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1
ACCELERATED ITERATIVE
RECONSTRUCTION

STATEMENT REGARDING FEDERALLY
SPONSORED RESEARCH & DEVELOPMENT

This invention was made with Government support under
contract number 1-RO1-HL-098686 awarded by the
National Institutes of Health. The Government has certain
rights in the invention.

BACKGROUND

Embodiments of the invention generally relate to imag-
ing, and more particularly to reconstruction of computed
tomography data.

In modern medicine, medical professionals routinely con-
duct patient imaging examinations to assess the internal
tissue of a patient in a non-invasive manner. Furthermore,
for industrial applications related to security or quality
control, screeners may desire to non-invasively assess the
contents of a container (e.g., a package or a piece of luggage)
or the internal structure of a manufactured part. Accordingly,
for medical, security, and industrial applications, X-ray
imaging, such as X-ray computed tomography (CT) imag-
ing, may be useful for noninvasively characterizing the
internal composition of a subject of interest.

For computed tomography (CT) imaging suitable for such
applications, there are generally two types of image recon-
struction approaches: analytical reconstruction and iterative
reconstruction. Analytical approaches typically encompass
direct reconstruction techniques, such as the use of filtered
backprojection techniques. While analytical approaches may
be computationally efficient, they may undesirable in certain
circumstances due to image quality and/or patient dose
considerations. Iterative reconstruction approaches, which
iteratively compare and update and image based on a
simulated or modeled expectation, may provide superior
image quality and dose characteristics. However, iterative
reconstruction techniques are generally computationally
intensive and may be time consuming as well.

BRIEF DESCRIPTION

In one embodiment an image reconstruction method is
provided. In accordance with this method, an objective
function of an inner loop nested within an outer loop is
determined. The inner loop is iteratively processed using
ordered subsets until the inner loop is determined to be
complete. Iteratively processing the inner loop comprises
computing a gradient of a subset objective function of the
objective function, and computing an image update. Upon
completion of a respective inner loop, an image is updated
with the image update and one or more auxiliary variables,
if present, are updated. It is determined whether or not the
image is converged. If the image is not converged, a next
outer loop is proceeded to, a next objective function of a next
inner loop is determined, and the next inner loop is itera-
tively processed. If the image is converged, the image
reconstruction method is ended.

In an additional embodiment an image reconstruction
method is provided. In accordance with this method, an
objective function of an inner loop nested within an outer
loop is determined. The inner loop is iteratively processed
using ordered subsets until the inner loop is determined to be
complete. Iteratively processing the inner loop comprises
applying a preconditioner and computing an image update.
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Upon completion of a respective inner loop, an update
direction is computed for the respective outer loop, a step
size is computed for the respective outer loop, and an image
is updated. It is determined whether or not the image is
converged. If the image is not converged, a next outer loop
is proceeded to, a next objective function of a next inner loop
is determined, and the next inner loop is iteratively pro-
cessed. If the image is converged, ending the image recon-
struction.

In a further embodiment, an image formation system is
provided for use in iterative reconstruction. The image
formation system comprises a processing component con-
figured to access acquired data (such as a sinogram) from an
imaging device and a memory configured to store one or
more routines. The one or more routines, when executed by
the processor, cause acts to be performed comprising: deter-
mining an objective function of an inner loop nested within
an outer loop; iteratively processing the inner loop using
ordered subsets until the inner loop is determined to be
complete, wherein iteratively processing the inner loop
comprises: applying a preconditioner and computing an
image update; upon completion of a respective inner loop:
computing an update direction for the respective outer loop,
computing a step size for the respective outer loop, and
updating an image; determining if the image is converged:
if the image is not converged, proceeding to a next outer
loop, determining a next objective function of a next inner
loop, and iteratively processing the next inner loop, and if
the image is converged, ending the image reconstruction.

In an additional embodiment, one or more non-transitory
computer-readable media are provided. The one or more
non-transitory computer-readable media encode routines
which, when executed, cause acts to be performed compris-
ing: determining an objective function of an inner loop
nested within an outer loop; iteratively processing the inner
loop using ordered subsets until the inner loop is determined
to be complete, wherein iteratively processing the inner loop
comprises: applying a preconditioner and computing an
image update; upon completion of a respective inner loop:
computing an update direction for the respective outer loop,
computing a step size for the respective outer loop, and
updating an image; determining if the image is converged:
if the image is not converged, proceeding to a next outer
loop, determining a next objective function of a next inner
loop, and iteratively processing the next inner loop, and if
the image is converged, ending the image reconstruction.

One specific embodiment, the augmented Lagrangian
ordered subsets (AL-OS) method, has an outer loop that is
governed by the updates of auxiliary variables and Lagrange
multiplier vectors associated with an augmented Lagrang-
ian, and the inner loop is designed to minimize (approxi-
mately) a portion of the augmented Lagrangian using an OS
method. For example if x denotes the unknown image to be
reconstructed and A denotes the system matrix that relates
the image to the sinogram data, then the auxiliary variable
u=Ax corresponds to a constraint that leads to an augmented
Lagrangian.

BRIEF DESCRIPTION OF THE DRAWINGS

These and other features, aspects, and advantages of the
present invention will become better understood when the
following detailed description is read with reference to the
accompanying drawings in which like characters represent
like parts throughout the drawings, wherein:
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FIG. 1 is a diagrammatical view of a CT imaging system
for use in producing images, in accordance with aspects of
the present disclosure;

FIG. 2 depicts a high level flow diagram of one imple-
mentation of the present approach, in accordance with
aspects of the present disclosure;

FIG. 3 depicts flow control logic associated with one
algorithm for reconstructing an image, in accordance with
aspects of the present disclosure;

FIG. 4 depicts flow control logic associated with another
algorithm for reconstructing an image, in accordance with
aspects of the present disclosure;

FIG. 5 depicts a plot comparing convergence speed of a
proposed algorithm versus other algorithms and looking at
the root mean squared difference (RMSD) over a region of
interest (ROI) volume, in accordance with aspects of the
present disclosure;

FIG. 6 depicts a plot comparing convergence speed of a
proposed algorithm versus other algorithms and looking at
the low frequency RMSD over a ROI volume, in accordance
with aspects of the present disclosure;

FIG. 7 depicts a plot comparing convergence speed of a
proposed algorithm versus other algorithms and looking at
the high frequency RMSD over a ROI volume, in accor-
dance with aspects of the present disclosure;

FIG. 8 depicts a plot of RMSD versus iterations for a
proposed algorithm and other algorithms, in accordance
with aspects of the present disclosure;

FIG. 9 depicts a plot of RMSD versus the number of
forward and back-projection operations for a proposed algo-
rithm and other algorithms, in accordance with aspects of the
present disclosure;

FIG. 10 depicts another plot of RMSD versus iterations
for a proposed algorithm and other algorithms, in accor-
dance with aspects of the present disclosure; and

FIG. 11 depicts another plot of RMSD versus the number
of forward and back-projection operations for a proposed
algorithm and other algorithms, in accordance with aspects
of the present disclosure.

DETAILED DESCRIPTION

Model-based iterative reconstruction (MBIR) approaches
improve various aspects of image quality and have demon-
strated potential dose savings. However, these approaches
also are associated with long computation time and are
computationally intensive, which can preclude adoption of
such approaches in clinical environments. The high compu-
tation cost of model-based iterative reconstruction (MBIR)
is a result of the complexity of various geometrical, physi-
cal, and statistical models being employed by MBIR and of
the large size of data acquired by conventional multi-slice
CT scanners. In particular, MBIR algorithms typically work
by first forming an objective function that incorporates an
accurate system model, statistical noise model, and prior
model. The image is then reconstructed by computing an
estimate that minimizes the resulting objective function.

Many types of algorithms can be used for minimizing the
objective, or cost, function employed with such MBIR
approaches. Sequential algorithms, such as iterative coordi-
nate descent (ICD), have fast convergence rates if given a
good initial estimate but require column access to the system
matrix and have relatively large computation cost per itera-
tion. Simultaneous algorithms, such as gradient-based meth-
ods used with various surrogate functions, perform forward-
and back-projection operations over the whole image vol-
ume, and thus have a higher level of parallelism. However,
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in general, due to the ill-conditioned nature of tomographic
inversion, standard parallelizable algorithms may converge
slowly and may require excessive amount of computation to
produce a useful image.

Several approaches have been proposed to accelerate
simultaneous algorithms such as the nested loop (NL)
method, ordered subset (OS) method, and preconditioner
method. In the NL method, the algorithm is composed of
inner and outer loop iterations. Each outer loop iteration
defines a sub-problem that is then solved by inner loop
iterations. The inner loop solution, in turn, is used to
compute the update direction of the outer loop. The sub-
problems are constructed so that they are relatively easier to
solve compared to the original problem. To do this, the
sub-problems may be created by approximation to the
original problem or using a variable splitting technique.

A second approach, the OS method, accelerates the algo-
rithm by updating images using a sequence of sub-iterations.
To do this, the sinogram data is divided into N subsets and
each sub-iteration computes the update using only one
subset of the data. That is, instead of using the original cost
function f(x), the update is computed using a subset cost
function:

1 , 1 M
Ju) = 5 (Aex =y We(Aex = yi) + 2 @(0)

where A, is the forward projector from image to the k”
subset data, and y, and W, denote the subset sinogram and
weights respectively. In order to update the image based on
f,(X), one only needs to compute the forward projection and
back projection using only a subset of the data. Since
forward and back projection steps are the dominant compu-
tational cost for one iteration, the computational cost of each
sub-iteration is roughly 1/K” of the full iteration. Mean-
while, since f, (x) is a good approximation to f(x) when K
is small, each OS sub-iteration sometimes can be as effective
as a full iteration without OS. Therefore, by using K subsets,
one can potentially speed up the convergence by a factor of
K. In practice, the OS method may be fast in low frequency
convergence speed, but may need to use a large number of
subsets to accelerate high frequency convergence, resulting
in large limit cycle and difficulty for parallelization.

A third approach for acceleration is the preconditioner
method. A preconditioner is a matrix operator that approxi-
mates the inverse of the Hessian matrix of the cost function.
By applying a preconditioner, one can speed up the conver-
gence of eigenmodes corresponding to small eigenvalues of
the Hessian of the cost function. In a CT reconstruction
problem, that typically means accelerating convergence of
high frequency components (e.g. sharp edges and noise) in
the image. An image space ramp filter may be an effective
preconditioner for CT reconstruction problem in two-dimen-
sional (2D) fan beam geometry without statistical weights.
The preconditioner design may be extended for use with
statistical weights and three-dimensional (3D) geometry.
One example of the preconditioner technique is the precon-
ditioned gradient descent method, in which the update
direction is given by:

U=_MVF(x) @

where n is the iteration index and M is the preconditioner
matrix. The update is then given by:

MO ENOW NG
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where ™ is a parameter that controls the step size and is
typically computed using a one-dimensional (1D) line
search. In practice, the preconditioner approach accelerates
convergence of high frequency data, but is less effective in
speeding up low frequency convergence.

As will be appreciated from the above discussion, the
various approaches employed to accelerate simultaneous
algorithms typically have respective weaknesses. For vari-
ous reasons, addressing the weaknesses of the different
approaches is not a straightforward endeavor. For example,
simple combination of all or part of these various
approaches is not a trivial exercise. In particular, a naive
combination would not necessarily result in better perfor-
mance than the original methods, and might sometimes even
lead to divergence.

However, in accordance with the present approach these
various weaknesses may be overcome. For example, in
certain implementations a framework for a fast parallel
MBIR algorithm is employed which combines two or more
of an ordered subset method, a preconditioner method, and
a nested loop method. For example, in one type of imple-
mentation a nested loop (NL) structure is employed where
the inner loop sub-problems are solved using ordered subset
(OS) methods. In a first implementation, the inner loop
problems are the same as the original optimization problem.
The inner loop is solved using OS. Further, in one embodi-
ment discussed herein the convergence of OS may be further
enhanced by applying a preconditioner to the search direc-
tion. One key technical challenge for combining OS and the
use of preconditioners is to handle large limit cycles and to
prevent the algorithm from diverging. Therefore, as dis-
cussed herein, use of a line search method in the outer loop
and a mechanism to adapt preconditioner every iteration is
proposed to overcome these limitations. In every outer loop,
an update direction is computed by combining (e.g., by
summing) the update directions from the inner loops and
then computing an optimal (or near optimal) step size that
minimizes the cost function along the update direction. This
line search step helps insure monotonicity of the algorithm.
Using OS in the inner loops can boost both low and high
frequency convergence compared to previous approaches,
such as approaches where preconditioners where employed
in the inner loops of a NL algorithm.

In the second discussed implementation, the inner loop
problems are created by augmented Lagrangian methods and
then solved using OS method. Using OS with an augmented
Lagrangian framework may allow new sub-problems to be
designed that have not been previously explored, since OS
can accommodate non-circulant Hessian matrices. Further,
the choice of a non-identity weighting matrix is discussed
herein.

With the preceding discussion in mind, an example of a
computed tomography (CT) imaging system 10 suitable for
use with the present iterative reconstruction approaches is
depicted in FIG. 1. Though a CT system 10 is depicted in
FIG. 1, it should be appreciated that the system 10 and
discussion related to CT imaging is provided merely to
facilitate explanation by providing one example of a par-
ticular imaging context. However, the present approach is
not limited to CT implementations and, indeed may be used
in various other imaging contexts, including, but not limited
to: magnetic resonance imaging (MRI), positron emission
tomography (PET), and single-photon emission computed
tomography (SPECT). Indeed, the present approach may be
utilized in any context where iterative reconstruction is
performed and a cost function is optimized or minimized.
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Turning back to FIG. 1, in the depicted example, the CT
imaging system 10 is designed to acquire X-ray attenuation
data at a variety of views around a patient (or other subject
or object of interest) and is suitable for iterative tomographic
reconstruction as discussed herein. In the embodiment illus-
trated in FIG. 1, imaging system 10 includes a source of
X-ray radiation 12 positioned adjacent to a collimator 14.
The X-ray source 12 may be an X-ray tube, a distributed
X-ray source (such as a solid-state or thermionic X-ray
source) or any other source of X-ray radiation suitable for
the acquisition of medical or other images.

The collimator 14 permits X-rays 16 to pass into a region
in which a patient 18, is positioned. In the depicted example,
the X-rays 16 are collimated, such as into a fan-shaped or a
cone-shaped beam that passes through the imaged volume.
A portion of the X-ray radiation 20 passes through or around
the patient 18 (or other subject of interest) and impacts a
detector array, represented generally at reference numeral
22. Detector elements of the array produce electrical signals
that represent the intensity of the incident X-rays 20. These
signals are acquired and processed to reconstruct images of
the features within the patient 18.

Source 12 is controlled by a system controller 24, which
furnishes both power, and control signals for CT examina-
tion sequences. In the depicted embodiment, the system
controller 24 controls the source 12 via an X-ray controller
26 which may be a component of the system controller 24.
In such an embodiment, the X-ray controller 26 may be
configured to provide power and timing signals to the X-ray
source 12.

Moreover, the detector 22 is coupled to the system con-
troller 24, which controls acquisition of the signals gener-
ated in the detector 22. In the depicted embodiment, the
system controller 24 acquires the signals generated by the
detector using a data acquisition system 28. The data acqui-
sition system 28 receives data collected by readout electron-
ics of the detector 22. The data acquisition system 28 may
receive sampled analog signals from the detector 22 and
convert the data to digital signals for subsequent processing
by a processor 30 discussed below. Alternatively, in other
embodiments the digital-to-analog conversion may be per-
formed by circuitry provided on the detector 22 itself. The
system controller 24 may also execute various signal pro-
cessing and filtration functions with regard to the acquired
image signals, such as for initial adjustment of dynamic
ranges, interleaving of digital image data, and so forth.

In the embodiment illustrated in FIG. 1, system controller
24 is coupled to a rotational subsystem 32 and a linear
positioning subsystem 34. The rotational subsystem 32
enables the X-ray source 12, collimator 14 and the detector
22 to be rotated one or multiple turns around the patient 18,
such as rotated primarily in an x,y-plane about the patient.
It should be noted that the rotational subsystem 32 might
include a gantry upon which the respective X-ray emission
and detection components are disposed. Thus, in such an
embodiment, the system controller 24 may be utilized to
operate the gantry.

The linear positioning subsystem 34 may enable the
patient 18, or more specifically a table supporting the
patient, to be displaced within the bore of the CT system 10,
such as in the z-direction relative to rotation of the gantry.
Thus, the table may be linearly moved (in a continuous or
step-wise fashion) within the gantry to generate images of
particular areas of the patient 18. In the depicted embodi-
ment, the system controller 24 controls the movement of the
rotational subsystem 32 and/or the linear positioning sub-
system 34 via a motor controller 36.
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In general, system controller 24 commands operation of
the imaging system 10 (such as via the operation of the
source 12, detector 22, and positioning systems described
above) to execute examination protocols and to process
acquired data. For example, the system controller 24, via the
systems and controllers noted above, may rotate a gantry
supporting the source 12 and detector 22 about a subject of
interest so that X-ray attenuation data may be obtained at a
variety of views relative to the subject. In the present
context, system controller 24 may also includes signal
processing circuitry, associated memory circuitry for storing
programs and routines executed by the computer (such as
routines for executing iterative image reconstruction tech-
niques described herein), as well as configuration param-
eters, image data, and so forth.

In the depicted embodiment, the image signals acquired
and processed by the system controller 24 are provided to a
processing component 30 for reconstruction of images. The
processing component 30 may be one or more conventional
microprocessors. The data collected by the data acquisition
system 28 may be transmitted to the processing component
30 directly or after storage in a memory 38. Any type of
memory suitable for storing data might be utilized by such
an exemplary system 10. For example, the memory 38 may
include one or more optical, magnetic, and/or solid state
memory storage structures. Moreover, the memory 38 may
be located at the acquisition system site and/or may include
remote storage devices for storing data, processing param-
eters, and/or routines for iterative image reconstruction, as
described below.

The processing component 30 may be configured to
receive commands and scanning parameters from an opera-
tor via an operator workstation 40, typically equipped with
a keyboard and/or other input devices. An operator may
control the system 10 via the operator workstation 40. Thus,
the operator may observe the reconstructed images and/or
otherwise operate the system 10 using the operator work-
station 40. For example, a display 42 coupled to the operator
workstation 40 may be utilized to observe the reconstructed
images and to control imaging. Additionally, the images may
also be printed by a printer 44 which may be coupled to the
operator workstation 40.

Further, the processing component 30 and operator work-
station 40 may be coupled to other output devices, which
may include standard or special purpose computer monitors
and associated processing circuitry. One or more operator
workstations 40 may be further linked in the system for
outputting system parameters, requesting examinations,
viewing reconstructed images, and so forth. In general,
displays, printers, workstations, and similar devices supplied
within the system may be local to the data acquisition
components, or may be remote from these components, such
as elsewhere within an institution or hospital, or in an
entirely different location, linked to the image acquisition
system via one or more configurable networks, such as the
Internet, virtual private networks, and so forth.

It should be further noted that the operator workstation 40
may also be coupled to a picture archiving and communi-
cations system (PACS) 46. PACS 46 may in turn be coupled
to a remote client 48, radiology department information
system (RIS), hospital information system (HIS) or to an
internal or external network, so that others at different
locations may gain access to the raw or processed image
data.

While the preceding discussion has treated the various
exemplary components of the imaging system 10 separately,
these various components may be provided within a com-
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mon platform or in interconnected platforms. For example,
the processing component 30, memory 38, and operator
workstation 40 may be provided collectively as a general or
special purpose computer or workstation configured to oper-
ate in accordance with the aspects of the present disclosure.
In such embodiments, the general or special purpose com-
puter may be provided as a separate component with respect
to the data acquisition components of the system 10 or may
be provided in a common platform with such components.
Likewise, the system controller 24 may be provided as part
of such a computer or workstation or as part of a separate
system dedicated to image acquisition.

With the foregoing discussion of a suitable implementa-
tion of a CT imaging system 10 in mind, the following
provides background related to iterative image reconstruc-
tion approaches that will facilitate the subsequent explana-
tion of the present approaches. The model-based approach
may incorporate accurate modeling of system optics of the
imaging device, noise statistics in the transmission data, and
a priori knowledge of the object being imaged. The model-
based approach may improve multiple aspects of image
quality, and has demonstrated potential dose savings com-
pared to conventional filtered backprojection (FBP) and
other conventional CT reconstruction methods.

Let x denote the image and y denote the measurement
data. Both x and y may be considered random vectors, and
reconstruction of an image may be accomplished by com-
puting the maximum a posteriori (MAP) estimate given by:

x=arg min f(x)

Q)

F@)=Tx)+0(x) ®

where J(x,y) is a data mismatch term that penalizes the
inconsistency between the image and the measurement and
d(x) is a regularization function that penalizes the noise in
the image. One example of J(x,y) is in the quadratic form:

1 ©®)
J(x, y) = ZIIAx—yII%/

where A is the forward system matrix and W is a diagonal
weighting matrix. The i diagonal entry of the matrix W,
denoted by w,, is inversely proportional to the estimate of
the variance in the measurement y,. The data mismatch term
in equation (6) is used herein to illustrate the algorithm
framework for the present approaches. However, the pro-
posed algorithms can also be applied to other forms of data
mismatch terms, such as Poisson log likelihood function.

With this in mind, the first implementation to be discussed
is a nested loop (NL), ordered subset (OS)-preconditioner
embodiment. In one such embodiment, the OS method is
accelerated using a preconditioner and a line search is used
at the outer loop so that the cost function reduces mono-
tonically.

In the OS implementation the data is divided into K
subsets. Let Vf,(x) denote the sub-gradient computed based
on the k? subset. For example, the sub-gradient for the cost
function in equations (5) and (6) is given by:

, 1 @
Vi) = AW (Ax = 30 + £ VB)

Conventional simultaneous algorithms typically suffer from
slow convergence of high frequencies. Therefore, in one
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embodiment, a preconditioner is used to accelerate the high
frequency convergence. For example, similar to equations
(2) and (3), the update direction for the OS-preconditioner
for the k™ sub-iteration is given by:

U O=_ MV, (x) (®)

where M is the preconditioner matrix. The update is then
given by:

XDy () L R ()

©

where p® is the step size of each sub-iteration.

One limitation associated with the OS methodology is that
convergence is not guaranteed. Further, when OS is com-
bined with a preconditioner based approach, the limit cycle
issue may become more pronounced. To address this issue,
in certain embodiments, an outer loop step size optimization
is performed. In particular, in certain embodiments a step
size f is computed every outer loop iteration to guarantee the
monotonicity of the OS-Preconditioner method. This is in
contrast to conventional OS approaches where a fixed step
size p”*=c, where c is a predetermined constant. The idea
of optimal step size may be based on various approaches,
such as those used in gradient based methods. For example,
in the steepest descent method, B is computed by solving
the following optimization problem:

A = argmgnf(x(") + Bu®™) (10)

The choice of B using equation (10) is optimal in the sense
that it reduces the cost function the most along the search
direction u®. As a result, it also insures that the cost
function decreases in every iteration.

In certain embodiments, the nested loop framework and
optimal step size calculation are adapted into the OS-
Preconditioner method. In one embodiment, a fixed step size
parameter B is assumed in all sub-iterations. To apply the
step size calculation, a new outer loop step size parameter
B is introduced. After all sub-iterations are finished, the
overall update direction is computed using:

4 = Z BRI R an

k

The step size parameter f* may then be computed using
equation (10). The image is updated by:

MO ENON O 12)

In another embodiment, the step size can be computed more
(or less) frequently. That is, the updates may be summed and
the step size computed every P sub-iteration, where P<K (or
P>K if computing step size less frequently).

There are several methods that can be used to solve
equation (10). In one implementation, the optimization
problem can be solved using a 1D line search method. In
another example, a quadratic surrogate function to the
original problem can be found which results in a closed form
solution of [ given by:

(AW Ax - y) u+ VO u (13)

W A"WAu + v’ Qu

o
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where Q is the Hessian of the quadratic surrogate function
to the regularization term.

To solve the 1D optimization problem, the forward pro-
jection of u is computed. This calculation is an additional
overhead in comparison to conventional OS methods. To
reduce the computational cost, projector A may be replaced
with an approximation, such as a down-sampled operator,
AD,, where D, is an image down-sampler, and A is a
simplified operator that projects the down-sampled image to
a down-sampled sinogram space.

With respect to the preconditioner used in the OS portion
of this approach, the preconditioner M in equation (8)
approximates the inverse of the Hessian matrix of the cost
function. In one embodiment, one can use circulant matrix
approximation such as M,=A"'KA™", where A is a diagonal
matrix and K is an image space filter. In another embodi-
ment, one can use a diagonal matrix M,=D~" where D,, is the
sum of the i” row of the A“WA+Q matrix. The circulant
matrix approximation provides a more accurate high fre-
quency model of the Hessian, therefore improving the high
frequency convergence. Conversely, the diagonal approxi-
mation is more accurate for low frequency components of
the Hessian. However, since it is a conservative approxima-
tion, the convergence speed using M, is smaller in general.

In a third embodiment, a mixed preconditioner may be
used, such as:

M=M,+aM, 14

where o adjusts the relative weights of M, and M,. In one
embodiment, o can be adjusted as a function of iterations to
further reduce the limit cycle. In one implementation, o is
reduced when the sub-iteration updates start to oscillate. To
detect the oscillation,

1
) _ ~ § (k)
Tl - N ‘; u‘
i

and

CEEOWNT

1s)

(16)

are computed, where i is the pixel index, N is the total
number of pixels, and n and k are the iteration and sub-
iteration indices respectively. As will be appreciated, T,=T),
so that when the updates start to oscillate, the ratio

T
T

tends to decrease. Therefore, o may be updated by:

amn
w(n+l) — w(n) -1

In another embodiment, M can be adapted to each subset
of data. Instead of designing M to approximate (ATWA)™,
a sequence of preconditioners M, can be designed approxi-
mating (A,/W,A)™".

It should be noted that the implementation of OS dis-
cussed herein may be combined or implemented with vari-
ous acceleration techniques, such as non-uniform (NU)-OS
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and OS-momentum algorithms. Such OS-based acceleration
techniques can be applied to the inner loop OS methods
discussed herein.

In another embodiment, a conjugate gradient method may
be used in the outer loop. In this approach, the search
direction in the outer loop is conjugate with respect to the
Hessian of the cost function.

While the preceding discussion relates to various imple-
mentations of a nested loop (NL) ordered subset (OS)-
preconditioner embodiment, another possible embodiment
is an augmented Lagrangian OS embodiment. In accordance
with such an embodiment the OS algorithm is accelerated
using the augmented Lagrangian (AL) technique, which is
useful for solving ill-posed inverse problems using variable
splitting. In addition to the classical AL technique for
general optimization problems, various extensions and
variations may also be employed to further accelerate con-
vergence.

One variation of the AL method is to weight the 1, penalty
term in the augmented Lagrangian by some positive definite
matrix G. For example, when G is a diagonal matrix with
positive diagonal entries, each element of the split variable
may be penalized differently, which means the algorithm can
take larger steps for those entries that are still far from the
solution by increasing the corresponding penalty element.
However, such diagonal matrices have seldom been used for
other inverse problems because the diagonal weighting
matrix can impede the use of fast computation methods,
such as FFT and PCG, for the inner problems in the AL
method.

In a second implementation, the inner minimization prob-
lem of the AL method may be solved with the OS algorithm
because OS can accommodate non-circulant Hessian matri-
ces. For example, the simplest penalized weighted least-
squares (PWLS) formulation of X-ray CT image reconstruc-
tion, i.e.:

e (13)
% € argmin| = ||y — Ax|[%, + R(x)
inn{z Yy [ }

may be employed, where y is the noisy post-logarithm
projection, A is the system matrix of a CT scan, W is a
diagonal weighting matrix accounting for measurement
variance, R is an edge-preserving regularizer, and Q is some
convex set, such as a box constraint (e.g., non-negativity) on
the solution.

In one implementation of the AL approach, instead of
solving equation (18) directly, the focus may be on solving
the equivalent constrained problem:

o n gl ) (19)
(5. & avgmin{ 5y - ulfy + R0}

by introducing an auxiliary variable u, where u=Ax.
Equivalently, a saddle point is found of the corresponding
augmented Lagrangian of equation (19)

Al 2 1 ., (20)
Lalx, u, d; G) = 5”}’ = ullyy + RX) + ta(x) + EHAX —u—dllg

where L, is the characteristic function of set Q, d is the scaled
dual variable of u, and G is a user-selected positive definite
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matrix, e.g., G=nl with >0, where m is the AL penalty
parameter. This problem may be solved using the alternating
direction method. That is, £, may be minimized with
respect to x and u alternatively, followed by a gradient
ascent of d. The general iterates are:

. Lo . 21

KD e argmin{—ll(u(” +dW) - Axllé + R(x)} @b
xe0) 2

dD = (W + G LWy + GARYTD — ddy)

AU @) _ gD g D

The weighting matrix G cannot be chosen arbitrarily
because it becomes the weighting matrix of the quadratic
data-fit term for the x-update, and W+G are inverted in the
u-update. Nevertheless, there are many viable choices for
the matrix G. Any positive definite G will lead to the same
final converged image X. The choice of G affects only the
convergence rate.

By way of example, in one embodiment, the focus may be
on the preconditioning matrix G=nW, with >0 and the
resulting iterates become:

. 1 . . 22,
DA argmin{z [l +d@y — Axll%ﬂ, +! R(x)} @2
xe0)

. 1 . .
G+1) — (G+1) _ 4
u = 1+n(y+17(Ax a’y

AUHD — g) _ AU 4 4D

Intuitively, this approach more strongly penalizes the more
important line integrals, thus leading to larger step sizes for
those rays than if one used G=I. Solving the last two
equations in equation (22) yields the identity:

nd(j+l):y_u(/'+l)

upon substituting equation (23) into equation (22), the
iterates simplify as follows:

(23)

. 1 . 24
#1) & argmin 12 AslEy + 77 R0 e
xe0) 2

1

D) —
u =
l+n

(u(j) + T]Ax(jﬂ))

where the following modified sinogram is defined as
7298 7 ty+(1-nHu?. As can be seen from equation (24),
the x subproblem is a penalized weighted least-square
(PWLS) CT reconstruction problem with a reweighted regu-
larization term and a modified sinogram z%.

The above AL framework defines the outer loop of one
such implementation. Within each outer loop iteration, the
inner minimization problem in equation (24) must be solved,
exactly or approximately. For one proposed AL-OS
approach, an OS algorithm may be used to solve for this
inner problem. According to the convergence theorem of
ADMM methods, convergence of the outer loop iteration is
sufficiently ensured if the errors in solving the inner mini-
mization problems are summable. Thus, to improve the
convergence behavior of the AL-OS approach, multiple OS
iterations may be run to refine x before updating the split
variable u.

Aspects of the AL-OS approach that are worth noting and
which are distinct from conventional approaches include,
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but are not limited to: the use of a non-identity weighting
matrix G in the AL formulation and the use of an OS
approach to solve the inner minimization problem within the
AL framework (as opposed to a preconditioned conjugate
gradient).

The preceding described generalized concepts applicable
to the present disclosure as well as various specific imple-
mentations. With foregoing in mind, and turning to FIG. 2,
a block diagram 98 of a generalized implementation is
depicted. Similarly, FIGS. 3 and 4 depict flowcharts of
specific implementations in accordance with the preceding
discussion and comments.

With respect to FIG. 2. The practical algorithm has the
form:

_ Mol 1 2
LD OSMJ+1 (x(_/); z”Z(J) —Axllfy +T771R(x)’ Q) (25)
. 1 ; ; i
() _ U 4 (y = AXYDY £ pAaxUtD
z Ty @+ = A7) £ pAxtth)

where OS, /’(X,; 1}, C) denotes n iterations (M sub-iterations
per iteration) of an OS algorithm with initial guess X, cost
function 1), and constraint set C, and where N,,, denotes the
number of OS iterations for xU*!. For example, when
N,,,=P, the image and sonogram are updated periodically
with update period P. This is denoted graphically in FIG. 2,
by the respective OS block 100, forward projection block
102 and sonogram update block 104. Furthermore, to mini-
mize the error of the x subproblem (at least for early
iterations), the M-time acceleration of the OS algorithm may
be leveraged, so the number of subsets should be large
enough. However, using too many subsets would lead to a
larger limit cycle that will accelerate error accumulation.

Turning to FIG. 4 a more involved flow diagram 120 is
provided for a generalized application of presently disclosed
embodiments. In FIG. 3, the algorithm initially starts (block
122) and an inner loop objective function is formulated or
otherwise defined (block 124), such as per equation (24).
The gradient of the k” subset objective function is computed
(block 126), such as per equation (7) and an image update
is computed (block 128), such as per equation (9).

If k<K (block 130), the current inner loop is incomplete
and k is incremented by 1 and the next inner loop is
processed, starting at block 126. If k=K (block 130), the
current inner loop is complete and the image and any
auxiliary variables are updated (block 132), such as per
equations (12) and (25). If the image is determined to be
converged (block 134), processing is ended (block 136).
Otherwise, the outer loop is incremented and the next inner
loop objective function is formulated (block 124).

Similarly, FIG. 4 depicts a variation on this approach
employing a preconditioner, as discussed herein. In this
example, an algorithm 150 starts (block 122) and an inner
loop objective function is formulated or otherwise defined
(block 124). The gradient of the k™ subset objective function
is computed (block 126), such as per equation (7) and a
preconditioner is applied (block 152), such as per equations
(8) and (14). An image update is computed (block 128), such
as per equation (9).

If k<K (block 130), the current inner loop is incomplete
and k is incremented by 1 and the next inner loop is
processed, starting at block 126. If k=K (block 130), the
current inner loop is complete and a combined update
direction is computer (block 154), such as per equation (11).
An optimal step size is computed (block 156), such as per
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equations (10) and (13) and the image is updated (block
158), such as per equation (12). If the image is determined
to be converged (block 134), processing is ended (block
136). Otherwise, the outer loop is incremented and the next
inner loop objective function is formulated (block 124).

While the preceding discussion relates various embodi-
ments as well as the general approach presently contem-
plated, the following examples describe results of various
implementations of the proposed algorithms. In one study,
an algorithm implements a preconditioned-OS (POS)
approach, discussed herein, as a straightforward combina-
tion of the OS technique with a ramp preconditioner. In this
approach, a ramp preconditioner is used to compute the
update direction of each subset update, and it is then
followed by a line search on the subset cost function f,.
Conversely, a second algorithm implements the proposed
nested loop ordered subset preconditioner approach (NL-
POS). For both POS and NL-POS algorithm, 10 subsets
were used per iteration. In this example, the step size in each
sub-iteration is fixed to be one, while the optimal step size
is calculated every full iteration to guarantee the conver-
gence of the algorithm for unconstrained optimization prob-
lems. The sub-iteration is updated using a mixed precondi-
tioner. Additional algorithms included in the study include
two simultaneous algorithms: a preconditioned conjugate
gradient (PCG) using a ramp preconditioner and an OS
accelerated NU-SPS algorithm with 41 subsets.

Turning to FIGS. 5-7, these figures show the convergence
plots of the above-mentioned algorithms. In particular, the
results of one proposed algorithm (i.e., NL-POS) are com-
pared with the remaining algorithms based on a fully con-
verged reference image using NH-ICD algorithm. These
figures compare the convergence speed of the NL-POS
algorithm (i.e., an implementation of one proposed algo-
rithm) using 10 subsets to certain of the other algorithms
noted above (i.e., the ramp preconditioner, OS-SPS) as well
as to the naive combination of preconditioner and OS (POS).
For each algorithm, the root mean squared difference
(RMSD) is measured between the current iteration’s image
and fully converged ICD image in a region of interest to plot
the convergence curve. As shown in the figures, the NL-POS
algorithm has the fastest convergence speed among all
simultaneous algorithms in the comparison. In particular, the
NL-POS algorithm is as fast as OS-SPS in low frequency
and faster than both OS-SPS and the ramp preconditioner in
high frequency.

In FIG. 5, the overall RMSD convergence plot of all the
algorithms is shown. As depicted, a naive combination
between the OS and the preconditioner method (i.e., POS)
does not yield faster convergence speed. Although it has a
fast convergence speed in the beginning, it quickly enters the
limit cycle, therefore the convergence curve is flat after the
fourth iteration. By comparison, the NL-POS algorithm uses
only 10 subsets, and outperforms both conventional algo-
rithms in this interval. The convergence speed of NL-POS is
even comparable to sequential methods such as ICD.

To further understand the convergence behavior of all the
algorithms, the convergences curves of low frequency com-
ponents (FIG. 6) and high frequency components (FIG. 7)
are also plotted. To compute the low frequency RMSD, a
Gaussian low pass filter is applied on the difference image
before computing the low frequency RMSD. The high
frequency RMSD is computed in a similar fashion. FIGS. 6
and 7 shows that ramp preconditioner method has faster high
frequency convergence speed, while OS-SPS is faster in low
frequency convergence. The proposed NL-POS algorithm
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has similar low frequency convergence speed computed to
OS-SPS, and the fastest high frequency convergence speed
among all algorithms.

In a second study, the proposed algorithm, the AL-OS
algorithm, was evaluated using a patient helical CT scan. To
investigate the effects of (the AL penalty parameter) and
N,,,=P (the update period), three different AL penalty
parameters (0.3, 0.5, and 0.7) and three different update
periods (1, 5, and 10) were considered in the study. The
number of subsets was set to be 41. The standard OS
algorithm was considered the baseline method. As will be
appreciated, each split variable update requires one extra
forward projection compared to the standard OS algorithm.
The root mean square (RMS) difference between the recon-
structed image and the converged reconstruction was plotted
as a function of the number of iterations and the number of
forward/back-projection operations (assuming that Ax and
A'y have the same computational complexity). Lastly, since
the test helical scan contains gain fluctuations, blind gain
correction was included in all of the reconstruction algo-
rithms. With this correction, the weighting matrix W and the
preconditioning matrix G were diagonal plus a rank-1 matrix
rather than pure diagonal, which is a simple extension of the
proposed diagonal preconditioned AL method.

With these processing parameters in mind, the initial
noisy FBP image, the reconstructed images after about 100
forward/back-projections of the standard OS algorithm and
the proposed implementation of an AL-OS algorithm (using
different values of | and P), and the converged image were
compared. Upon review, the shading artifacts due to gain
fluctuations were largely suppressed in images generated
using the AL-OS algorithm and the proposed AL-OS algo-
rithm, with all configurations, outperformed the standard OS
algorithm in image quality, especially for smaller 1 and
larger P.

FIGS. 8 and 9 show the convergence rate curves of one
proposed algorithm with different values of P for the case
where 1=0:5, where OS-SQS-M denotes the standard OS
algorithm with M subsets, and AL-OS-M-n-P denotes a
proposed AL-OS algorithm with M subsets, the AL penalty
parameter 1), and the update period P. In particular, FIGS. 8
and 9 depict RMS differences between the reconstructed
image and the converged reconstruction as a function of the
number of iterations (FIG. 8) and the number of forward/
back-projections with different values of the update period P
(FIG. 9). As can be seen in FIGS. 8 and 9, the proposed
AL-OS algorithm with update period P=10 converges much
faster than the standard OS algorithm. There are sharp drops
in the RMS difference when the split variable is updated,
especially for larger P and in earlier iterations. This kind of
acceleration diminishes as the algorithm proceeds because
the speedup of OS algorithm saturates. To have more accel-
eration, P would need to be increased or M decreased to
solve the inner minimization problem more accurately.

FIGS. 10 and 11 show the convergence rate curves of one
proposed AL-OS algorithm with different values of ) for the
case P=5, where the naming convention is the same as in
FIGS. 8-9. Note that the standard OS algorithm is just a
special case of the proposed algorithm when n=1. In this
case, the value of P does not matter because z(j) is inde-
pendent of u(j). FIGS. 10 and 11, respectively, depict the
root mean square (RMS) differences between the recon-
structed image and the converged reconstruction as a func-
tion of the number of iterations (FIG. 10) and the number of
forward/back-projections with different values of the AL
penalty parameter 1 (FIG. 11).
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As can be seen in FIGS. 10-11, the convergence rate curve
converges to the curve of the standard OS algorithm as
approaches unity. Smaller 11 shows faster convergence rate
because the converged image is smooth and edge-preserved;
however, when 1) is too small, for example, when n=0.3, a
sharp increase in RMS difference may be observed which is
indicative of over-regularization in early iterations since the
inner minimization problem is too different from the original
problem. When the inner minimization problem is solved
properly, i.e., smaller error due to larger P or M, this
misdirection can be corrected by split variable updates, as
depicted by the bottom line in both FIGS. 10 and 11.
Furthermore, although only the standard OS algorithm is
considered here, any fast variation of the OS algorithm, can
be applied to the proposed diagonal preconditioned AL
method.

Technical effects of the invention include the use of nested
loop methodologies with other approaches, including the use
of ordered subsets with preconditioners as well as ordered
subsets with augmented Lagrangian approaches. The present
approaches may be used in iterative reconstruction algo-
rithms.

This written description uses examples to disclose the
invention, including the best mode, and also to enable any
person skilled in the art to practice the invention, including
making and using any devices or systems and performing
any incorporated methods. The patentable scope of the
invention is defined by the claims, and may include other
examples that occur to those skilled in the art. Such other
examples are intended to be within the scope of the claims
if they have structural elements that do not differ from the
literal language of the claims, or if they include equivalent
structural elements with insubstantial differences from the
literal languages of the claims.

The invention claimed is:
1. A processor-implemented
method, the method comprising:
on an imaging system or a remote client in communica-
tion with the imaging system, for a given set of scan
data acquired by the imaging system determining an
objective function of an inner loop nested within an
outer loop;
iteratively processing the inner loop using ordered subsets
until the inner loop is determined to be complete,
wherein iteratively processing the inner loop com-
prises:
applying a preconditioner; and
computing an image update;
upon completion of a respective inner loop:
computing an update direction for the respective
outer loop, wherein the update direction is deter-
mined by combining a plurality of inner loop
update directions from the inner loops encom-
passed by the respective outer loop;
computing a step size for the respective outer loop;
and
updating an image;
determining if the image is converged:
if the image is not converged, proceeding to a next
outer loop, determining a next objective function of
a next inner loop, and iteratively processing the next
inner loop; and
if the image is converged, ending the image reconstruc-
tion, generating a final image, and displaying a final
image on a display of the imaging system or the
remote client.

image reconstruction
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2. The image reconstruction method of claim 1, wherein
the step size for each respective outer loop is computed to
minimize the objective function associated with the respec-
tive outer loop.

3. The image reconstruction method of claim 1, wherein
the preconditioner is a combination of two or more other
preconditioners.

4. The image reconstruction method of claim 1, wherein
gain associated with each component of the preconditioner
are adapted each iteration.

5. An image processing system for use in iterative recon-
struction, comprising:

aprocessing component of an imaging system or a remote

client in communication with the imaging system,
wherein the processing component is configured to
access acquired image data from the imaging system;
and

a memory configured to store one or more routines which,

when executed by the processing component, cause
acts to be performed comprising:
for a given set of acquired image data, determining an
objective function of an inner loop nested within an
outer loop;
iteratively processing the inner loop using ordered
subsets until the inner loop is determined to be
complete, wherein iteratively processing the inner
loop comprises:
applying a preconditioner; and
computing an image update;
upon completion of a respective inner loop:
computing an update direction for the respective
outer loop,
wherein the update direction is determined by com-
bining a plurality of inner loop update directions
from the inner loops encompassed by the respec-
tive outer loop;
computing a step size for the respective outer loop;
and
updating an image;
determining if the image is converged:
if the image is not converged, proceeding to a next
outer loop, determining a next objective function
of a next inner loop, and iteratively processing the
next inner loop; and
if the image is converged, ending the image recon-
struction, generating a final image, and displaying
the final image on a display of the imaging system
or the remote client.
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6. The image processing system of claim 5, wherein the
step size for each respective outer loop is computed to
minimize the objective function associated with the respec-
tive outer loop.

7. The image processing system of claim 5, wherein the
preconditioner is a combination of two or more other
preconditioners.

8. The image processing system of claim 5, wherein gains
associated with each preconditioner component are adapted
each iteration.

9. One or more non-transitory computer-readable media
encoding routines which, when executed by a processor of
an imaging system or a remote client in communication with
the imaging system, cause acts to be performed comprising:

for a given set of scan data acquired by the imaging

system, determining an objective function of an inner
loop nested within an outer loop;

iteratively processing the inner loop using ordered subsets

until the inner loop is determined to be complete,

wherein iteratively processing the inner loop com-

prises:

applying a preconditioner; and

computing an image update;

upon completion of a respective inner loop:

computing an update direction for the respective outer
loop wherein the update direction is determined by
combining a plurality of inner loop update directions
from the inner loops encompassed by the respective
outer loop;

computing a step size for the respective outer loop; and

updating an image;

determining if the image is converged;

if the image is not converged, proceeding to a next
outer loop, determining a next objective function of
a next inner loop, and iteratively processing the next
inner loop; and

if the image is converged, ending the image reconstruc-
tion, generating a final image, and displaying the
final image on the display.

10. The one or more non-transitory computer-readable
media of claim 9, wherein the step size for each respective
outer loop is computed to minimize the objective function
associated with the respective outer loop.

11. The one or more non-transitory computer-readable
media of claim 9, wherein the preconditioner is a combina-
tion of two or more other preconditioners.

12. The one or more non-transitory computer-readable
media of claim 9, wherein gains associated with each
preconditioner component are adapted each iteration.
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