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ORDERED SUBSETS WITH MOMENTUM
FOR X-RAY CT IMAGE RECONSTRUCTION

CROSS REFERENCE TO RELATED
APPLICATIONS

This non-provisional application relates to and claims the
benefit of priority under 35 U.S.C. §119(e) to U.S. Provi-
sional Patent Application Ser. No. 61/728,909, filed Nov. 21,
2012, which is herein incorporated in its entirety by refer-
ence.

STATEMENT OF GOVERNMENT INTEREST

This invention was made with government support under
1-R01-HL-098686 awarded by National Institutes of Health.
The government has certain rights in the invention.

BACKGROUND

Embodiments of the present disclosure relate generally to
diagnostic imaging, and more particularly to methods and
systems for fast and iterative image reconstruction.

Non-invasive imaging techniques are widely used in
diagnostic imaging applications such as security screening,
quality control, and medical imaging systems. Particularly,
in medical imaging, non-invasive imaging techniques such
as computed tomography (CT) are used for unobtrusive,
convenient, and fast imaging of underlying tissues and
organs. Some CT systems employ direct reconstruction
techniques such as filtered back-projection (FBP) that allow
reconstruction of a three-dimensional (3D) image data set in
a single reconstruction step. Thus, the direct reconstruction
techniques are generally fast and computationally efficient.

Alternatively, some CT systems employ iterative recon-
struction techniques that iteratively update a reconstructed
image volume. Typically, the iterative reconstruction tech-
niques are employed to provide greater flexibility in imaging
applications than available when using the direct reconstruc-
tion techniques. Specifically, the iterative reconstruction
techniques find use in imaging applications that entail selec-
tive and/or interactive enhancement of imaging metrics
and/or protocols based on specific requirements. For
example, the iterative reconstruction techniques provide
greater flexibility in configuring acquisition geometry and/or
modeling physical effects to improve one or more imaging
metrics such as reducing radiation dose, noise, and/or other
imaging artifacts.

Iterative reconstruction techniques, however, involve
long and complex computations that are generally much
slower than the direct reconstruction techniques. Certain
techniques have been proposed for reducing computational
costs of iterative reconstruction, for example, using ordered
subsets (OS) or relaxation factors. OS algorithms, in par-
ticular, are used in CT imaging to accelerate image recon-
struction by using only a subset of measured projection data
in each image update. Although, using only a subset of the
measured projection data in the OS algorithms entails
approximations, the OS algorithms provide dramatic initial
acceleration. Such conventional OS algorithms, however,
still employ a number of iterations to converge and involve
long computations, thus limiting use of the OS algorithms in
clinical settings.

BRIEF DESCRIPTION

In accordance with aspects of the present disclosure,
methods, systems, and non-transitory computer readable
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media for image reconstruction are presented. Measured
data corresponding to a subject is received. A preliminary
image update in a particular iteration is determined based on
one or more image variables computed using at least a subset
of the measured data in the particular iteration. Additionally,
at least one momentum term is determined based on the one
or more image variables computed in the particular iteration
and/or one or more further image variables computed in one
or more iterations preceding the particular iteration. Further,
a subsequent image update is determined using the prelimi-
nary image update and the momentum term. The preliminary
image update and/or the subsequent image update are itera-
tively computed for a plurality of iterations until one or more
termination criteria are satisfied.

DRAWINGS

These and other features, aspects, and embodiments of the
present disclosure will become better understood when the
following detailed description is read with reference to the
accompanying drawings in which like characters represent
like parts throughout the drawings, wherein:

FIG. 1 is a diagrammatical view of a CT system, in
accordance with aspects of the present disclosure;

FIG. 2 is a block schematic diagram of an exemplary
imaging system, in accordance with aspects of the present
disclosure;

FIG. 3 is a flow chart depicting an exemplary iterative
image reconstruction method, in accordance with aspects of
the present disclosure;

FIG. 4 is a graphical representation depicting exemplary
convergence rates of certain image reconstruction methods
with and without use of momentum, in accordance with
aspects of the present disclosure;

FIG. 5 is another graphical representation depicting
exemplary convergence rates of certain image reconstruc-
tion methods with and without use of momentum, in accor-
dance with aspects of the present disclosure; and

FIG. 6 is a diagrammatical representation depicting
examples of initial images and corresponding converged
images that are reconstructed using conventional methods
and an embodiment of the present method described with
reference to FIG. 3, in accordance with aspects of the present
disclosure.

DETAILED DESCRIPTION

The following description presents systems and methods
for fast and iterative image reconstruction. Particularly,
certain embodiments illustrated herein describe methods and
systems for faster convergence of iterative image recon-
struction using OS and momentum. As used herein, the term
“momentum” may be used to refer to information derived
from one or more previous iterations that may be used in
computations corresponding to a current iteration for accel-
erating convergence of the iterative image reconstruction,
particularly in the early iterations.

Although the following description describes embodi-
ments for fast and iterative image reconstruction in the
context of medical diagnostic imaging using a CT system,
the present disclosure may be implemented in various other
medical imaging systems and applications. Some of these
systems may include an X-ray system, a positron emission
tomography (PET) scanner, a PET-CT scanner, a single
photon emission computed tomography (SPECT) scanner, a
SPECT-CT scanner, an X-ray tomosynthesis system, and/or
an MR-CT scanner.
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In addition to medical diagnostic imaging, embodiments
of the present disclosure may also be employed in other
non-invasive imaging contexts to generate images with
minimal processing and memory utilization. By way of
example, embodiments of the present disclosure may be
used in baggage screening, and/or industrial nondestructive
evaluation of manufactured parts. An exemplary environ-
ment that is suitable for practicing various implementations
of the present disclosure will be discussed in the following
sections with reference to FIGS. 1 and 2.

FIG. 1 illustrates an exemplary CT system 100 configured
to allow fast and iterative image reconstruction. Particularly,
the CT system 100 is configured to image a subject such as
a patient, an inanimate object, one or more manufactured
parts, and/or foreign objects such as dental implants, stents,
and/or contrast agents present within the body. In one
embodiment, the CT system 100 includes a gantry 102,
which in turn, may further include at least one X-ray
radiation source 104 configured to project a beam of X-ray
radiation 106 for use in imaging the patient. Specifically, the
radiation source 104 is configured to project the X-rays 106
towards a detector array 108 positioned on the opposite side
of the gantry 102. Although, FIG. 1 depicts only a single
radiation source 104, in certain embodiments, multiple
radiation sources may be employed to project a plurality of
X-rays 106 for acquiring projection data corresponding to
the patient at different energy levels.

In certain embodiments, the CT system 100 further
includes an image processing unit 110 configured to recon-
struct images of a target volume of the patient using an
iterative reconstruction method. In accordance with aspects
of the present disclosure, the CT system 100 performs an
OS-based iterative reconstruction using momentum to sub-
stantially accelerate the convergence of the OS-based itera-
tive image reconstruction without any significant sacrifice to
image quality. The fast and accurate image reconstruction
reduces scanning time and radiation dose, while also allow-
ing for early diagnosis and/or treatment of the patient.
Another exemplary embodiment of an imaging system that
allows for faster image reconstruction using the OS-based
iterative reconstruction aided by momentum will be
described in greater detail with reference to FIG. 2.

FIG. 2 illustrates an exemplary imaging system 200
similar to the CT system 100 of FIG. 1. In accordance with
aspects of the present disclosure, the system 200 is config-
ured to substantially accelerate iterative reconstruction of
one or more images using OS and momentum. In one
embodiment, the system 200 includes the detector array 108
(see FIG. 1). The detector array 108 further includes a
plurality of detector elements 202 that together sense the
X-ray beams 106 (see FIG. 1) that pass through a subject 204
such as a patient to acquire corresponding projection data.
Accordingly, in one embodiment, the detector array 108 is
fabricated in a multi-slice configuration including the plu-
rality of rows of cells or detector elements 202. In such a
configuration, one or more additional rows of the detector
elements 202 are arranged in a parallel configuration for
acquiring the projection data.

In certain embodiments, the system 200 is configured to
traverse different angular positions around the subject 204
for acquiring desired projection data. Accordingly, the gan-
try 102 and the components mounted thereon may be
configured to rotate about a center of rotation 206 for
acquiring the projection data, for example, at different
energy levels. Alternatively, in embodiments where a pro-
jection angle relative to the subject 204 varies as a function
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of time, the mounted components may be configured to
move along a general curve rather than along a segment of
a circle.

In one embodiment, the system 200 includes a control
mechanism 208 to control movement of the components
such as rotation of the gantry 102 and the operation of the
X-ray radiation source 104. In certain embodiments, the
control mechanism 208 further includes an X-ray controller
210 configured to provide power and timing signals to the
radiation source 104. Additionally, the control mechanism
208 includes a gantry motor controller 212 configured to
control a rotational speed and/or position of the gantry 102
based on imaging requirements.

In certain embodiments, the control mechanism 208 fur-
ther includes a data acquisition system (DAS) 214 config-
ured to sample analog data received from the detector
elements 202 and convert the analog data to digital signals
for subsequent processing. The data sampled and digitized
by the DAS 214 is transmitted to a computing device 216.
In one example, the computing device 216 stores the data in
a storage device 218. The storage device 218, for example,
may include a hard disk drive, a floppy disk drive, a compact
disk-read/write (CD-R/W) drive, a Digital Versatile Disc
(DVD) drive, a flash drive, and/or a solid-state storage
device.

Additionally, the computing device 216 provides com-
mands and parameters to one or more of the DAS 214, the
X-ray controller 210, and the gantry motor controller 212 for
controlling system operations such as data acquisition and/or
processing. In certain embodiments, the computing device
216 controls system operations based on operator input. The
computing device 216 receives the operator input, for
example, including commands and/or scanning parameters
via an operator console 220 operatively coupled to the
computing device 216. The operator console 220 may
include a keyboard (not shown) or a touchscreen to allow the
operator to specify the commands and/or scanning param-
eters.

Although FIG. 2 illustrates only one operator console 220,
more than one operator console may be coupled to the
system 200, for example, for inputting or outputting system
parameters, requesting examinations and/or viewing images.
Further, in certain embodiments, the system 200 may be
coupled to multiple displays, printers, workstations, and/or
similar devices located either locally or remotely, for
example, within an institution or hospital, or in an entirely
different location via one or more configurable wired and/or
wireless networks 222 such as the Internet and/or virtual
private networks.

In one embodiment, for example, the system 200 either
includes, or is coupled to a picture archiving and commu-
nications system (PACS) 224. In an exemplary implemen-
tation, the PACS 224 is further coupled to a remote system
such as a radiology department information system, hospital
information system, and/or to an internal or external net-
work (not shown) to allow operators at different locations to
supply commands and parameters and/or gain access to the
image data.

The computing device 216 uses the operator supplied
and/or system defined commands and parameters to operate
a table motor controller 226, which in turn, may control a
motorized table 228. Particularly, the table motor controller
226 moves the table 228 for appropriately positioning the
subject 204 in the gantry 102 for acquiring projection data
corresponding to the target volume of the subject 204.

As previously noted, the DAS 214 samples and digitizes
the projection data acquired by the detector elements 202.
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Subsequently, an image reconstructor 230 uses the sampled
and digitized X-ray data to perform high-speed reconstruc-
tion. Although, FIG. 2 illustrates the image reconstructor
230 as a separate entity, in certain embodiments, the image
reconstructor 230 may form part of the computing device
216. Alternatively, the image reconstructor 230 may be
absent from the system 200 and instead the computing
device 216 may perform one or more functions of the image
reconstructor 230. Moreover, the image reconstructor 230
may be located locally or remotely, and may be operatively
connected to the system 100 using a wired or wireless
network. Particularly, one exemplary embodiment may use
computing resources in a “cloud” network cluster for the
image reconstructor 230.

Typically, iterative image reconstruction algorithms are
implemented by forming an objective or cost function that
incorporates an accurate system model, statistical noise
model, and/or prior model. The image is then reconstructed
by computing an estimate that minimizes the resulting cost
function. Various algorithms may be used for minimizing the
cost function. For example, sequential algorithms, such as
iterative coordinate descent (ICD), may be employed as
these have fast convergence rates if given a good initial
estimate. However, the sequential algorithms entail column
access 1o a system matrix and have relatively large compu-
tation cost per iteration. Simultaneous algorithms, such as
gradient-based methods used with various surrogate func-
tions may provide a higher level of parallelism. However,
standard parallelizable algorithms may converge slowly and
may require excessive computation to produce a useful
image.

Accordingly, several approaches have been proposed to
accelerate simultaneous algorithms. Particularly, in a pres-
ently contemplated embodiment, the image reconstructor
230 performs iterative image reconstruction using OS and
momentum. An OS-based iterative image reconstruction
uses only a subset of the projection data per image update or
sub-iteration. Accordingly, the measured data is divided into
M subsets and each sub-iteration computes an update using
only one subset of the data, thereby substantially reducing
the computational effort and/or memory access involved in
the iterative image reconstruction. Furthermore, use of one
or more momentum terms, for example, derived using
Nesterov’s algorithms accelerates the OS-based iterative
image reconstruction towards a desired optimum.

Particularly, in one embodiment, the image reconstructor
230 combines the OS-based iterative image reconstruction
with momentum terms to aid in achieving a convergence rate
of O(1/(Mk)?) in early iterations, where k counts the number
of iterations and M denotes the number of subsets. More
specifically, the convergence rate of O(1/(Mk)*) may be
achieved by combining OS-based iterative image recon-
struction, for example, with Nesterov’s momentum terms. In
contrast, the convergence rate of the conventional OS-based
iterative reconstruction is only O(1/(Mk)) in early iterations.
In certain embodiments, the image reconstructor 230 further
combines separable quadratic surrogates (SQS) and/or a
non-uniform (NU) surrogate approach with momentum
terms to allow for faster convergence even with a relatively
small number of subsets.

In one embodiment, the image reconstructor 230 stores
the images reconstructed using the OS-based iterative image
reconstruction with the momentum terms in the storage
device 218. Alternatively, the image reconstructor 230 trans-
mits the reconstructed images to the computing device 216
for generating useful patient information for diagnosis and
evaluation. In certain embodiments, the computing device
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216 transmits the reconstructed images and/or the patient
information to a display 232 communicatively coupled to
the computing device 216 and/or the image reconstructor
230.

In one embodiment, the display 232 allows the operator to
evaluate the imaged anatomy. The display 232 may also
allow the operator to select a volume of interest (VOI)
and/or request patient information, for example, via graphi-
cal user interface (GUI) for a subsequent scan or processing.
Further, the system 200 performs the iterative image recon-
struction using projection data acquired from the selected
VOI using a combination of OS methods with momentum
terms. In one example, the momentum terms may be similar
to the terms derived by Nesterov for general optimization
problems that do not employ OS. An exemplary embodi-
ment describing a method for fast iterative image recon-
struction using OS and momentum will be described in
greater detail with reference to FIG. 3.

FIG. 3 illustrates a flow chart 300 depicting an exemplary
iterative image reconstruction method using OS and
momentum. In the present disclosure, embodiments of the
exemplary method may be described in a general context of
computer executable instructions on a computing system or
a processor. Generally, computer executable instructions
may include routines, programs, objects, components, data
structures, procedures, modules, functions, and the like that
perform particular functions or implement particular
abstract data types.

Additionally, embodiments of the exemplary method may
also be practiced in a distributed computing environment
where optimization functions are performed by remote pro-
cessing devices that are linked through a wired and/or
wireless communication network. In the distributed com-
puting environment, the computer executable instructions
may be located in both local and remote computer storage
media, including memory storage devices.

Further, in FIG. 3, the exemplary method is illustrated as
a collection of blocks in a logical flow chart, which repre-
sents operations that may be implemented in hardware,
software, or combinations thereof. The various operations
are depicted in the blocks to illustrate the functions that are
performed, for example, during preliminary image update,
momentum computation, and/or subsequent image update
phases of the exemplary method. In the context of software,
the blocks represent computer instructions that, when
executed by one or more processing subsystems, perform
the recited operations.

The order in which the exemplary method is described is
not intended to be construed as a limitation, and any number
of the described blocks may be combined in any order to
implement the exemplary method disclosed herein, or an
equivalent alternative method. Additionally, certain blocks
may be deleted from the exemplary method or augmented by
additional blocks with added functionality without departing
from the spirit and scope of the subject matter described
herein. For discussion purposes, the exemplary method will
be described with reference to the elements of FIGS. 1-2.

Embodiments of the present method allow for substantial
reduction in computational costs involved in the iterative
image reconstruction. To that end, the present method
employs OS and momentum to accelerate the iterative image
reconstruction. Particularly, embodiments of the present
method use only a subset of the projection data per iteration
and one or more momentum terms derived from previous
iterations to allow expeditious updates to the image esti-
mates, thereby improving the image reconstruction speed.
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For clarity, the present method is described here with
reference to use of momentum terms determined using
Nesterov’s algorithms. However, implementation of the
present method is not limited to the specific iterative recon-
struction algorithm discussed in this description. In particu-
lar, the present method may be used to generate momentum
terms, for example, using Aitken’s acceleration or Stef-
fensen’s method. Further, the present method may be used
to improve the performance of several other iterative recon-
struction algorithms such as the preconditioned conjugate
gradient (PCG) method, the grouped coordinate descent
method, and line search methods. Additionally, the present
combination of OS and momentum may also be employed
for rapid solving of linear systems of equations and other
sub-problems arising in image reconstruction algorithms
involving variable-splitting and the augmented Lagrangian.

In one embodiment, an imaging system such as the CT
system 100 of FIG. 1 or the system 200 of FIG. 2 may be
configured to acquire projection data corresponding to a
target region of a patient or a manufactured part. An image
reconstruction unit such as the image reconstructor 230 of
FIG. 2 may generate measured data, for example, sinogram
data corresponding to the acquired projection data for use in
subsequent image reconstruction. Alternatively, the mea-
sured data may correspond to coil data in a magnetic
resonance imaging (MRI) scan performed using a multiple
coil MRI system. At step 302, the measured data may be
received from the imaging system. An iterative image recon-
struction algorithm may then use the measured data to
reconstruct one or more images of the target region using
iterative updates.

Tterative X-ray CT reconstruction entails reconstructing
an image xeR™ from noisy measurements yeR™ by mini-
mizing a cost function W(x):

X=argmin W¥(x).

x=0

M

Equation (1) represents an example of such a cost func-
tion W(x), where X corresponds to a global (or local)
minimizer of W(x), possibly with a non-negativity con-
straint.

In one embodiment, the cost function W(x) for X-ray CT
reconstruction may be based on a convex and continuously
differentiable penalized weighted least squares (PWLS)
function. The PWLS cost function may be defined, for
example, using equation (2):

W) =4ally-Ax] 5+ BRG) @

where A corresponds to a projection operator (a matrix that
characterizes the imaging system), W corresponds to a
diagonal matrix that provides statistical weighting, and R(x)
corresponds to a regularization function that may be non-
quadratic and differentiable. Further, [ corresponds to a
regularization parameter that balances between the data-
fitting term Y4|ly-Ax||,,* and the regularizer R(x).
However, due to the large-scale and ill conditioning of the
CT image reconstruction problem, only certain iterative
algorithms are well suited to minimize the cost function
W(x). Minimizing the cost function W(x) entails determining
a corresponding gradient. In one embodiment, the gradient
of the PWLS cost function W(x) may be determined using
equation (3):
VW (x)=4'W(Ax—y)+VR(x) 3)

where A and A' correspond to forward-projection and back-
projection operators, respectively.
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Determining the gradient V¥(x) of the cost function ¥(x)
using the projection operators A and A', however, is com-
putationally expensive. Accordingly, certain CT systems
employ OS algorithms to allow for approximation of the
gradient VW(x) using only a subset of measured projection
data and a corresponding sub-projection operator. Use of
subsets in lieu of the entirety of the measured projection data
provides dramatic initial acceleration to the iterative image
reconstruction. By way of example, use of the OS-SQS
algorithm substantially accelerates the image reconstruction
by simplifying the iterative image updates and allowing for
substantial parallel computing. Using an NU optimization
transfer scheme may further accelerate the OS-SQS and
reduce the number of iterations.

Optimization Transfer Method

An optimization transfer method (also known as a
majorize-minimize method) replaces the objective function
W(x) with a surrogate ¢(x; x©') at kth iteration that is easier
to minimize. An exemplary iteration of optimization transfer
is presented in equation (4) representative of Method 1.
Method 1
Initialize image x*

Fork=0,1,2,....
Form a surrogate function (majorizer) ¢(x; x®)

Minimize the surrogate: x**D=argmin_ p(x;x®)

Q)

Generally, the cost function W(x) may be monotonically
decreased by using surrogates ¢(x; x*) that are designed to
satisfy one or more determined conditions. The determined
conditions, for example, include:

W)= (x® xONW(x)=p(xx%), VxeRNP*=0 &)

Although, in a presently contemplated implementation,
the surrogates may be designed to strictly satisfy the deter-
mined conditions defined using equation (5), in other imple-
mentations, one or more other conditions may be employed.

Further, the cost function W(x) may be majorized, for
example, using the following quadratic surrogate function

906 X0

W) s@(xx ) =W PV (O (x-x @)+ Vo (x-xPy D
(x—x®

Q)

where often D is designed such that equation (6) satisfies
equation (5).

Accordingly, an iteration in equation (4) may be repre-
sented using equation (7):

3+ D=x®_piyg(x0) %)

where a majorizing matrix D may be derived, for example,
using Lipschitz constant, De Pierro’s lemma in NU-SQS
algorithm, or other methods that yield a matrix that is easier
to invert than the Hessian matrix of the original cost func-
tion.

The optimization transfer method with a diagonal
majorizer D, as described herein, may be shown to have a
convergence rate of O(1/k), for example using Theorem 1.
Theorem 1—The sequence {x*®} generated by Method 1
satisfies equation (8):

®

an2
¥ = 3l

Yy —P(3) < 7

for a diagonal majorizer D, or other invertible majorizing
matrices.

The NU approach may accelerate the optimization trans-
fer method, for example, by reducing the numerator |x“—
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%|, in equation (8) with respect to D in Theorem 1. The
order of convergence rate O(1/k) of the NU approach,
however, remains the same. Accordingly, embodiments of
the present disclosure employ momentum techniques to
accelerate the optimization transfer methods for achieving a
faster convergence rate, for example, of about O(1/k?), than
conventional image reconstruction methods. Specifically,
the NU approach may also be used with momentum-based
optimization transfer methods to reduce the number of
iterations needed.
Momentum-Based Optimization Transfer Methods
Optimization transfer methods may be accelerated by use
of'a momentum term. A general outline of use of momentum
with optimization transfer methods that extend Method 1
may be represented using equation (9) that corresponds to
Method 2.
Method 2
Initialize image x, v, and 2@
Fork=0,1,2,....
Form ¢(x; x%)
Design (x; x®, v¥®, z®
Choose T, ,

L, x©, O 50

v+ D=argmin, o (x,x®)
2% D=argmin,__qp(ex® @20 X9, (@ 70

xD=(1-g, Y&y, 704D

©

In the Method 2, the terms x®, v®, 2z correspond to
image variables that find use in computing an image esti-
mate in a particular iteration of the image reconstruction
method and T, corresponds to a scalar variable to balance the
relative weights between v and z®. Particularly, the term
v® corresponds to a normal optimization transfer update
and z® corresponds to the momentum term. The momentum
term Z%® depends on previous iterations {x“},_, ",
{vO),_ =t and {z@}, ', thereby allowing the iterates to
converge faster. Further, the parameter T, controls the bal-
ance between v and z®, and may be any real number.
Moreover, x© may lie in a feasible region (for example, a
non-negative orthant in equation (1)) if t, has values within
[0 1]. The Method 2 reduces to the Method 1 when t,=0 for
all k.

Different versions of the Method 2 that converge at a rate
of about O(1/k*) are described in greater detail in the
following sections. For discussion purposes, three different
versions of the Method 2 are discussed with reference to
conventional Nesterov’s methods. The three exemplary ver-
sions described herein vary in the way the momentum terms
are determined, for example, using image variables from a
single previous iteration or all of the previous iterations.
Version 1

Version 1 of Nesterov’s methods provides the momentum
term by using an image estimate from a single previous
iteration and may be represented using equations (10) and

(11):

Pl 00, 20 0 0 0 = i D) (10)

1-1

X (1D
Tyr1 = ——, where 1y = 1 and
Ty

1
fa(1-—)=d

/88

An iterative algorithm based on applying momentum to
optimization transfer that uses equations (10) and (11) may
be represented, for example, using Method 3. In one
embodiment, the choice of t, in Method 3 is the fastest
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increasing t, among all choices that satisfy equation (11)
starting from t,=1, thereby providing faster convergence.
Method 3

Initialize image x©
Fork=0,1, 2, ...

D—y© (O

-y

-4 1+4/1+42 12
and 54 = —————

Lyl 2

VD o [ ® _ prlggx®y)

Z&HD = 0

Titl =

LD = (1= Tps1 )V(k+1) + Tk+1Z(k+1)

Method 3 is convergent as stated by Theorem 2, where the
sequence {v®} converges with a rate of O(1/k?).
Theorem 2—The sequence {v®} generated by the Method
3 satisfies equation (13):

2 3t @)

)y _ s <
YY) —P(x) < T

Version 2

Version 2 of Nesterov’s methods provides the momentum
term by using the image z® from a previous iteration and
may be represented using equations (14) and (15):

14

29O 0y

Yix; oA

: 1 :
) + VHOY (6= 0 4 1 5 =20 DO = 20)

1 > 1 (15)
Tyy1 = —, where 7o = 1 and tkﬂ(l - —] <
/251 Ie+1

An iterative algorithm based on applying momentum to
optimization transfer using equations (14) and (15) may be
represented using Method 4. In one embodiment, the choice
of t, in Method 4 is the fastest increasing t, among all
choices satisfying equation (15) starting from t,=1, thereby
providing faster convergence.

Method 4
Initialize image x, v\?, z®, and t,=1
Fork=0,1, 2, ...

L++1+42 (16)

Tir1 = — and g4y =
Lyl 2

P — [x(k) _ D—lvq;(x(k))L
D = [0 g DT,

2D = (1 gy W& gy 204D

Method 4 is also convergent, where the sequence {v®}
converges at the rate of rate O(1/k?). In a variation of
Method 4, the optimization transfer iteration v¥** may be
replaced by equation (17):

5O+ D=(1 g, )y @ g 0o+ D a7

which suggests that the convergence rate O(1/k*) may be
achieved without using an optimization transfer inner step.
Version 3
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Version 3 of Nesterov’s methods provides the momentum
term by using image estimates from all previous iterations
and may be represented using equations (18) and (19):

Bl A0, 0000 o) (18)

Z o) + WY (x - 2] + % (x =29y D(x - )
=0

k+1
I+l
Thrl = where 7o € (0 1] and t,fﬂ < Zt,

] =0
i=0

a9

An iterative algorithm based on applying momentum to
optimization transfer in equations (18) and (19) may be
represented using Method 5. In one embodiment, the choice
of t, in Method 5 is the fastest increasing t, among all
choices satisfying (19) starting from t,=1, thereby providing
faster convergence.

Method 5
Initialize image x©, v\?, z(®, and t,~1
Fork=0,1,2, ...

(20)
Bit1

L+ 1+47
Tt = —— and g4 = —————

ktl 2

2
=0
D = [0 _ prlgdy)

k
D = O Dy )
=0 .

2 = (1 gy &Y gy 204D

Method 5 is convergent as stated by Theorem 3, where
sequence {v*} converges at a rate of O(1/k?).
Theorem 3—The sequence {v®} generated by the Method
5 satisfies equation (21):

2 = 31l @D

YOk (3 < TN

As previously noted, even though Nesterov’s momentum
methods have been used in various optimization problems,
the conventional Nesterov’s methods have used a Lipschitz
constant for the cost function W(x). However, for X-ray CT,
computing the (smallest) Lipschitz constant may entail
extensive computations. Accordingly, the conventional Nes-
terov approach is poorly suited to X-ray CT reconstruction
in practical settings such as in a hospital. In contrast, in the
present disclosure, a combination of optimization transfer
(for example, SQS, which replaces the ill-suited Lipschitz
constant with a suitable diagonal matrix D) and momentum
may be used to achieve faster convergence of the conven-
tional momentum methods such as Nesterov’s methods.
Furthermore, as conventional momentum-based optimiza-
tion transfer methods are slow due to either a large Lipschitz
constant or a large (diagonal) majorizer D for the X-ray CT
cost function W(x), embodiments of the present disclosure
apply OS methods to momentum-based optimization trans-
fer to achieve faster convergence. The OS methods are
briefly described in the following section.
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12
Ordered Subsets (OS)-Based Method

The OS-based iterative image reconstruction uses only a
subset of the projection data per iteration, thereby substan-
tially reducing the computational effort and/or memory
access involved in the iterative image reconstruction. In the
OS-based image reconstruction, the cost function ¥(x) may
be written as ¥(x)=2,, "' ¥, (x) where ¥, (x) is defined
in equation (22):

1 22
W) = Sl — Al + 2 R0 )

and is a function of mth subset of measurement data, M is
a number of subsets. A,,, y,, and W, are submatrices of A,
y and W, respectively that correspond to the mth subset of
measured data.

Although the present embodiment describes use of the OS
for image reconstruction, it may be noted that, as used
herein, reference to the terms “ordered subsets” or “OS” is
not restricted to indicate a specific ordering typically used in
tomographic imaging. The terms “ordered subsets” or “OS”
may be used to refer to different ordering of subsets. “For
example, in some embodiments, the terms “ordered subsets”
or “OS” may additionally be used to refer to random orders
such as those used in some stochastic subgradient algo-
rithms.

In one embodiment employing OS-based methods, the
following approximation defined in equation (23) may be
used:

VU (x)=MVY (X)=MVY | (x)~ . .

=MV, (%) (23)

when each subset includes measurement data (for example,
projection views) that are approximately uniformly down-
sampled by M.

Based on the approximation defined in equation (23),
gradient function VW(x*) may be replaced by subset-
gradient function MVW, (x®) (or with similar approxima-
tions) in the Methods 1, 2, 3, 4 and 5. Use of the OS-based
method allows for approximation of the original gradient of
the cost function V¥ (x®) with only 1/M of the amount of
computation by using a subset of measured sinogram data.
The OS-based methods, thus, may allow for up to M times
acceleration in early iterations of image reconstruction.

Accordingly, at step 304, a preliminary image update in a
particular iteration is determined based on one or more
image variables. The image variables may be computed
using at least a subset of the measured data in the particular
iteration. For example, the preliminary image update may be
determined using equations (22) and/or (23). Specifically, in
one embodiment, the preliminary image update may be
determined using Method 6 represented by equation (24)
defined herein:

Method 6

Initialize image x©
Fork=0,1,2,....
Form=0,1, ..., M-1

Form a surrogate function (majorizer)

Bl 1))
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Minimize the surrogate:

) = argmingo gl 4+ F1)) @4

In one embodiment, the function

¢m(x; x("*%))

may be defined using equation (25) that represents an
approximation of a surrogate

¢(x; x("*%))
in equation (6).

¢m(x; X(HM’W)) = M‘]‘m(x(’“%)) + (25)

’

MV (N o) 2 o o) D= )

Method 6 generates a sequence

Each mth sub-iteration in the OS-based Method 6 is counted
as 1/M iteration as it uses approximately only 1/M of the
amount of computation as compared to the computations
involved in a corresponding iteration of the Method 1.
However, the approximation defined in equation (23) may
progressively become inaccurate as the iterates approach the
minimizer or the solution image, and the OS-based methods
lose the convergence property.

Accordingly, in the present disclosure, the OS-based
methods are combined with momentum terms determined
using customized Nesterov’s methods to achieve a fast
convergence rate O(1/(kM)?) in early iterations. Particularly,
the OS and momentum-based method provides substantially
more acceleration to iterative image reconstruction that is
available through either of these techniques used alone.

An outline of optimization transfer using OS and momen-
tum may be represented using Method 7 that extends
Method 2 as shown herein in equation (26).

Method 7

Initialize image x, v(® and z(®
Fork=0,1,2,....

Form=0, 1, ..., M-1

Form ¢, (x; x(“'mIW)) (26)

m m

Design wm(x; Aerir) Jlesg) eeip)
Choose Tyus+m+1

m+l m
V(H’W) = argmin,. o$m (x; x(’”M))

1
ATt
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-continued
m

m m
argminy,,(x; ) Wear) lear) 0,0, )
x=0

m+l m+1

m+l
) = (1- TkM+m+l)V(k+WnT) + Tt 2T

IZB

OS-based methods using momentum provide substantial
initial acceleration to allow the iterative image reconstruc-
tion to converge to a desired optimum. Additionally, the
acceleration provided by one or more momentum terms
allows use of fewer subsets (smaller M) than with standard
OS methods, thus providing greater stability to the OS and
momentum-based optimization transfer method.

Further, at step 306, at least one momentum term is
determined based on one or more image variables computed
in the particular iteration and/or one or more further image
variables computed in one or more iterations preceding the
particular iteration. In one embodiment, coefficients of the
one or more image variables may be determined in each
iteration using customized momentum-based methods such
as Nesterov’s algorithms. The customized momentum-based
methods may be designed to aid in accelerating convergence
of an image reconstruction method in a determined number
of iterations.

In a presently contemplated embodiment, the OS and
momentum-based methods may generate the momentum
terms, for example, by iteratively determining a linear
combination of the one or more image variables, whose
coeflicients change in each iteration. Specifically, in one
embodiment, iteratively determining the linear combination
may include determining linear combinations of gradients of
cost functions evaluated at the one or more further image
variables computed in one or more iterations preceding the
particular iteration, where the cost function corresponds to at
least the subset of the measured data.

For discussion purposes, three exemplary versions of the
OS and momentum-based methods are described by defining
an approximate surrogate function ,(x; ¢) using the
approximation defined in equation (23). The following three
versions present extensions to Methods 3, 4, and 5, respec-
tively.

Version 1—(0OS-MOM-1)

In Version 1, the OS approach is combined with Nest-
erov’s first algorithm to provide the momentum term using
an image estimate from a single previous iteration. Version
1 of the OS and momentum-based method may be repre-
sented using equations (27) and (28):

@n

Yl AT, 2O = gy A7)

1-1g
Th+l =
/28]

28

1
, where 7o = 1 and r,fﬂ(l - —] <
/291

An outline of an iterative algorithm using Version 1 of the
combined OS and momentum-based method may be repre-
sented using Method 8. In one embodiment, the choice of't,
in Method 8 is the fastest increasing t, among all choices
satisfying equation (28) starting from t,=1, thereby provid-
ing faster convergence in early iterations.

Method 8

Initialize image x, v\?, z®, and t,=1
Fork=0,1,2,....

Form=0,1, ..., M-1
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L~ tiat +m L+ 1 +48,0 @9
Tirdamel = ———— and Gapime) = —————
LM+ 1 2
mtl m m
W) 2 [x("ﬁvz') _ D’IMV‘Pm(x(’”'/W))L
A 2 e )
+1 m+l m+l
) = (1=t e AT s g gy 67

Version 2—(0OS-MOM-2)
Further, Version 2 of the OS- and momentum-based
method may be represented using equations (30) and (31):

(B0

Lp,,,(x; x(’”%), e, z(o)) =

M ()Y 4 v, (i)Y (= i)Y 4
ThM 4+ 1 %(X - Z(“'/'Vﬂf))/D(x - z("*%))

1 1 31
Tg+1 = —, where 1o = 1 and t,fﬂ(l——]ﬁrz 6D
T+l /8]

An outline of an iterative algorithm using Version 2 of the
combined OS and momentum-based method may be repre-
sented using Method 9. In one embodiment, the choice of't,
in Method 8 is the fastest increasing t, among all choices
satisfying equation (31) starting from t,=1, thereby provid-
ing faster convergence in early iterations.

Method 9

Initialize image x, v\?, z®, and t,=1
Fork=0,1,2,....

Form=0, 1, ..., M-1

(B2

L4l L+ 48 m

and fias yme1 = 5

TkM +m+l =
LM +mev L

) = [l ) - D v (ol )

+

+1
Z(HK}VT) = [A"*%) - [kMerHD*lMV‘]‘m(x("*'I%))L
m+l m+l m+l
X(HW’VT) =(1- TkM+m+1)V(k+”’VT) + TkM+m+IZ(k+WMi)

Version 3—(0S-MOM-3)

Further, Version 3 of the combined OS- and momentum-
based method may be represented using equations (33) and
(34):

Yl T, 20) = (33)

S 01 ) 09 G e D

=0
! 0)y (0)
5 (x—x"") D(x—x"")

I k+1

k+1

Tt = > Where 7o € (0, 1], i < Zfl
2 n 1=0
i=0

(B4

An outline of an iterative algorithm using Version 3 of the
combined OS- and momentum-based method may be rep-
resented using Method 10. In one embodiment, the choice of
t, in Method 8 is the fastest increasing t, among all choices
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satisfying equation (34) starting from t,=1, thereby provid-
ing faster convergence in early iterations.

Method 10
Initialize image x, v\?, 2%, and t,=1
Fork=0,1,2,....
Form=0,1, ..., M-1
35
T +m+1 L+4/1 + 48 o G
T a1 = e and g init = —
I
=0
W) 2 [ - Dt v ()

kM +m m
50 = 20— pt Z yMVY od M(X(k+ﬁ))
=0 .

m+l
)= (1- TkM+m+1)V(k+”’VT

e

1
&

) + TkM+m+IZ(

At step 308, one of the Methods 8, 9 or 10 (or similar
methods) may be used to determine a subsequent image
update using the preliminary image update and the momen-
tum term determined using one or more of the three versions
described with reference to step 306. Further, in accordance
with aspects of the present disclosure, the OS- and momen-
tum-based methods iteratively compute the preliminary
image update, and/or the subsequent image update for a
plurality of iterations until one or more termination criteria
are satisfied, as depicted by step 310.

In one embodiment, the OS- and momentum-based
method may terminate following a determined number of
iterations, for example, after ten iterations. Alternatively, the
OS and momentum-based method may be determined to
converge if the difference between a subsequent image
update in a particular iteration and a preceding iteration is
less than a determined threshold, for example, 1 Hounsfield
Unit (HU). The determined number of iteration and/or the
determined threshold may be pre-programmed into the
imaging system or may be received from a user. The OS and
momentum-based method may subsequently terminate.

The present disclosure describes embodiments of the
combined OS and momentum-based method that employs
momentum terms determined using Nesterov’s methods for
substantially accelerating the iterative image reconstruction.
The present method, however, may be further extended to
handle any majorizers (for example, optimization transfer
techniques such as SQS) including those based on line
search schemes. In one embodiment, the present method
may also be extended to include other linear combinations of
one or more image variables

and

for the update of

)
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in the momentum-based optimization transfer methods. In
certain embodiments, the present method may be general-
ized to include other constraints, for example, box con-
straints, on the reconstruction. Furthermore, non-differen-
tiable functions can be used as a cost function with a
smoothing technique or other approaches that handle non-
differentiable functions. Additionally, certain other OS-type
algorithms such as incremental optimization transfer or
relaxed variants of OS may be employed instead of ordinary
OS algorithms for achieving faster convergence of the
iterative image reconstruction via the use of momentum
terms.

Exemplary convergence rates achieved via use of certain
conventional methods and embodiments of the present
method are discussed with reference to FIGS. 4-6. For the
embodiments illustrated in FIGS. 4-6, 3D helical X-ray CT
data set of a human shoulder was acquired to depict exem-
plary acceleration achieved by embodiments of the present
method in comparison to conventional image reconstruction
methods. The convergence rate is ascertained, for example,
by computing the root mean square difference (RMSD)
between a current and converged image within the region-
of-interest (ROI) in Hounsfield Units (HU) versus number of
iterations. In one example, the RMSD is computed using
equation (36).

s < ko = ol (36)

Ny ror

[HU]

where N, ., is the number of voxels within ROL

FIG. 4 is a graphical representation 400 depicting exem-
plary convergence rates of certain image reconstruction
methods with and without the use of momentum. In the
graphical representation 400, the horizontal axis 402 corre-
sponds to number of iterations and the vertical axis 404
corresponds to the root mean standard deviation (RMSD).
The RMSD corresponds to the remaining error in image
reconstruction. Thus, sharper the decrease in a curve, greater
is the convergence rate of the corresponding image recon-
struction method.

FIG. 4 illustrates, for example, curves corresponding to a
conventional OS-SQS-based method (see element 406),
0OS-SQS-based method employing the momentum terms
determined using Version 1 or the Method 3 (hereinafter
“MOM-17, see element 408), and OS-SQS-based method
employing the momentum terms determined using Version 3
or the Method 5 (hereinafter “MOM-3”, see element 410),

In the embodiment depicted in FIG. 4, different number of
subsets, for example, 1, 24, and 48 are employed. As evident
from the depictions of FIG. 4, use of the momentum terms
in the OS-based methods (see elements 408 and 410)
provide substantially more acceleration than conventional
image reconstruction methods (see element 406). As evident
from the depiction of FIG. 4, combinations of OS-based
methods with Version 1(OS-MOM-1) and Version 3 behave
differently. Specifically, in the embodiment illustrated in
FIG. 4, use of Version 3 with OS-based method appears to
provide more stable performance.

Further, FIG. 5 illustrates another graphical representation
500 depicting exemplary convergence rates of certain image
reconstruction methods with and without the use of momen-
tum. FIG. 5 illustrates curves representative of exemplary
convergence rates of the various image reconstruction meth-
ods. Certain curves correspond to image reconstruction
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methods that employ a NU-OS-SQS-based method using
MOM-3 with different number of subsets. As evident from
the depictions of FIG. 5, use of the NU approach provides
substantial initial acceleration.

FIG. 6 is a diagrammatical representation 600 depicting
examples of initial images and corresponding converged
images reconstructed using certain image reconstruction
methods with or without the use of momentum. Particularly,
FIG. 6 illustrates an initial filtered back projection (FBP)
image x’ 602 and a corresponding converged image % 604
for use as a reference. FIG. 6 further illustrates images
reconstructed at 12th iteration from four different image
reconstruction methods for comparison. As evident from the
depictions of FIG. 6, use of the momentum term greatly
accelerates convergence. Particularly, the combination of
NU and momentum with OS-based methods provides a
converged image 606 having image quality substantially
similar to the reference image 604 in only a few iterations.

Embodiments of the present disclosure, thus, provide
methods and systems for accelerating iterative image recon-
struction. The embodiments described herein allow for sub-
stantial reduction in computational costs involved in the
iterative image reconstruction through use of OS and
momentum. Particularly, the present method uses a rela-
tively small number of OS of the projection data per iteration
and one or more momentum terms derived from previous
iterations to allow expeditious updates to the image esti-
mates, thereby improving the image reconstruction speed.
Faster image reconstruction may circumvent a need for
multiple scans and/or surgical intervention to assess a medi-
cal condition of a patient, thereby allowing for real-time
diagnoses and providing substantial savings in computa-
tional effort and/or medical resources. Additionally, faster
image reconstruction encourages wider use of iterative
reconstruction methods, thereby enabling use of more low-
dose CT scans.

Although the present disclosure is described here with
reference to use of OS and momentum terms determined
using Nesterov’s algorithm, in certain embodiments, other
suitable algorithms and methods may be employed. For
example, Aitken’s acceleration or Steffensen’s method may
be used to determine momentum terms for use in acceler-
ating the convergence of an iterative image reconstruction
algorithm. The momentum terms may then be used to
improve the performance of several other iterative recon-
struction algorithms such as the PCG method, the grouped
coordinate descent method, and line search methods. Addi-
tionally, embodiments of the present disclosure may find use
in providing fast and accurate image reconstruction for both
medical and non-medical imaging applications.

It may be noted that the foregoing examples, configura-
tions, and method steps that may be performed by certain
components of the present systems may be implemented by
suitable code on a processor-based system. These compo-
nents, for example, may include the control mechanism 208,
the DAS 214, the computing device 216, and/or the image
reconstructor 230 of FIG. 2. Particularly, the steps may be
performed using a special-purpose computer, multi-core
CPU architecture, distributed cluster systems, general pur-
pose graphical processor unit (GPU) architecture, and/or
cloud-based systems. It may also be noted that different
implementations of the present disclosure may perform
some or all of the steps described herein in different orders
or substantially concurrently, that is, in parallel.

Additionally, the functions may be implemented in a
variety of programming languages, including but not limited
to Ruby, Hypertext Preprocessor (PHP), Perl, Delphi,
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Python, Matlab, Freemat, Octave, Interactive Data Lan-
guage (IDL), FORTRAN, Cuda, openCL, C, C++, and/or
Java. Such code may be stored or adapted for storage on one
or more tangible, machine-readable media, such as on data
repository chips, local or remote hard disks, optical disks
(that is, CDs or DVDs), solid-state drives, or other media,
which may be accessed by the processor-based system to
execute the stored code.

Although specific features of various embodiments of the
present disclosure may be shown in and/or described with
respect to some drawings and not in others, this is for
convenience only. It is to be understood that the described
features, structures, and/or characteristics may be combined
and/or used interchangeably in any suitable manner in the
various embodiments

While only certain features of the present disclosure have
been illustrated and described herein, many modifications
and changes will occur to those skilled in the art. It is,
therefore, to be understood that the appended claims are
intended to cover all such modifications and changes as fall
within the true spirit of the invention.

The invention claimed is:

1. A method for image reconstruction, comprising:

receiving measured data from an imaging system;

determining a preliminary image update in a particular
iteration of a plurality of iterations based on one or
more current image variables computed using one or
more subsets of the measured data in the particular
iteration;
determining at least one momentum term using the one or
more current image variables computed in the particu-
lar iteration, one or more further image variables com-
puted in one or more iterations preceding the particular
iteration, or a combination thereof, based on a conver-
gence rate, wherein the convergence rate is O(I/(mk)
"2), and wherein k represents a number of the plurality
of iterations and m represents a number of the one or
more subsets of the measured data;
replacing a Lipschitz constant in the at least one momen-
tum term with a suitable diagonal majorizer;

determining a subsequent image update using the prelimi-
nary image update and the at least one momentum term
with the suitable diagonal majorizer; and

iteratively computing the preliminary image update, the

subsequent image update, or a combination thereof, for
the plurality of iterations until one or more termination
criteria are satisfied.

2. The method of claim 1, wherein iteratively computing
the preliminary image update, the subsequent image update,
or a combination thereof, comprises computing a gradient of
a cost function corresponding to the one or more subsets of
the measured data using an ordered subsets algorithm.

3. The method of claim 1, wherein iteratively computing
the preliminary image update, the subsequent image update,
or a combination thereof, comprises using a gradient of a
cost function corresponding to the one or more subsets of the
measured data, using accumulated weighted gradients of
cost functions evaluated at the one or more further image
variables computed in the one or more iterations preceding
the particular iteration, or a combination thereof.

4. The method of claim 1, wherein determining the at least
one momentum term comprises iteratively determining a
linear combination of the one or more current image vari-
ables, the one or more further image variables, or a combi-
nation thereof, and wherein coefficients of the one or more
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current image variables, the one or more further image
variables, or a combination thereof, change in each of the
plurality of iterations.

5. The method of claim 4, wherein iteratively determining
the linear combination comprises determining one or more
linear combinations of gradients of a cost function computed
in the one or more iterations preceding the particular itera-
tion, and wherein the cost function corresponds to the one or
more subsets of the measured data.

6. The method of claim 4, further comprising determining
the coefficients of the one or more current image variables,
the one or more further image variables, or a combination
thereof, in each of the plurality of iterations using Nesterov’s
algorithm.

7. The method of claim 4, wherein the coefficients are
determined based on the number of plurality of iterations.

8. The method of claim 1, wherein determining the at least
one momentum term comprises using the one or more
further image variables computed in a single iteration pre-
ceding the particular iteration.

9. The method of claim 1, wherein determining the at least
one momentum term comprises using the one or more
current image variables, the one or more further image
variables, or a combination thereof, computed in all itera-
tions preceding the particular iteration.

10. The method of claim 1, wherein the one or more
subsets of the measured data comprise one or more subsets
of projection views in a sinogram corresponding to a subject.

11. The method of claim 1, wherein the one or more
subsets of the measured data comprise one or more subsets
of coil data in a magnetic resonance imaging scan performed
using a magnetic resonance imaging system comprising a
plurality of coils.

12. The method of claim 1, further comprising recon-
structing an image corresponding to at least a portion of a
subject using the preliminary image update, the subsequent
image update, or a combination thereof.

13. The method of claim 1, further comprising solving
linear systems of equations, sub-problems arising in algo-
rithms involving variable-splitting and augmented Lagran-
gian, or a combination thereof, using the method for image
reconstruction.

14. An imaging system, comprising:

an image processing unit configured to:

receive measured data corresponding to a subject;

determine a preliminary image update in a particular
iteration of a plurality of iterations based on one or
more current image variables computed using one or
more subsets of the measured data in the particular
iteration;

determine at least one momentum term using the one or
more current image variables computed in the par-
ticular iteration, one or more further image variables
computed in one or more iterations preceding the
particular iteration, or a combination thereof, based
on a convergence rate, wherein the convergence rate
is O(I/(mk)"2), and wherein k represents a number of
the plurality of the iterations and m represents a
number of the one or more subsets of the measured
data;

replace a Lipschitz constant in the at least one momen-
tum term with a suitable diagonal majorizer;

determine a subsequent image update using the pre-
liminary image update and the at least one momen-
tum term with the suitable diagonal majorizer; and

iteratively compute the preliminary image update, the
subsequent image update, or a combination thereof,
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for the plurality of iterations until one or more
termination criteria are satisfied.

15. The imaging system of claim 14, wherein the imaging
system comprises a computed tomography system, a single
source imaging system, a multi-source imaging system, a
multi-detector imaging system, a photon counting and
energy discriminating detector imaging system, an X-Ray
system, a positron emission tomography scanner, a single
photon emission computed tomography scanner, or combi-
nations thereof.

16. A computed tomography (CT) system, comprising:

at least one radiation source configured to generate X-rays

at a plurality of energy levels to image a subject;

a detector assembly operatively coupled to the at least one

radiation source and configured to detect the X-rays;

an image processing unit operatively coupled to the

detector assembly and configured to:

receive measured data corresponding to the subject,
wherein the measured data is generated based on the
detected X-rays;

determine a preliminary image update in a particular
iteration of a plurality of iterations based on one or
more current image variables computed using one or
more subsets of the measured data in the particular
iteration;

determine at least one momentum term using the one or
more current image variables computed in the par-
ticular iteration, one or more further image variables
computed in one or more iterations preceding the
particular iteration, or a combination thereof, based
on a convergence rate, wherein the convergence rate
is O(I/(mk)"2), and wherein k represents a number of
the plurality of the iterations and m represents a
number of the one or more subsets of the measured
data;

replace a Lipschitz constant in the at least one momen-
tum term with a suitable diagonal majorizer;

determine a subsequent image update using the pre-
liminary image update and the at least one momen-
tum term with the suitable diagonal majorizer; and

iteratively compute the preliminary image update, the
subsequent image update, or a combination thereof,
for the plurality of iterations until one or more
termination criteria are satisfied.

17. A non-transitory computer readable medium that
stores instructions executable by one or more processors to
perform a method for image reconstruction, comprising:
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receiving measured data corresponding to a subject;

determining a preliminary image update in a particular
iteration of a plurality of iterations based on one or
more current image variables computed using one or

more subsets of the measured data in the particular
iteration;

determining at least one momentum term using the one or
more current image variables computed in the particu-
lar iteration, one or more further image variables com-
puted in one or more iterations preceding the particular
iteration, or a combination thereof based on a conver-
gence rate of the method for image reconstruction,
wherein the convergence rate is O(l/(mk)"2), and
wherein k represents a number of the plurality of
iterations and m represents a number of the one or more
subsets of the measured data;

replacing a Lipschitz constant in the at least one momen-
tum term with a suitable diagonal majorizer;

determining a subsequent image update using the prelimi-
nary image update and the at least one momentum term
with the suitable diagonal majorizer; and

iteratively computing the preliminary image update, the
subsequent image update, or a combination thereof, for
the plurality of iterations until one or more termination
criteria are satisfied.

18. The non-transitory computer readable medium of
claim 17, wherein iteratively computing the preliminary
image update, the subsequent image update, or a combina-
tion thereof, comprises using accumulated weighted gradi-
ents of cost functions evaluated at the one or more further
image variables computed in the one or more iterations
preceding the particular iteration.

19. The non-transitory computer readable medium of
claim 17, wherein the method further comprises determining
coeflicients of the one or more current image variables in
each of the plurality of iterations using Nesterov’s algo-
rithm.

20. The non-transitory computer readable medium of
claim 17, wherein determining the at least one momentum
term comprises using the one or more current image vari-
ables, the one or more further image variables, computed in
all iterations preceding the particular iteration, or a combi-
nation thereof.



