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ABSTRACT

In positron emission tomography (PET), positron emis-
sion from radiolabeled compounds yields two high energy
photons emitted in opposing directions. However, often the
photons are not detected due to attenuation within the pa-
tient. This attenuation is nonuniform and must be corrected
to obtain quantitativelyaccurate emission images. To mea-
sure attenuation effects, one typically acquires a PET trans-
mission scan before or after the injection of radiotracer. In
commercially available PET scanners, image reconstruction
is performed sequentially in two steps regardless of the re-
construction method: 1. Attenuation correction factor com-
putation (ACF) from transmission scans, 2. Emission im-
age reconstruction using the computed ACFs. This two-
step reconstruction scheme does not use all the informa-
tion in the transmission and emission scans. Post-injection
transmission scans contain emission contamination that in-
cludes information about emission parameters. Similarly,
emission scans contain information about the attenuating
medium. To use all the available information, we propose
a joint estimation approach that estimates the attenuation
map and the emission image simultaneously from these two
scans. The penalized-likelihood objective function is non-
convex for this problem. We propose an algorithm based
on paraboloidal surrogates that alternates between updating
emission and attenuation parameters and is guaranteed to
monotonically decrease the objective function.

1. INTRODUCTION

For a quantitativelyaccurate PET image, two scans are re-
quired: transmission and emission scans. Transmission scans
are performed to estimate the attenuation characteristics of
the medium. The attenuation information gathered from
transmission scans are used to correct for its effects on the
emission data to reconstruct emission images. Conventional
method consists of linear processing (smoothing) of trans-
mission data to obtain attenuation correction factors (ACFs)
and multiplying the smoothed emission data with these fac-
tors to correct for the effects of attenuation [1]. Statisti-
cal penalized-likelihood methods reconstruct the attenua-

tion map image with a local smoothing penalty and repro-
ject them to obtain ACFs. These ACFs are then used in
the penalized-likelihood reconstruction of the emission data
by incorporating them in the emission data statistical model
[2]. Both of these methods employ a sequential approach.
First, ACFs are obtained from transmission scans and then
emission data is reconstructed using the ACFs.

In this paper, we propose a different approach to image
reconstruction which attempts to utilize all the information
in transmission and emission scans. Post-injection trans-
mission scans are corrupted by emission counts, so there is
information about the emission parameters in the transmis-
sion scan. On the other hand, in an emission scan, there is
information about the attenuation properties of the medium,
since the measurements are affected by the attenuation in
the body. Thus, to make optimal use of the information
in these two scans, one can derive a joint objective func-
tion based on both scans to jointly estimate attenuation and
emission parameters. This approach should yield better re-
sults than the standard sequential estimation strategy.

2. THE MODEL

Let λ = [λ1, . . . , λp] denote the vector of unknown emis-
sion counts originating from image pixels, andµ = [µ1, . . . , µp]
be the vector of linear attenuation coefficients (having units
of inverse length). LetyT = [yT1 , . . . , y

T
N ] denote the vec-

tor of post-injection transmission scan counts, andyE =
[yE1 , . . . , y

E
N ] denote the vector of emission scan counts .

We assume that theyTi andyEi are realizations of statisti-
cally independent random variables having Poisson distri-
butions and with expectations̄yTi andȳEi :

ȳTi (λ, µ) = bie
−li(µ) + kipi(λ)e

−li (µ) + rTi ,

ȳEi (λ, µ) = pi(λ)e
−li(µ) + rEi ,

for i = 1 . . .N , and where

pi(λ) =
∑
j

aijλj andli(µ) =
∑
j

gijµj,
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whereaij represent the emission projection geometry in-
cluding the detector efficiencies, andgij represent the to-
mographic system geometry for attenuation. Here,bi are
the time adjusted blank scan counts,pi and li are the raw
projections of true emission and attenuation parameters,rTi
andrEi are background counts in their respective scans,ki
is the fraction of emission counts in the transmission scan
for each rayi, andεi’s are the detector efficiencies.

Our final goal is to estimateλ from the measurements.
However, the unknown attenuation mapµ (or the ACFs) has
to be estimated to get an accurate estimate ofλ. The goal
of any reconstruction algorithm is to improve the quality of
the reconstructed emission image.

3. SEQUENTIAL METHODS

Conventional PET image reconstruction with post-injection
transmission scans consists of the following steps [3, 4].
First, scaled emission counts are subtracted from the trans-
mission scan. Scaling accounts for deadtime, scan dura-
tions, radioactive decay and rod windowing to estimate the
emission contamination accurately. An attenuation mapµ̂ is
reconstructed from the subtracted data next. Finally, attenu-
ation correction factors are formed and applied to emission
sinogram to reconstruct the emission imageλ̂.

Although this subtraction based approach might give
satisfactory results for the brain scans where attenuation
is almost uniform, it is suboptimal for thorax scans due to
nonuniform attenuation. This method disregards measure-
ment noise statistics, namely the Poisson nature of the mea-
surement data. Subtraction further destroys Poisson statis-
tics of transmission sinogram. This approach harms the re-
construction most for high attenuation rays, since the trans-
mission counts are typically lower for those rays. Subtrac-
tion results in negatives in transmission sinogram which is
problematic as well. Transmission scan data can be smoothed
to reduce noise in expense of reduced spatial resolution and
artifacts in the emission image. Because of the noise prob-
lems, this method might require unreasonably long trans-
mission scans for whole-body studies.

4. JOINT ESTIMATION

Joint estimation is theoretically more advantageous as com-
pared to sequential methods since all the data is used to
estimate all the unknown parameters. In this method, we
minimize one joint objective function to find the optimum
values forµ andλ. We simply concatenate the measure-
mentsyE andyT to form the measurement vector and also
λ andµ to form the parameter vector. Since, emission and
transmission counts are independent fromeach other, a joint
penalized likelihood objective function can be written by
summing up individual log-likelihoods and the individual

penalty terms.[
λ̂
µ̂

]
= argmin

λ,µ
Φ

([
λ
µ

]
;

[
yE

yT

])
,

Φ

([
λ
µ

]
;

[
yE

yT

])
= ΦT (µ, λ) + ΦE(µ, λ),

whereΦT (µ, λ) andΦE(µ, λ) are penalized-likelihood ob-
jective functions for transmission and emission scans re-
spectively:

ΦT (µ, λ) =

N∑
i=1

hTi (li(µ), pi(λ)) + βµRµ(µ)

and

ΦE(µ, λ) =

N∑
i=1

hEi (li(µ), pi(λ)) + βλRλ(λ),

where we view the marginal negative log-likelihood func-
tionshTi andhEi as a function of the projectionsli andpi.
The objective function only depends on the parametersλ
andµ through their projectionspi andli :

hTi (li, pi) = ȳ
T
i (li, pi)− y

T
i log ȳ

T
i (li, pi)

and

hEi (li, pi) = ȳ
E
i (li, pi) − y

E
i log ȳ

E
i (li, pi).

Note that the mean values of two measurementsȳEi and
ȳTi both contain the emission and attenuation projectionsli
andpi in them. In general the objective is nonconvex and
the global minimization is hard.

5. OPTIMIZATION METHOD

We propose to achieve a local minimum of the objective
functionΦ by alternatingly updating the emission and atten-
uation images. We make use of the paraboloidal surrogates
[5] idea to obtain an algorithm that monotonically decreases
the objective function assuring convergence to a local min-
imum. First we make this observation: Once eitherλ or µ
is fixed, the form of the functionshTi andhEi are similar
to their counterparts in penalized-likelihood estimation for
the other parameter. We use this observation to derive the
following algorithm.

We describe the algorithmusing induction. Initial atten-
uation and emission imagesµ0 andλ0 are found using the
conventional sequential method. Say,µ = µn andλ = λn

are the current estimates of two parameters obtained after
iterationn. We fix the termsλn at their current value and
allow only the termsµ to change. Our aim is to find:

µn+1 = argmin
µ≥0

ΦE(µ, λn) + ΦT (µ, λn).
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We denote the current values of the projections aspni
4
=

pi(λ
n) andlni

4
= li(µ

n). The form of the mean values for
both scans when theλ terms are fixed and assumed constant
is:

ȳSi = A
S
i e
−li +BSi , for S ∈ {T, E}. (1)

whereASi = A
S
i (p

n
i ) andBSi are constants independent

of li. FurthermoreASi > 0 andBSi ≥ 0 for both scans.
These conditions satisfy the conditions in Theorem 1 of
[5], and we can find surrogate parabolasqTi (li) andqEi (li)
that lie abovehTi (li) and hEi (li) and tangent to them at
the current projectionlni . The sum of these two parabo-

las qi(li)
4
= qTi (li) + q

E
i (li) is also a parabola. Once the

curvature and gradient of the parabola is determined, they
can be fed into the paraboloidal surrogates coordinate de-
scent (PSCD) [5] or paraboloidal surrogates ordered subsets
(OSTR) [6] algorithms to update the attenuation parameters
to obtain the next iterateµn+1.

Similarly, we next fix the attenuation map valuesµn+1

and allow only theλ parameters to change to minimize the
objective function:

λn+1 = argmin
λ≥0

ΦE(µn+1, λ) + ΦT (µn+1, λ).

When the attenuation parameters are fixed, the form of the
means for both scans is as follows:

ȳSi = C
S
i pi +D

S
i , for S ∈ {T, E}. (2)

Here once againCSi = C
S
i (l
n+1
i ) andDSi are constants

independent ofpi. The objective function viewed as only
a function ofλ (or pi’s) is convex, and strictly convex if
ySi > 0. Hence, the form of (2) makes it possible forhEi (pi)
andhTi (pi) (viewed as functions ofpi only) to satisfy the
conditions of Theorem 1 in [5]. Hence, similar to the atten-
uation parameter update, one can obtain parabolas that lie
above theseh functions and tangent to them at the current
iteratepni [7]. After the parabolas are obtained, it is easy to
implement a PSCD algorithm similar to [7].

This joint estimation algorithm is easy to implement
and results in a very fast algorithm. Once the gradient and
curvatures of the parabolas are determined, the problem turns
into a penalized weighted least squares type optimization
problem and the computations of updates become very fast
[5, 7].

6. THE CURVATURES

The curvatures of the surrogate parabolasq(.) play an im-
portant role in the paraboloidal surrogates algorithm. The
curvature is the only free parameter that has to be chosen
to ensure monotonicity. We have shown [5] that the opti-
mum curvature that results in the widest parabola yet ensur-
ing monotonicity in the transmission scan can be given by

(dropping sub and super scripts):

c =




[
2
h(0)− h(ln) + lnḣ(ln)

(ln)2

]
+

, ln > 0,[
ḧ(0)
]
+
, ln = 0.

It can be shown that for the attenuation parameter update,
when the mean is given by (1), we get the following opti-
mum curvature expressioncopt(l, A, B, y) =


[
2

l2

(
Af(l) − y log

A+ B

Ae−l + B
+
ylAe−l

Ae−l + B

)]
+

, l > 0,[
A

(
1−

By

(A +B)2

)]
+

, l = 0,

wheref(l) = 1−e−l−le−l . So, the optimum curvature for
updatingµ becomes:coptjoint(l) = c

opt(lni , A
T
i , B

T
i , y

T
i )+

copt(lni , A
E
i , B

E
i , y

E
i ) where:

ATi = bi + kip
n
i , A

E
i = p

n
i ,

BTi = r
T
i , B

E
i = r

E
i .

For the emission parameterλ, the marginal likelihood
functionhEi (pi) is such that whenrEi → 0, h

E
i (0) → ∞

and ḣEi (0) → −∞. Even whenrEi is greater than zero
but small (typically it is around 5-10% of the mean),hEi (0)
can be very large. Since the optimum curvature uses the
value at zero as the touching point for the surrogate and the
original function, it results in unnecessarily narrow surro-
gates in the emission case. It is advantageous to limit the
feasible region forλj ’s (and hencepi’s) at each iteration to
[γnλnj ,∞) where0 ≤ γn < 1 is a parameter that controls
the shrinkage of the feasible region. Choosingγn > 0 en-
ables wider curvature surrogates which will result in faster
convergence. However, asn increases, it is desirable to de-
creaseγn to zero, so that the correct feasible region[0,∞)
is achieved in the end. When the feasible region is limited,
we get the following optimum curvature:

c =




[
2
h(γnpn)− h(pn) + pnḣ(pn)(1− γn)

(pn)2(1− γn)2

]
+

, pn > 0,[
ḧ(0)
]
+
, pn = 0.

After some calculations, when the mean is given by (2), we
get the following curvaturecopt(p, C,D, y) =


2y

(1− γn)2p2

(
log

Cp+D

Cγnp+D
−
(1 − γn)Cp

Cp+D

)
, p > 0,

yC2/D2, p = 0.

Then, the optimum curvature for the joint estimation is as
follows: coptjoint(p

n
i ) = c

opt(pni , C
T
i , D

T
i , y

T
i )+

copt(pni , C
E
i , D

E
i , y

E
i ) where:

CTi = kie
−ln+1
i , CEi = e

−ln+1
i ,
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DTi = bie
−ln+1i + rTi , D

E
i = r

E
i .

Once the curvatures are determined, the surrogate para-
boloids are determined and the optimization can be per-
formed on the surrogate paraboloidal function.

7. CONCLUSION

We propose a new joint estimation algorithm for estimat-
ing attenuation and emission images from transmission and
emission scans. The method is based on minimizing a joint
objective function that contains terms from both scans with
respect to attenuation and emission parameters. We use an
alternating optimization scheme where we minimize one set
of parameters at a time fixing the values of the other set.
This results in a fast and efficient algorithm that guarantees
monotonicity. The joint estimation approach is theoretically
more accurate and uses all the available information to es-
timate all the parameters at once unlike current sequential
approaches.

There might be other ways to minimize the objective
function such as sequentially updating(λ1, µ1), (λ2, µ2),
. . ., (λp, µp). This method might converge faster, but it is
harder to implement and per iteration costs are higher. Our
alternating optimization approach is faster, simpler and eas-
ier to implement.

There are some challenges in using this method for PET
image reconstructions. If random coincidences are pre-sub-
tracted, the measurements are no longer Poisson, so other
models such as Shifted Poisson [8] should be used. Since
the emission distribution inside the body changes with time
due to metabolism, methods to better estimate the emis-
sion contamination should be found. Obtaining good ini-
tial estimates is also important since the joint problem is not
globally convex and there might be multiple minima. The
choice of the penalty hyperparametersβ’s affects the recon-
structions considerably and their effect is not understood as
well as the single image reconstruction case where there are
approximations to estimate the spatial resolution properties
of the reconstructed images[9]. In the sequential methods,
the resolution mismatch between ACFs and emission data
causes artifacts in the emission images [1, 10]. In the joint
estimation method, this problem affects the emission im-
ages as well. Finally, although theoretically joint estimation
seems more attractive and enables use of all the information
in PET scans, it remains to demonstrate that it outperforms
a good sequential approach based on approximate statistical
methods.
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