. So, the optimum curvature for
(OSTR) [6] algorithms to update the attenuation parametersupdatingu becomes: 2%, (1) = Pt (17, AT, BT, yT')+

=0,

int [
to obtain the next iteratg™ 1. coPt(in, AE BE yE) er?ere:
Similarly, we next fix the attenuation map valygs?
and allow only the\ parameters to change to minimize the AT = b+ kip}, AP =p7,
objective function: BT —,T BE _ B
AL = argmin SE (T N) + T (umth N). For the emission parametar the marginal likelihood

function hZ (p;) is such that whem? — 0, hZ(0) —

and P (0) — —oco. Even whenr? is greater than zero

but small (typically it is around 5-10% of the meah) (0)

can be very large. Since the optimum curvature uses the

75 = CSpi+ DS, for § e (T, E}. @) va_lu_e at zero as thetouching point forthe.surrogate and the
original function, it results in unnecessarily narrow surro-

gates in the emission case. It is advantageous to limit the

feasible region fon;’s (and hence;’s) at each iteration to

[Y* A}, 00) whered < ™ < 1is a parameter that controls

the shrinkage of the feasible region. Choosiftg> 0 en-

ables wider curvature surrogates which will result in faster

convergence. However, asincreases, it is desirable to de-

greasey” to zero, so that the correct feasible regjonso)

is achieved in the end. When the feasible region is limited,

we get the following optimum curvature:

When the attenuation parameters are fixed, the form of the
means for both scans is as follows:

Here once agail®® = C(i***) and DY are constants
independent op;. The objective function viewed as only
a function of A (or p;'s) is convex, and strictly convex if
y? > 0. Hence, the form of (2) makes it possible fdf (p;)

andh? (p;) (viewed as functions of; only) to satisfy the
conditions of Theorem 1 in [5]. Hence, similar to the atten-
uation parameter update, one can obtain parabolas that li
above thesé functions and tangent to them at the current
iteratep [7]. After the parabolas are obtained, it is easy to

implement a PSCD algorithm similar to [7]. B~ — (™ nj(pn) (1 — ~m
This joint estimation algorithm is easy to implement [2 (O"p") (np 2)1+p n(g I Cle} )] , pt >0,
and results in a very fast algorithm. Once the gradient andc = ()21 =) +
curvatures of the parabolas are determined, the problem turns [ﬁ(o)} , p = 0.
+

into a penalized weighted least squares type optimization
problem and the computations of updates become very fasiafter some calculations, when the mean is given by (2), we
[5,7]. get the following curvature®®(p, C, D, y) =

2y o CPTD  (1—7")Cp
6. THE CURVATURES T2 \®GypiD  GpiD ) P 0,
yCQ/D27 P = 0.

The curvatures of the surrogate parabalés play an im-

portant role in the paraboloidal surrogates algorithm. The Then, the optimum curvature for the joint estimation is as
curvature is the only free parameter that has to be choserfollows: ¢ (p7') = Pt (p}, CF, DI ,yT)+

to ensure monotonicity. We have shown [5] that the opti- c°Pt(p2, CF DF 4F) where:

mum curvature that results in the widest parabola yet ensur- - -

ing monotonicity in the transmission scan can be given by CT = ke i, CF =7l

K3
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Df = b 4T, DF =rF [2]

i -

Once the curvatures are determined, the surrogate para-
boloids are determined and the optimization can be per-
formed on the surrogate paraboloidal function.

[3]
7. CONCLUSION

We propose a new joint estimation algorithm for estimat-

ing attenuation and emission images from transmission and [4
emission scans. The method is based on minimizing a joint
objective function that contains terms from both scans with
respect to attenuation and emission parameters. We use an
alternating optimization scheme where we minimize one set 5]
of parameters at a time fixing the values of the other set.
This results in a fast and efficient algorithm that guarantees
monotonicity. The joint estimation approach is theoretically
more accurate and uses all the available information to es- [6]
timate all the parameters at once unlike current sequential
approaches.

There might be other ways to minimize the objective [7]
function such as sequentially updati(y , 1), (A2, p2),

-« (Ap, ttp). This method might converge faster, but it is
harder to implement and per iteration costs are higher. Our
alternating optimization approach is faster, simpler and eas-
ier to implement.

There are some challenges in using this method for PET [8]
image reconstructions. If random coincidences are pre-sub-
tracted, the measurements are no longer Poisson, so other
models such as Shifted Poisson [8] should be used. Since
the emission distribution inside the body changes with time
due to metabolism, methods to better estimate the emis- [9]
sion contamination should be found. Obtaining good ini-
tial estimates is also important since the joint problem is not
globally convex and there might be multiple minima. The
choice of the penalty hyperparametgts affects the recon-
structions considerably and their effect is not understood as[10]
well as the single image reconstruction case where there are
approximations to estimate the spatial resolution properties
of the reconstructed images|[9]. In the sequential methods,
the resolution mismatch between ACFs and emission data
causes artifacts in the emission images [1, 10]. In the joint
estimation method, this problem affects the emission im-
ages as well. Finally, although theoretically joint estimation
seems more attractive and enables use of all the information
in PET scans, it remains to demonstrate that it outperforms
a good sequential approach based on approximate statistical
methods.
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