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(7) ABSTRACT

A method for statistically reconstructing images from a
plurality of transmission measurements having energy diver-
sity and image reconstructor apparatus utilizing the method
are provided. A statistical (maximum-likelihood) method for
dual-energy X-ray CT accommodates a wide variety of
potential system configurations and measurement noise
models. Regularized methods (such as penalized-likelihood
or Bayesian estimations) are straightforward extensions.
One version of the algorithm monotonically decreases the
negative log-likelihood cost function each iteration. An
ordered-subsets variation of the algorithm provides a fast
and practical version. The method and apparatus provide
material characterization and quantitatively accurate CT
values in a variety of applications. The method and appa-
ratus provide improved noise/dose properties.
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METHOD FOR STATISTICALLY
RECONSTRUCTING IMAGES FROM A
PLURALITY OF TRANSMISSION
MEASUREMENTS HAVING ENERGY
DIVERSITY AND IMAGE RECONSTRUCTOR
APPARATUS UTILIZING THE METHOD

CROSS-REFERENCE TO RELATED
APPLICATION

This application claims the benefit of U.S. provisional
application Serial No. 60/358,233, filed Feb. 20, 2002.

STATEMENT REGARDING FEDERALLY
SPONSORED RESEARCH OR DEVELOPMENT

This invention was made with government support under
NIH Grant Nos. CA 60711 and CA 65637. The Government
has certain rights in the invention.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates to methods for statistically
reconstructing images from a plurality of transmission mea-
surements such as scans having energy diversity and image
reconstructor apparatus utilizing the method. The invention
can accommodate a wide variety of system configurations
and measurement noise models including X-ray CT scanners
and systems that use gamma sources with multiple energies,
such as some SPECT transmission scans.

2. Background Art

Tomographic images of the spatial distribution of attenu-
ation coefficients in the human body are valuable for medical
diagnosis. Most hospitals have CT scanners for producing
such images. Attenuation images are also useful in a variety
of scientific studies, in industry for non-destructive
evaluation, and for security purposes like baggage inspec-
tion. X-ray CT scanners are also being integrated into
SPECT and PET scanners to provide accurate attenuation
correction for emission image reconstruction and for precise
anatomical localization of the functional features seen in the
emission images.

Material attenuation coefficients depend on the energy of
the incident photons. In clinical X-ray CT imaging, the
source of the X-ray photons, bremsstrahlung radiation, has
an inherently broad energy spectrum. Each photon energy is
attenuated differently by the object (body). When such
transmission measurements are processed by conventional
image reconstruction methods, this energy-dependent effect
causes beam-hardening artifacts and compromises quantita-
tive accuracy. To avoid these difficulties, one could employ
a radioisotope source with a monoenergetic spectrum, but
the practical intensity is usually much lower leading to lower
SNR. Recently developed fluorescence-based X-ray sources
have somewhat improved intensity but still are lower than
clinical CT sources. Higher intensities are obtained from
monoenergetic synchrotron sources, which are expensive
currently. Many gamma-emitting radioisotopes also emit
photons at several photon energies.

U.S. Pat No. 6,507,633 discloses a statistical method for
reconstructing images from a single measured X-ray CT
sinogram. That method was the first statistical approach to
include a complete polyenergetic source spectrum model in
a penalized-likelihood framework with a monotonically
converging iterative algorithm. DeMan et al. in “An Iterative
Maximum-Likelihood Polychromatic Algorithm for CT,”
IEEE TR. MED. IM., 20(10):999-1008, October 2001 also
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proposed a solution to that problem based on a somewhat
different object model and an algorithm that may not be
monotonically converging. When only a single sinogram
(for a given polyenergetic source spectrum) is available,
usually one must make some fairly strong assumptions about
the object’s attenuation properties to perform reconstruction.
For example, one may segment the object into soft tissue and
bone voxels or mixtures thereof.

The energy dependence of attenuation coefficients is an
inconvenience in conventional X-ray CT. Alvarez and
Macovski, as disclosed in U.S. Pat No. 4,029,963, showed
how to approximate the energy dependence of attenuation
coefficients in terms of a Compton scattering component and
a photoelectric absorption component (or, roughly
equivalently, electron density and atomic number) and how
to separate these two components in the sinogram domain
prior to tomographic reconstruction. The separate compo-
nent images could then be combined to synthesize a dis-
played CT image at any energy of interest. Later enhance-
ments included noise suppression, considerations in basis
material choices, energy optimization, beam-hardening
assessment and correction, algorithm acceleration, scatter
correction, and evaluation of precision.

Numerous potential applications of dual-energy imaging
have been explored, including rock characterization for
petrochemical industrial applications, soil sample analysis in
agriculture, bone mineral density measurements, bone mar-
row composition, adipose tissue volume determinations,
liver iron concentration, explosives detection, detection of
contrast agents in spinal canal, non-destructive evaluation,
body composition, carotid artery plaques, and radioactive
waste drums. Accurate correction of Compton scatter in
X-ray CT may also benefit from dual-energy information.

More recently, there has been considerable interest in
using X-ray CT images to correct for attenuation in SPECT
and PET image reconstruction. In these contexts, one must
scale the attenuation values in the X-ray CT images and
from the X-ray photon energies to the energies of the gamma
photons used in SPECT and PET imaging. Kinahan et al. in
“Attenuation Correction for a Combined 3D PET/CT
Scanner,” MED. PHYS., 25(10):2046-53, October 1998 have
noted that accurate scaling from X-ray to PET energies may
require dual-energy X-ray CT scans. This is particularly
challenging in the “arms down” mode of PET scanning. If
the primary purpose of the dual-energy X-ray CT scan is
PET attenuation correction (rather than diagnosis), then one
would like to use low X-ray doses, resulting in the need for
statistical image reconstruction methods to minimize image
noise.

The conventional disadvantage of dual-energy methods is
the increased scan time if two (or more) separate scans are
acquired for each slice. This doubling in scan time can be
avoided by methods such as alternating the source energy
spectra between each projection angle or between each slice
or conceivably in other arrangements. Special split detectors
have also been proposed.

Prior to the 1990’s, all work on dual-energy X-ray CT
used the FBP reconstruction method. In the early 1990°s,
there were a few iterative methods published for dual-energy
CT reconstruction. An iterative method to achieve beam-
hardening correction and decomposition into basis materials
is known. Markham and Fryar in “Element Specific Imaging
in Computerized Tomography Using a Tube Source of
X-Rays and a Low Energy-Resolution Detector System,”
NuctL. INSTR. METH., A324(1):383-8, January 1993 applied
the ART algorithm. Kotzki et al. in “Prototype of Dual
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Energy X-Ray Tomodensimeter for Lumbar Spine Bone
Mineral Density Measurements; Choice of the Reconstruc-
tion Algorithm and First Experimental Results,” PHYS. MED.
BioL., 37(12):2253-65, December 1992 applied a conjugate
gradient algorithm. These iterative approaches treat the
problem as “finding the solution to a system of equations.”
These algebraic approaches can improve the accuracy rela-
tive to FBP methods, but they do not directly address the
radiation dose issue. In contrast, in statistical image recon-
struction approaches, the problem is posed as finding the
images that best fit the measurements according to the
(possibly nonlinear) physical model and a statistical model.
Proper statistical modeling can lead to lower noise images,
thereby enabling reductions in X-ray dose to the patient.

Statistical approaches have been extensively investigated,
particularly in the last ten years, for monoenergetic trans-
mission measurements. Recently, Clinthorne and Sukovic
have investigated iterative algorithms for dual-energy and
triple-energy CT reconstruction based on a weighted least-
squares approach, including object-domain constraints in the
following papers:

“A Constrained Dual-Energy Reconstruction Method for
Material-Selective Transmission Tomography,” NUCI.
INSTR. METH. PHYS. RES. A., 351(1):347-8, December
1994,

“Design of an Experimental System for Dual-Energy
X-Ray CT,” In Proc. IEEE Nuc. Sc1. Symp. MED. IM.
CONF., Vol. 2, pp. 1021-2, 1999; and

“Penalized Weighted Least-Squares Image Reconstruc-
tion in Single and Dual-Energy X-Ray Computed
Tomography,” IEEE TrR. MED. Im., 19(11):1075-81,
November 2000.

That work assumed monoenergetic measurements. Gleason
et al., in the paper “Reconstruction of Multi-Energy X-Ray
Computer Tomography Images of Laboratory Mice,” IEEE
Tr. Nuc. Scr., 46(2):1081-6, August 1999 hint at the need
for ML solutions to the multi-energy problem. Table 1
summarizes the various dual-energy reconstruction meth-
ods:

TABLE 1

PRIOR ART DUAL-ENERGY X-RAY CT
RECONSTRUCTION METHODS

Reconstruction Data
Algorithm Preprocessed Unprocessed
FBP Alvarez & Macovski, 1976 —
(many others since)
Algebraic Kotzi et al., 1992 —
Markham et al., 1993
Statistical Clinthorne & Sukovic
(Monoenergetic) 2000

SUMMARY OF THE INVENTION

An object of the present invention is to provide a method
for statistically reconstructing images from a plurality of
transmission measurements having energy diversity and
image reconstructor apparatus utilizing the method wherein,
by using multiple measurements with “energy diversity,”
ie., a set of two or more energy spectra, one can avoid
segmentation, eliminating one potential source of errors.

In carrying out the above object and other objects of the
present invention, a method for statistically reconstructing
images from a plurality of transmission measurements hav-
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ing energy diversity is provided. The method includes
providing a plurality of transmission measurements having
energy diversity. The method also includes processing the
measurements with an algorithm based on a statistical model
which accounts for the energy diversity to obtain at least one
final component image which has reduced noise.

The method may further include providing a cost function
based on the statistical model. The cost function may be
minimized during the step of processing.

The cost function may have a gradient which is calculated
during the step of processing. The gradient may be calcu-
lated by backprojecting.

The method may further include analyzing the at least one
final component image.

The method may further include calibrating spectra of the
measurements to obtain calibration data. The step of pro-
cessing may utilize the calibration data.

The method may further include displaying the at least
one final component image.

The gradient may be calculated by approximately using a
subset of the measurements, such as an ordered subset of
projection views, to accelerate the algorithm.

The cost function may have a regularizing penalty term.

The measurements may be dual-energy X-ray CT scans or
may be transmission scans with differing energy spectra,
such as X-ray sources with different tube voltages or dif-
ferent filtrations, or gamma-ray sources with multiple ener-
gies.

The cost function may include a log-likelihood term.

The cost function may consist solely of a log-likelihood
function, which is called maximum likelihood
reconstruction, or the cost function may consist of both a
log-likelihood function and a regularizing penalty function,
which is called penalized-likelihood or maximum a poste-
riori image reconstruction.

The method may further include preprocessing the mea-
surements prior to the step of processing to obtain prepro-
cessed measurements. The preprocessed measurements may
be processed in the step of processing to obtain the at least
one component image.

The log likelihood term may be a function that depends on
a model for an ensemble mean of the transmission
measurements, and the model incorporates characteristics of
an energy spectrum.

The log-likelihood term may be a function of the trans-
mission measurements, prior to any pre-processing such as
taking a logarithm of the measurements.

The gradient of the cost function may be calculated using
a parametric approximation, such as polynomials, tables, or
piecewise polynomials.

The regularizing penalty term may be based on quadratic
functions of linear combinations of voxel values or nonqua-
dratic (edge-preserving) functions of such combinations.

Parameter constraints such as non-negativity of voxel
values may be enforced during or after minimization of the
cost function.

The processing step may be based on the preprocessed
measurements and may use a cost function based on a
statistical model for variability of the preprocessed measure-
ments.

Further in carrying out the above objects and other objects
of the present invention, an image reconstructor apparatus
for statistically reconstructing images from a plurality of
transmission measurements having energy diversity is pro-
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vided. The apparatus includes means for providing a plu-
rality of transmission measurements having energy diver-
sity. The apparatus further includes means for processing the
measurements with an algorithm based on a statistical model
which accounts for the energy diversity to obtain at least one
final component image which has reduced noise.

The apparatus may further include means for providing a
cost function based on the statistical model, and the cost
function may be minimized by the means for processing.

The apparatus may further include means for calculating
a gradient of the cost function.

The means for calculating may calculate the gradient by
backprojecting.

The apparatus may further include means for analyzing
the at least one final component image.

The apparatus may further include means for calibrating
spectra of the measurements to obtain calibration data, and
the means for processing may utilize the calibration data.

The apparatus may further include a display for display-
ing the at least one final component image.

The means for calculating may calculate the gradient
approximately using a subset of the measurements, such as
an ordered subset of projection views, to accelerate the
algorithm.

The cost function may have a regularizing penalty term.

The measurements may be transmission scans with dif-
fering energy spectra, such as X-ray sources with different
tube voltages or different filtrations, or gamma-ray sources
with multiple energies.

The cost function may include a log-likelihood term, or
the cost function may consist of both a log-likelihood
function and a regularizing penalty function, which is called
penalized-likelihood or maximum a posteriori image recon-
struction.

The cost function may include a maximum likelihood or
penalized likelihood algorithm.

The apparatus may further include means for preprocess-
ing the measurements to obtain preprocessed measurements.
The preprocessed measurements may be processed by the
means for processing to obtain the at least one component
image.

The log likelihood term may be a function that depends on
a model for an ensemble mean of the transmission
measurements, and the model incorporates characteristics of
an energy spectrum.

The log-likelihood term may be a function of the trans-
mission measurements, prior to any pre-processing such as
taking a logarithm of the measurements.

The gradient of the cost function may be calculated using
a parametric approximation, such as polynomials, tables, or
piecewise polynomials.

The regularizing penalty term may be based on quadratic
functions of linear combinations of voxel values or nonqua-
dratic (edge-preserving) functions of such combinations.

Parameter constraints such as non-negativity of voxel
values may be enforced during or after minimization of the
cost function.

The means for processing may process the preprocessed
measurements and may use a cost function based on a
statistical model for variability of the preprocessed measure-
ments.

The above objects and other objects, features, and advan-
tages of the present invention are readily apparent from the
following detailed description of the best mode for carrying
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6

out the invention when taken in connection with the accom-
panying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1a is a block diagram flow chart illustrating a
statistically polyenergetic reconstruction method of the
present invention;

FIG. 1b is a schematic block diagram of a reconstruction
apparatus of the present invention for use in a basic CT
subsystem;

FIGS. 2a and 2b are graphs which show X-Ray source
spectra I, (e) used in a computer simulation; the dashed
vertical lines are located at the effective energy €, of each
spectrum;

FIG. 3 is a graph which shows mass attenuation coeffi-
cients B(€) of cortical bone and soft tissue used in computer
simulation;

FIGS. 4a and 4b are 3D graphs of functions f;, in
Equation (11) corresponding to FIG. 2 and FIG. 3; the units
of s, are [em?/g];

FIG. 5 is a scatter plot of (F;*(s;,8,),F>*(s,8,))pairs of
Equation (71) for uniformly-spaced (s,s,) pairs; for a
monoenergetic source these points would lie on a uniform
grid; the nonlinearities are due to beam hardening effects;

FIGS. 6a—6d illustrate a true object x”*¢ used in computer
simulation;

FIGS. 7a and 7b show simulated dual-energy CT sino-
gram measurements Y,,;;

FIGS. 8a and 8b show estimates f,,, computed from noisy
simulated dual-energy measurements (i.c., smoothed and
log-processed sinogram measurements);

FIGS. 94-9f show estimates §; computed from noisy
simulated dual-energy measurements;

FIGS. 10a-10f show FBP dual-energy reconstructions of
soft tissue and bone components;

FIGS. 11a-11f show penalized likelihood dual-energy
reconstructions of soft tissue and bone components; the
density units are 1/cm; and

FIG. 12 shows graphs of cost function decrease versus
iteration n for 1-subset and 4-subset algorithms with pre-
computed denominator.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENTS

In general, the method described herein is a novel exten-
sion of statistical image reconstruction approaches from the
monoenergetic case to the case of measurements with energy
diversity. A statistical (maximum likelihood or penalized
likelihood) method for reconstructing an “attenuation map”

u(;), €) from polyenergetic X-ray (or gamma-ray) tomo-
graphic measurements is described herein.

Like most dual-energy reconstruction methods, the
method of the invention typically requires some knowledge
about the X-ray beam spectrum. This spectrum can be
measured directly or estimated from calibration phantoms.
In the final analysis, rather than requiring the entire
spectrum, the algorithm typically requires only the nonlinear
function f;,, given in Equation (11) below and its derivative.
It may be feasible to measure f,, empirically for a given
scanner. The method does not exhibit inordinate sensitivity
to imperfections in the source spectrum model.

Physical Models

Let u(;), €) denote the object’s linear attenuation coeffi-

—
cient as a function of spatial position x and photon energy
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€. The ideal tomographic imaging system would provide a

complete description of u for X in the entire field of view
and for a wide range of energies e. In practice, the goal is to
reconstruct an estimate of a from a finite collection of
“line-integral” measurements. (For simplicity, it is assumed
that the object is static, and any temporal variations are
ignored, although it is possible to generalize the method to
the dynamic case).

A. General Measurement Physical Model

The following general physical model for the measure-
ments is assumed. One collects transmission tomographic
measurements with N =21 different incident spectra, e.g.,
by changing the X-ray source voltage and/or the source
filtration.

Alternately, one could use multiple energy windows in an
energy-sensitive detector, such as in SPECT transmission
scans with a multi-energy radioisotope. In these cases, there
is really only one “incident spectrum,” but it is described as
a collection of N, different incident spectra since that is the
usual framework in dual-energy X-ray CT.

For each incident spectra, one records tomographic “line
integrals” at N, radius-angle pairs, i.e., a sinogram is formed
(not necessarily completely sampled). Let Y,,; denote the
measurement for the ith ray for the mth incident spectrum,
m=1, ..., N, i=1, ..., N, For notational simplicity, the
case is presented where the same number of rays are
recorded for each incident spectrum. The method general-
izes easily to the case where the number or configuration of
rays is different for different incident spectra, which may be
useful in practice. One refers to {Y,,; },,"™* as the measure-
ments for the “mth incident spectrum.”

One assumes that the measurements are random variables
with the following ensemble means:

A (9]
EylYmil =V =f1mj(8)exp —f u@, e)dl|de + ru,
.

‘mi

where [, -dl dedenotes the “line integral” function for the
ith position and the mth energy, and I,(e) denotes the
product of the source energy spectrum and the detector gain
(for the mth incident spectrum), and r,,; denotes “known”
additive background contributions such as room
background, dark current, and/or scatter. This is an ideali-
zation since it ignores the nonlinearity caused by the expo-
nential edge-gradient effect. One could extend the algorithm
derivation to account for this effect, but for simplicity the
polyenergetic aspects are focused on here. Typically L, ,.;
will be independent of m, except in some systems where
alternate projection views have different energy spectra. One
treats each I, (e) and r,, as known and non-negative.
Determining I, () in practice may require careful calibra-
tion procedures. One usually determines r,,; by some pre-
processing steps prior to iterative reconstruction. For
example, the 1, ;s may be equated to known constants related
to the “shifted Poisson™ approach based on detector noise
models.

Methods are described herein for reconstructing p from
tomographic measurements with energy diversity under
log-likelihood models based on the general physical model
(1). All previously published approaches have been based on
simplifications of (1) or of the associated log-likelihoods
with one exception. We first describe those “conventional”
simplifications, and then proceed to describe the new
approach.

B. Basis Material Decomposition (Object Model)

One has only a finite set of measurements whereas u is a
continuous function of energy and spatial location. Paramet-
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ric statistical estimation requires some form of discretization
of u. For the polyenergetic case, one must parameterize both
the spatial and energy dependencies. To our knowledge, all
prior work has considered parameterizations that use basis
functions that are separable in the spatial and energy (or
material density) dimensions. Separable approaches seem
simple and natural. For example, Alvarez and Macovski
assume that

L @
G o)=Y fleu,

=1

where each f(e) depends only on energy but not on spatial

position, 1(?) is the corresponding coefficient that varies
spatially, and L is usually 2. Alternatively, Clinthorne et al.
assume that

L 3
uGt &)=Y plep(,
=1

where B€) denotes the energy-dependent mass-attenuation
coefficient of the Ith material type (e.g., soft tissue, bone

mineral, contrast agent, etc.), and p I(?) is the density of that

material at spatial location X . This latter parameterization
facilitates enforcing physical constraints such as non-
negativity. Both of the above parameterizations use bases
that are separable in space/energy. This separability property
is needed for the type of algorithm derived in previous work.
The more general algorithm derived in this paper does not
require separability. A more general parameterization is
described in (23) below after reviewing conventional
approaches.

The conventional approach to dual-energy X-ray CT is to
substitute (2) or (3) into (1). As described in detail
hereinbelow, this yields a system of equations in the line
integrals through the spatial basis functions. One can solve
these equations numerically in sinogram space, and then
perform FBP reconstruction to form images of the material
components.

C. Conventional Monoenergetic Approximation

Another way to simplify (1) is to assume that each
incident spectrum is monoenergetic. That model is realistic
for some radioisotope sources, but is a considerable ideali-
zation of X-ray sources. Mathematically, the monoenergetic
assumption is expressed

Lal =L de-c,), ®
where €, denotes the energy of the mth setting, m=1, . . .,
N.,. Under this assumption, the model (1) simplifies to

Fmilniexp (- Lofu(X. )l ©

In this case, one can estimate the line integrals 1,4, f

(?,um)dl by a simple logarithm:

A i (6)
I = log| —— )= fLmju@, e dl.

Again, one could apply the FBP method to reconstruct u(;),
€,,) from
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Clinthorne and Sukovic combined (6) with (3) to formu-
late a penalized weighted least-squares image reconstruction
method for dual-energy and triple-energy tomographic
reconstruction. Their simulations matched the monoener-
getic model (4), so the question of whether a monoenergetic
approximation is adequate for iterative dual-energy tomo-
graphic image reconstruction is an open one. The algorithm
proposed herein will facilitate comparisons between the fuill
polyenergetic treatment and the simpler monoenergetic
approximation.

The case of a single monoenergetic measurement, i.c.,
N.=1 in (4), is the most extensively studied tomographic
reconstruction problem, and numerous non-statistical and
statistical methods have been proposed for this case.

To estimate ii by iterative statistical methods, one must
eventually parameterize it. In the single monoenergetic case,
one usually assumes

Np @
HE, &) = Z bi(Ep;
=

for some spatial basis fuinctions b,(*), such as indicator
functions overreach pixel’s support. Substituting into (5)
yields

N,

»
¥y =hi eXP[—Z aijﬂj] + i,

J=1

®

where
oA

AAF b(X)d. ©

The model (8) is used in “conventional” statistical methods
for transmission image reconstruction.

D. Beam-Hardening Correction

U.S. Pat No. 6,507,633 discloses a method which com-
bines (3) with the polyenergetic measurement model (1) in
the single scan case (N,=1) to develop a statistical method
for X-ray CT image reconstruction with compensation for
beam-hardening, assuming that the image can be segmented
into soft-tissue and bone voxels. This same assumption is
used in conventional non-statistical methods for beam-
hardening correction. DeMan et al. proposed another statis-
tical method for beam-hardening correction, assuming that
all materials in the patient have spectral properties that are
linear combinations of two basis materials. An advantage of
energy diversity approaches (N, >1) is that they eliminate the
need for segmentation and other approximations that may
hinder material characterization.
Preprocessing-Based Methods

Before describing the maximum-likelihood approach of
the present invention in detail, two existing “preprocessing”
approaches to dual-energy CT reconstruction are described.
The first approach is the classical non-statistical method, and
the second approach is the recently published weighted
least-squares approach, including some extensions of that
approach.

A. Conventional Dual-Energ Approach

Substituting (3) into (1) yields the following simplified
model for the measurement means:

3, =l e T @y

(10)
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10
11
R flmj(s)exp(—zlﬁl(s)sil)ds an
Sim(si) = =lo
Ini
S S (s e i) 12

sulp) 2 f a®dl,
-

‘mi

Sié(sila CesSy)

sul@)B 1, pAX)dl
form=1, ... N, and I=1, . . . L, where the following total
intensity is defined as:

It 2 f Imi(©)de.

Given noisy measurements Y,,;, the natural approach to

estimating the f,,.’s is to invert (10):

12

13

Ymi —

mi

A Fmi (14)

fAimz

log(smooth{ }) % fim(si)s

where often some radial smoothing is included to reduce
noise. By a Taylor expansion, in the absence of smoothing
the variance of these f,,’s is approximately:

Var{Yi}

O = i)

Var{f- 13

in)

Ignoring measurement noise, in the usual case where
L,.=L; is independent of m, one can view (14) as a system
of N, nonlinear equations in L. unknowns for the ith ray,
where the 1th unknown is s; defined in (12), namely the ith
line integral through the Ith basis material. If N =L, then for
each i, one can solve these nonlinear equations by iterative
methods or by polynominal approximation. Mathematically,
a natural strategy would be least squares:

) % L. ) (16)
5 =arg ;n;il ,; ijz(f[m _fim(s)) ,

fori=1,...,N, where w, ; is a weighting corresponding to
the reciprocal of an estimate of the variance of f,,. Based on
(15), a reasonable choice is simply w,,=Y,,, if the measure-
ments are approximately Poisson and if the r,,,’s are small.
Usually we have N =L, and in this case the above least-
squares estimator degenerates into simply solving the sys-
tem of equations (14), yielding estimates §; of the s,’s of the
following form:

RN an
where

2 G > fing)-

This is the classical dual-energy “preprocessing” approach.
After having estimated the S,’S in sinogram space, one
must use these S,’S to reconstruct images of the basis
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components (e.g., soft tissue and bone). The classical
approach is to apply the FBP method separately to each
sinogram

Sk

to form estimated component images pl(?) The FBP
method usually yields unacceptable noisy estimates of the
component images, hampering its acceptance. (Convex
combinations of the component images have at best the
same SNR as conventional X-ray CT images.)

To understand the source of this noise, it is instructive to
analyze the noise properties of (17) or more generally (16).
Using error propagation analysis, one can show that the
covariance of §, is approximately

Cov{83=L(Vrf )WV F )T (VS VV:'CUV{fi} WAV S
[(VREIWAV ST (18)

where W=diag{w,,;} and Vj and V. denote row and
column gradients, respectively. In the usual case where
W,=Cov{f;}~! as described above, then this covariance
simplifies to

Cov{s;}~[ (vai)Co"{fi}il(vcfi)]ila 19)

where one evaluates the gradients at the mean of §,.

If the N xL matrix Vf; had orthogonal columns, then the
inversion step (17) would not amplify noise. But in practice
VrS; can be quite poorly conditioned, and examining its
conditioning can provide insight into the challenges in
dual-energy CT reconstruction. Note that

8 1 _F s
Ve fi($)]u = a—s_lfim(s)) = ﬁf[mj(b‘)ﬁ[(b‘)e de.

In particular,

[vai(S)]mlL:D:Bimb

where the “effective” mass attenuation coefficient is defined
as follows:

[ 0)

B =—F-

Ini

One can explore the instability of dual-energy reconstruc-
tion by examining N xL matrix B; with entries B,,, for
various material basis functions and source spectra.

As an example, for the data shown in FIGS. 24 and 2b and
FIG. 3, we compute:

iml

P 0.264 0.655
= P} = [0.199 0.309}’

which has condition number 13.0. Furthermore, the “noise
amplification” matrix [B;B,]™" in (19) has diagonal entries
that are roughly 107,

B. WLS Approaches

Instead of using FBP to reconstruct p ,(;)) from the §;’s,
an alternative is to use a statistically-motivated reconstruc-
tion method such as a penalized weighted least-squares
(PWLS) cost function. This approach is similar to that
proposed by Clinthorne and Sukovic. The source was
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assumed to be monoenergetic, so the logarithms of the
measurements were used directly. Here, one can account for
the polyenergetic spectrum by first estimating the §,’s using
(16) or (17) in sinogram space. If the source is
monoenergetic, then the two variations are equivalent. For
polyenergetic sources, (16) or (17) will be more accurate
than simple logarithms.
Consider the separable parameterization

L Np (21

pCk o)=Y > Aoy

=1 =1

where f§(e) is the mass attenuation coefficient of the Ith

material type and {b](?)} are spatial basis functions. As
before, suppose that L,,; is independent of m, i.e., the same
rays are collected for each incident energy setting. Then the
integral in (12) simplifies as follows:

N,

»
A
o@D dl=sy(x) = ) ajxg
[ >

g

where a; was defined in (9).

Having estimated the §,’s using (16) or (17) in sinogram
space, one must then solve for x. A natural statistical
approach is to use a PWLS criterion as follows:

- i 22
X =arg XngNJ;?XL Y(x) (22)
Ne

! -
Y2 Y 56— si0) WilGisi (o) + ROx)

i=1
where W,eR” is an estimate of the covariance of
IS A
Siy 81(x) = (su(x1), -5 sic(xL)),

and

R(x) is a regularization function. There are numerous itera-
tive algorithms suitable for this quadratic minimization
problem, such as coordinate descent, or conjugate gradients,
or ordered-subsets approaches.

There are three natural choices for the covariance esti-
mates W,. The simplest choice would be unweighted, where
each W, is simply the LxL identity matrix. Although the
most convenient to use, this unweighted choice may provide
relatively limited improvement over FBP which is also an
unweighted method. The second choice would be to let W,
be diagonal with diagonal entries corresponding to estimates
of the variances of the elements of §;. This variance weighted
approach would reduce noise by giving less weight to the
noisier rays. The final approach would be to let W, be a
complete estimate of the LxL covariance matrix of §, as
described in (18). If the source spectra were monoenergetic,
then one can show that this latter approach is essentially
equivalent to the method of Sukovic and Clinthorne. Thus,
the method (22) is essentially a generalization to the poly-
energetic case.

The disadvantage of the above PWLS methods relative to
the ML approach described hereinbelow is that the nonlinear
preprocessing that leads to the §;’s obscures their statistical
distribution and seems to limit one to least-squares formu-
lations. In contrast, the ML approach can use a very accurate
statistical model. However, the ML approach is complicated
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by the nonlinearity of the physical model (1) and the
generality of the statistical models considered.
Statistical Model and Likelihood

This section describes assumptions about the measure-
ment statistics and formulates the log-likelihood.

A. Proposed Polyenergetic Object Model

As noted above, most prior work has considered bases
that are separable in the spatial and energy (or material
density) dimensions, as in (2) and (3). In the interest of
generality here, the algorithm is derived under the following
very flexible parameterization:

Ky (23)
M e = Z xu(E, )x,
k=1

where K, is the number of basis functions and x, is the
unknown coefficient of the kth basis function. By taking K,
sufficiently large and using suitably localized y,’s, any
function u can be approximated to arbitrary accuracy by
(23). Both of the preceding parameterizations (2) and (3) are
special cases of (23). For the usual two-material separable
parameterization, we have K,=2N,, is the number of voxels.
A non-separable basis may be useful for example if a certain
material component (such as a metal implant) is known a
priori to be present only in certain image locations. This may
be useful even for the bone-mineral component a priori
segmentation can adequately identify the bone regions.

Using the general parameterization (23), the inner integral
in (1) becomes:

f uG, e)cu:f
Lini Lini

Ky N
= G (&x = [An(e)];

k=1

Ky
Z X, e |dl
=

where the coefficient vector

xé (X1.ees be),
and where A (¢) is a N xK, matrix with elements

[An(&)y = Qi (o) 2 f WG o)dl,

i

fori=1,...,N, k=1, ... K,. Substituting into (1) yields the
following discrete-object discrete-data mean model:
Pmi@0)=[ L Qe (] des,,;. 24)

In the absence of noise, our goal would be to estimate x from
the measurements {Y,,;} using the model (24).

B. Statistical Methods

If one used photon-counting detectors with modest
deadtimes, then it would be reasonable to assume that the
measurements are statistically independent Poisson random
variables with means (1), i.e.,

Y,, ~Poisson {y,.{x]}.

In this case, for a given measurement realization Y,,,=Y,,.;>
the corresponding negative log-likelihood of x has the form
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Ns Ng

—LR= D) T = YmilogT (),

m=1 i=1

where=means “equal to within irrelevant constants indepen-

dent of x.” This is the model used in most statistical image

reconstruction methods for transmission tomography to date
and it is natural for photon-counting detectors such as those
used in PET and SPECT transmission scans.

Although photon-counting X-ray detectors do exist, com-
mercial X-ray CT systems use current integrating detectors
that yield energy-dependent signals and additional elec-
tronic noise variance beyond that due to Poisson counting
variability. To first order, additive electronic noise can be
approximated within the Poisson model using the r,, ; terms
in (1) by a simple modification of the “shifted Poisson”
approach. It is likely that the “exact” likelihood for such
detectors is analytically intractable, so approximations will
undoubtably be used in practice. For example, Clinthorne
describes a sophisticated point-process model for X-ray
detection and uses its first and second moments. Rather than
postulating and attempting to validate any particular
approximate statistical model in this application, the algo-
rithms are derived under very general assumptions that will
accommodate a wide variety of log-likelihood models and
approximations that might be proposed in the future.

The following four assumptions are made about the
measurement statistics.

1. The measurements {Y,,,.} are statistically independent.
Due to effects like scintillator afterglow and electronics
lag, statistical independence may not hold exactly in
practice, but it is likely to be an accurate approximation
for most X-ray CT systems. Accounting for whatever
statistical dependencies may be present in real systems
would likely be quite challenging.

2. The marginal negative log-likelihood of Y,,; has the
form 1, (y,.4x)) for some scalar function v, For
example, if the measurements have Poisson
distributions, then

Vi)=Y~V mi 10 29

This is perhaps the simplest case, but we allow for

much more general 1, s in the derivation.

3. The final two assumptions are more technical and
concern the existence of convenient surrogate functions
for the ,,,;’s of interest. It is believed that all physically
plausible y,,;’s will satisfy these quite general assump-
tions. They are certainly satisfied for Poisson and
Gaussian statistical models.

For each v,,,, it is assumed that there exists a corre-

sponding scalar surrogate function h,,(*,*) that is con-

vex on (0,0) in its first argument. By surrogate
function, it is meant a function that satisfies

B3 9) =W i), Vy>0
B3 D) Z W (), Vy>0.

(26)
@7

These conditions are the key to deriving an iterative
algorithm that monotonically decreases the cost func-
tion defined below. For each z>0, it is also assumed that
h,,(*,2) is differentiable in its first argument in an open
interval around z. This assumption, combined with (26)
and (27), ensures the following tangent condition:

li52)=Y,,(2), V250, ©28)
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where

2}

: A
hmi (Y, 2) = o

h(y, 2).

4. Convexity alone may be sufficient for some types of
iterative minimization algorithms. However, to enable
use of very simple descent methods, we will find
parabolic surrogates. The following assumption
ensures that the necessary parabola exists, which it
certainly does in the Poisson case among others.

For any x=0, the function:

mills % ) 2 i (B (s £+ P (5, 8, Ty () @

is assumed to have a quadratic surrogate for 120, where
the following functions are defined for later use:

bui(¥, ) 23, () /1 (5, ©) 30

i (%, ©) & exP(=[Ami(©¥],) + P / i @D

i s 8) 2 by (6, )7 /- G2

In other words, it is assumed that there exists a curvature
function ¢, (x,e) such that the following parabola is a
surrogate for g,.:

Gui(l, X, &) = gui([An()¥];, x, &) + (33

1
& ([Am( @i, 2, &) = [An(2)x]) + 5 i (v, ) = [An(@x]),

where
o i = — /
Emills X, &) 9lgm]( , X, &)

In assuming that q,,; is a surrogate for g,,,, it is meant that
c,,; 1s such that

Gmilbx,€) Zg,,(l x,€), Yx=0, VIZ0. (G4
The construction (33) provides the following two surrogate
properties:

il %, )iy e, = &mi [Am(@, 3, 2)

i (s %, )| = & ([Am(e)x];, X, £).

=[Am(er];

B.1 Existence of Convex Surrogates

The existence of a differentiable convex surrogate h,,;
satisfying (26) and (27) always holds when ,,; is twice
differentiable, which it will always be for physically plau-
sible statistical models.

Let 1(y) be any twice differentiable function and define

. 4 . (39)
h(y, 2 =¢@ +¢@)(y-2)+ f (y — Tmax{y(7), O} dr.

This surrogate h is convex and (twice) differentiable and
satisfies (26) and (27). The construction (35) may not be the
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optimal surrogate in terms of convergence rate, but it
confuims that the third assumption above is unrestrictive.

Of course, if ,,; 1s itself convex, such as in the Poisson
case, then one simply takes h,,(y,*)=1,,.{y).

B.2 Existence of Parabola Surrogates

To derive a specific algorithm for a particular negative
log-likelihood ,,; one will need to determine the c,,;
function in (33) by careful analysis. In the case of Poisson
measurements, where ¢ (y)=h,, (y,*)=y-y,,.; log y, the opti-
mal c,,; function was shown to be:

P, ) 2 o ([An(EX; i bini (5. 8y i (5, D), (36)
where
Ly, b, 37
[—zw] >0 37
COPY(Z’ v, b,r)= 2 +
[-& y, b, 0], =0,
where
ly. b, )2 g0, y, b, 1) =gy, b, 1)+ gL, y, b, P (38)
gy, b, ) = (be™ +7) - yloglbe™ +r)
9 y _ (39
o(ly. b.r)= —o=|1— —= |(=1)bet
gy, b= 2 | be’l+r]( Yoe
yr (40)

be™.

2
.y b.r)= —g=[1——
or (et +r)?

By “optimal” is meant the choice the leads to the fastest
convergence.

It was also shown that the curvature choice (37) is optimal
not only for Poisson measurements, but also for a fairly
broad fa ly of negative log-likelihoods.

Alternatively, if g,,, has bounded curvature, then one
could use the upper bound on that curvature as the choice for
c,,;- This approach was called “maximum curvature.” It is
the simplest choice, but is suboptimal in terms of conver-
gence rate. To summarize, assuming existence of parabola
surrogates should not unduly restrict the class of statistical
models.

C. Likelihood Formulation

Under the above assumptions, including statistical inde-
pendence of the transmission measurements, the negative
log-likelihood corresponding to the above physical model
has the form

Ns Ng

SLD =YD 2 YD (6]

m=1 i=1

(4D

for some scalar functions 1),,; that depend on the selected
statistical model. Our goal is to estimate the coefficient
vector x from the measurements {Y,,;} by maximizing the
log-likelihood or equivalent by finding a minimizer of the
cost function ¥ (or a regularized version thereof):

AmL 2 argmin ¥(x).

Optimization is restricted to the valid parameter space (i.e.,
including non-negativity constraints, etc.). Ignoring any
constraints, in principle one could find a minimizer by
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zeroing the following partial derivatives of the cost function:
Ny Ny P 42)

d L _
Iy Y = ; Zl i T 0 5= i)

Ns Ng

DI ENENE

m=1 i=1

-1 f Li (&) (&) imHi d g,

where
ij(y) = dTme(y)-

In general, there is no closed form solution to the set of K,
equations (42), so iterative algorithms are required.

Although many algorithms have been proposed for the
monoenergetic problem (8), none of those previously pro-
posed algorithms is suitable for minimizing the cost function
W(x) in the polyenergetic case. The greatest difficulty is the
integral over energy in (24). Substituting a summation for
this integral does not significantly simplify the problem.
Further difficulties arise due to the nonlinearity of Beer’s law
in (1), and due to the nonquadratic form of typical choices
for 1,,; (cf. (25)). In the next section, optimization transfer
principles are applied to derive an iterative algorithm that
monotonically decreases the cost function of each iteration.
It should converge to a local minimizer, and should converge
to the global minimizer if the cost function is unimodal. (The
cost function is convex in the monoenergetic case under the
Poisson model if the r,’s are zero.) Global convergence
needs further exa,nation. Many variations on this basic
algorithm are possible. In particular, one could apply many
general purpose minimization methods to minimize 1, but
most such methods would not provide monotonic decreases.
ML Algorithm

Since the cost function W(x) is difficult to minimize
directly, optimization transfer principles are applied to
develop an algorithm that monotonically decreases W(x)
each iteration. (The extension to the penalized-likelihood
case is straightforward, so the ML case is focused on here.
The challenging part is the log-likelihood, not the penalty
function.) To apply optimization transfer, at the nth iteration,
one would like to find an easily-minimized surrogate func-
tion (the superscript “n” denotes an iteration index, not a
power) ¢(x,x*)=¢">(x) that satisfies the majorizing condi-
tions

PE)=TR) #3)
)W) #4

One then implements the following iteration:
“5)

7D = argmin ¢ (x).
x

Optimization is restricted to the valid parameter space, such
as {x20}. The conditions (43) and (44) ensure that an
algorithm of the form (45) will monotonically decrease ¥
each iteration: W(x™V)ZW(x™).

A suitable surrogate function is derived in this section by
using several optimization transfer principles. DePierro’s
multiplicative convexity trick, parabola surrogates, and
DePierro’s additive convexity trick. The development par-
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tially parallels the derivation of a monotonic algorithm for
SPECT transmission scans with overlapping beams. As
described herein, the overlap is spectral rather than spatial.
The final result of the derivation is the diagonally-scaled
gradient descent algorithm (62) below.

A. Convex Surrogate

In general, P(x) will not be convex, so a convex surrogate
is first formed to simplify minimization. Using the convex
surrogate h,,; described in (27), one defines

K0 2 B3, T 7)), “6)

and then constructs the following surrogate function for W:

Ns Ng

ORI e

m=1 i=1

47N

It follows from (26) and (27) that the surrogate ¢, satisfies
the monotonicity conditions (43) and (44).

B. Surrogate Based on Multiplicative Convexity Trick

Typically, ¢, is also difficult to minimize directly, so the
next step is to further simplify by deriving a surrogate
function using DePierro’s multiplicative convexity trick,
generalized from summations to integrals. One first rewrites
Y, in (24) as follows:

Toi) = f i Vi, £ “9)

B ﬂ Ini()
I e

where t,,; and b,,; were defined in (31) and (30), and we
define

[tm]- (x, s)bg’d)(s)d &,

(49)

A
53(8) & tmi (", 2)

B(e) £ bus(x®, 2.

(Many b, "(€)’s would satisfy (50) and hence (44), but only
the choice (49) leads to (43)). The key feature of the equality
(48) is that the terms in the brackets are nonnegative and
integrate to unity, enabling use of the convexity inequality
(i.e., Jensen’s inequality). If h is any function that is convex
on (0,), then

hE ) = A f[ Ini(€)
Adx) =
o bri (@)

< f Mh(z,m-(x, b (e)de.

b

(50

[tm]- (x, ©) bi:l-) (e)d s]

Since h,,;*” in (47) is convex by assumption, one can apply
the above trick to it, thereby deriving our next surrogate
function for the cost function as follows:

Ny Ng (51

P = > Ml

m=1 i=1

Ny Ng )
mil€) n
< f ; El %h‘m’vmj(x, eil@nds



US 6,754,298 B2

19

-continued
247w,

Using the e(}uahty t,.(x",e)b,.(e)=y,,{x"), one can
verify that ¢, is a valid surrogate that satisfies the mono-
tonicity conditions (43) and (44).

As a sanity check, in the case of monoenergetic sources
we have I, (€)=I,,8(e—¢,,), for which t,, (x,€,,)=Y,,{x)/,, and
hence b,,,*(€)=I,. In this case ¢, "(x)=¢,"?(x). So the
monoenergetic problem is a degenerate special case of the
algorithm derived hereafter.

The surrogate function ¢, “brings the integral over € to
the outside,” simplifying the optimization. Nevertheless,
¢, ™ is difficult to minimize directly, so we find a parabo-
loidal surrogate function for it.

C. Paraboloidal Surrogate

The next surrogate is based on paraboloids. For brevity,
define

A
(@) = ra (e, 2),

where 1,,; was defined in (32). Using (29)-(31) we have:

) i (x, 2B (£)) 52)

= hui (B (©)exp(— [An(@)X]}) + rod (£), Ty (1))
= gn([An(e)];, ),

where g, was defined in (29) and
g2

gmi(l, X7, &),

The surrogate ¢, is rewritten in (51) as follows:

o' = ZZf ) g Ao
m=1 b ( )

As described hereinabove, it is assumed that g, has a
parabola surrogate q,,,; of the form (33), so these parabolas
are combined using (53) to form a paraboloidal surrogate:

ERWIHE

2 687,

(43)

ede.

(64
Imi(£) 270

e

mi ([Am(£)x];, £)d e

where

g2 9 2 guill, 7, ).

Using (33) and (34), one canverify that ¢, is a valid
surrogate that satisfies the monotonicity conditions (43) and
(44).

¢, is a quadratic form, so one could apply any of a
variety of algorithms to minimize it per (45). Two choices
are focused on. One choice is coordinate descent, which is
known to converge rapidly. However, coordinate descent
works best when the a,,;(€)’s are precomputed and stored.
This storage may require more memory than current work-
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stations allow for X-ray CT sized problems. The second
choice is to find yet another surrogate, this time a separable
function for which the minimization step (45) becomes
trivial.

D. Coordinate Descent

Implementing a coordinate descent algorithm to minimize
the paraboloidal surrogate ¢ would require the following
partial derivatives:

Ns Ny 9
iw)(x) = f i (6) L 00 14 v e
ax, 7 'mik P Gmi \LAm i>
m=1 i=l
ZZ f At () {?;( 2 e, o)+
m=1 i=l
el @ ([An(e)x]; - [ (@)lde
where we define
. (56)

) 2 [An(@x™); and clil(e) 2 ea”, 2.

i

Applying the chain rule to (29) yields:
&n( ©=h,, (B, e 41, D, PO (-1,
so using (28):

. _m _n)
O, = i B @™m0 4+ 1) 0) ) (@)= D)
o

= s T (DB )~ D@,

and hence
¢‘z”’(x) ZZ f it (£) ’;’)(‘9) e, ode +
m=1i=1 ( )
Ns Ng
> f it (W) Ap(@)x = X d
m=1 i=1
Ns Ng

= D0 D Ui a6 f i (i)~ De P g 4

m=1 i=1

Ns Ny

> f i WA (@) = X)),

m=1 i=1

li}
= —Y%x) +

Axy

=x ()

Ny Ny Np

Z Z Z fa,,“k (&)amij (s)w(")(s)ds(x - x(")),

m=1i=1 j=1

using (42), where

A Ini(e) (n)( ).

(n)
WS

This “matched derivative” property is inherent to optimiza-
tion transfer methods.
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For the second partial derivatives, using (54) and (56):

9 Ns Ng

T 0=, f i (S)am (S (©)d .

m=1 i=1

In particular,

Ns Ng

62
Z#w=Y 3 [amerlon
k

m=1 i=1

6N

Combining (56) and (57) leads directly to a coordinate-
descent algorithm with inner update:

- )‘
_— X
I N
(n+1) (n) b
xk = xk -

o (n)
B_x,f;bz ()

where [x], enforces the non-negativity constraint.
E. Surrogate Based on Additive Convexity Trick

The surrogate function ¢, is a non-separable quadratic
function of x (a paraboloid). Non-separability is fine for
coordinate descent, but inconvenient for simultancous
update algorithms. To derive a simple simultaneous update
algorithm (fully parallelizable and suitable for ordered-
subsets implementation), we find next a separable parabo-
loid surrogate by applying DePierro’s additive convexity
trick. The key is the following equality (an additive analog
of the multiplicative form (48)):

Ky Ky
[Am(e)x]; = Z it (@ = ) T (et (i, ©)
=1 =1
where
W e )2 2D (4 [,
ik (K> () T m i

provided the m,,;(€)’s are non-negative and are zero only
when a,,(¢) is zero, and that

Ky
Zﬂmik (e)=1
=1

Since q,,,*(l, €) is a convex function, by the convexity
inequality (cf. (50)) we have:

G ([An(e)];.
Kp Kp

&= qizﬂ-’[Z Toni ()i (5, 2), s] < ) Tk (M (i (i ©), ©).
k=1 k=1

This exchange “brings out the sum over k.” Combining (54)
leads to the following final surrogate function:
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(58)

Ns  Ng
)

m=1 i=1

Ky
Imi o
© Zﬂmik (a0 Wl (5, 2), o) |de.
bg:]-)(b‘) k=1

The surrogate ¢, is convenient because it is separable:
Kp
$w =) ¢
k=1

where

Ns  Ng
A Ini () n,
HERE E E f p )nm;k@)qin}(u‘mi’k(xk,s), eyde.
'mi \E,
m=1  i=l

59

Combining separability with (45) leads to the following
fully parallelizable algorithm:
X/Erwl)

= argrrxlingbgf,l(xk), k=1,...,Kp.
&

As always, one must consider any constraints such as
non-negativity. Since ¢3}k(”) is a quadratic function, it is
trivial to minimize as follows:

3 (60)

F Pk

(n+1) (n) Xk:Xlin)
X =|x -

2

(n)
— X,
ax2 [291673)]

S

From (59) and (55), the partial derivatives needed are:

Ns -~ Na
Ini(2) L n
= E E f o it () (A (@], o)
X =xy — D (2)

2]
= —%(x)

Axy

9 (n)
ErN &3 (x)

x=x ()

and

(@it (£))*
Tt (€)

()

62 (n)
7 n(o)de.
92 &3 (x) Wi (€)d e

Ns  Ng
- ZZ

m=1 =1

A useful choice for the 7,,,(€)’s is:

Qi ()
ni(8)’

Tmik (8) =

where

K (61)
() & Z Ak (€).

k=1
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Substituting into (60) yields the following algorithm:
(62)
) _ | E x=x()
B 4 »
for k=1, . . . ,K,, wherein
Ny Ny (63)
=y f i (S)ami (i) () 2,
m=1 i=1
and

a_q;(x(n) )
dx;

was defined in (42). This is a diagonally-scaled gradient-
descent algorithm that is guaranteed to monotonically
decrease the cost function each iteration.

Both the first derivatives (42) and the denominators
{d, 1} require integrals over energy. These integrals can be
computed by standard discrete approximations, to whatever
accuracy the source spectrum and material properties are
known. This is fundamentally different than making linear or
polynomial approximations in the model at the outset.

To make a more practical algorithm, it would probably be
reasonable to adopt the “precomputed fast denominator”
idea and to apply the ordered subsets principles. Applying
these principles alone would cause a loss of guaranteed
monotonicity, but have proven to be useful in practice. By
applying suitable relaxation, one could even guarantee con-
vergence if the cost function were convex.

FIG. 1a shows a flow chart of the method or algorithm of
the present invention. Initially, two or more raw sinograms
are obtained such as from a detector of FIG. 1b. Calibration
data for the source spectra are also provided.

Component line integrals and error covariances are esti-
mated utilizing the raw sinograms and the calibration data.

FBP reconstruction of component images is then per-
formed utilizing the component line integrals. Then,
optionally, component images are created utilizing iterative
WLS reconstruction utilizing the component line integrals,
component error covariances and the component images.

Then, either the component images obtained by FBP
reconstruction or the component images constructed by
iterative WLS are chosen to reproject in the next step which
reprojects the chosen components to estimate line integrals.

Then, measurement means and gradients are computed.

The measurement means and gradients are utilized by a
backprojection process to compute the cost function gradi-
ent.

The component images are updated using correction
factors. Component constraints are applied such as non-
negativity.

The number of iterations is checked against a predeter-
mined number or other criteria related to the component
images and data are considered, and if the iterative part of
the method is complete, then, the final component images
are displayed and/or analyzed. If not done, then the iterative
part of the method is re-entered at the choosing step.

Alternatively, after reconstruction of the component
images is performed by the iterative WLS reconstruction
step, the component images may be displayed and/or ana-
lyzed as indicated by the dashed line in FIG. 1a.
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FIG. 1b is a simplified schematic block diagram showing
how an image reconstructor of the present invention inter-
acts with the subsystem of a simple CT subsystem to
perform the method of FIG. 1a.

F. ML Dual-Energ Case

Perhaps the most common application of this algorithm
will be to dual-energy X-ray CT reconstruction with a
two-component separable basis of the following form (cf.

©)

BL@)b (D), k=1,...,N

Brlebin, B, k=N, +1, ...

P
2N,

5 P>

xi®s 8)={

with K=2N,,, for some spatial basis {b]-(?}jﬂNp such as
pixels, where f;(e) and f,(€) denote the spectral properties
of the two basis materials. For simplicity, also assume that
the measured ray configuration is the same for both incident
spectra, i.e., L, . =L, for m=1,2. In this case,

PBi(eay, k=1,...,N,
i 2) = Pr&aip-n,, k=Ny+1, ... 2N

P>

where a; was defined in (9). In other words,
A (x=Pp,(€)Ax, +B,(€)Ax,

where x=(x,,X,) and where x, and x, represent the basis
coefficients (voxel values) for the two component images.
This expression is independent of m. Furthermore, from (61)

(64)

@ ©=[B1()+B2()]as

where
Np
A
a; = Z ajj.
=1

With these simplifications, the measurement mean model
(24) becomes

;’m_(x)= Iml_e—fim([An]i,[sz]i)_,_rmi (65)

where f,,, and I, were defined above.
Given incident source spectra I, (€), one can precompute
and tabulate f,, for m=1,2. Since f,, is nearly linear, a
modest table combined with bilinear interpolation is effec-
tive. (For monoenergetic sources, f,,, would be exactly
linear.) Alternatively, a polynomial approximation togf can
be used.

The algorithm (62) also requires the partial derivatives of
the cost function. Using (64), the partial derivatives (42)
simplify to

] (66)
le‘l‘(x) =

Ny "
Z ajj [Z s s O Gt ([AX1 ], [AZ ) T () = i) |,

T

for j=1, . . . )N, and 1=1,2, where x, denotes the jth
component of x;, and where Giml(sl,s2 ) denotes the deriva-
tive of £, (s;,8,) with respect to s;. Thus, the algorithm (62)
becomes:
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%q;(x(n)) )
N+ n &
A= Jd,‘.'“
for j=1, . .. ,Np, 1=1,2, where
2]
dxy
defined in (66), and from (63)
Yeoon (68)
dl(j”) = Za;ja;Z fﬁ,(s)wﬁﬂ(‘g)d‘g_
=) m=1
where

Bi©) & BB (o) + Ba(e)).

Since the integral in (68) depends on the current iterate
x", it cannot be precomputed and tabulated. One integral
per ray is needed, followed by one backprojection per
material component. Thus, the guarantee of intrinsic mono-
tonicity requires roughly a 50% increase in computation per
iteration over an algorithm in which the d;’s are precom-
puted. In similar previous studies, it has been observed that
one can use precomputed approximations to the d,]-(”)’s yet
preserve monotonicity almost always. This observation
motivates the following hybrid approach: we first use pre-
computed d,]-(”)’s each iteration, and then check the cost
fuinction to verify that it decreased. If not, then the update
is recomputed using the d,]-(”)’s that intrinsically guarantee a
monotone decrease. Only very rarely is this recomputation
required, so the resulting “hybrid” method is fast and
practical yet also guaranteed to be monotone. When speed is
considered more important than monotonicity, one can also
easily apply ordered subsets to (67) by downsampling the
sums over “i” in the derivative expressions.

G. Precomputed Curvatures

To reduce computation per iteration (at the price of losing
the monotonicity guarantee), precomputed values may be
used for the denominators d;. Observe that c,, is the
curvature of g,,,; in (33), which is a parabola surrogate for g,
in (29). A reasonable approximation for c,,,"(e) is to use the
curvature g,,,*” at its minimizer, i.c.,

A )E (b, g min gL
where

9
g -(lxs)é—g (L x, ).
Emills X, 72 Smill X

From (29), for P near the minimizer of g,,;:
Gl X~ =, (%, ) LB i€ )e ™47, (6) 5 6).

The minimizer of 1, (y) and h,(y,y, (x")) should be
approximately where y=y,,. (This holds exactly for the
Poisson noise model.) So the minimizer of g,, "> should be
approximately where b, (x,€)e 41, (x,€)=y,;. If . is
nearly convex, then h,,,; and ,,,; should have approximately
the same curvatures. Combining these heuristics with the
assumption that r,,; is neglible yields the approximation
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Cmi(")(ﬁ)“ymizwmi(ymi)

If y,,; corresponds a statistical model that is approxi-
mately Poisson, then Y,V mi)=1/Y,,;. Thus, we use the
approximation c,,;"?(€)~y,,; hereafter, which we substitute
into (68). To further 51mphfy, we replace the f(€) values in
(68) by their values at the effective energy of the mth
incident spectrum:

fslmj(s)ds
Bt »2,

"7 [h@de

(69)

yielding the approximation

i © W©) |
7 B e ~ Fien) e e

usmg (30) Thus, the final precomputed approximation to
d;"

= ,Bl(Em),

Ny 5,
E aijaiz Ymi By (Em)-
m=l

i=1

(70)
it

Precomputing (70) requires one object-independent forward
projection (to compute the a;’s), and two measurement-
dependent backprojections (one for each 1).
H. Examining f,,, Via a Linearizing Transformation
Since

2] 0.0 =
a_slﬁm( ’ )—,Bml,
we define
- L (]
5l Bt P |

The effect of this transformation is that

Bz 1 (71)

P

BF*OO 1
75 (0, 0) = Lo,

where 1 denotes the indicator function.
Results

A. Computer Simulation

To evaluate the feasibility of the proposed approach, a
computer simulation of dual-energy polyenergetic CT scans
was performed. Both the conventional dual-energy FBP
reconstruction method, the proposed polyenergetic WLS
method and the proposed ML reconstruction method were
applied to those simulated measurements.

FIGS. 2a-2b show the source spectra for the two simu-
lated source voltages (80 kVp and 140 kVp). The dashed
lines in the Figures show the effective energies of these
spectra, as defined by Equation (69).

The separable parameterization of Equation (21) was
used. FIG. 3 shows the mass attenuation coefficients () of
bone mineral and soft tissue from NIST web pages:

http://physics.nist.gov/PhysRefData/XrayMassCoef/

ComTab/tissue.html.

FIGS. 4a and 4b show the function f,,, defined in (11).
These functions look to be nearly linear, but they are not
quite linear due to beam hardening.
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FIG. 5 shows the linearized form (71) for uniform
samples ins; and S,. Near zero the values are nearly uniform
(due to the Jacobian) but away from zero there are nonlin-
earities due to beam hardening.

FIGS. 6a—6d show the object x”™¢ used in the computer
simulation. The units of x are density (g/cm®) and were
assigned to 1.0 for soft tissue, 0.2 for lungs, 1.9 for spine,
and 2.0 for ribs. The lungs and soft tissue had the “soft
tissue” characteristics shown in FIG. 3, and the spine and
ribs had the “bone™ characteristics of FIG. 3. The images
were 128x104 and the pixel size was 0.32 cm.

We simulated dual-energy measurements y,; using (24)
and the spectra shown in FIGS. 2a and 2b. The sinograms
140 radial samples (parallel beam geometry with 0.32 cm
sample spacing) and 128 angles over 180°. To the noiseless
sinograms Y, we added pseudo-random Poisson distributed
noise corresponding to a total of 47M recorded photons
(chosen arbitrarily to represent a moderately low SNR case
where FBP yields noticeable streaks). FIGS. 7a and 7b show
the simulated sinograms Y,,;.

We first show the results of conventional dual-energy
tomographic reconstruction. FIGS. 82 and 8b show the
estimates f™ described in (14) as computed from the noisy
dual-energy sinograms, using a small amount of radial
smoothing to help control noise. FIGS. 9a-9f show the
estimates §; described in (17) as computed from the f;,’s.
FIGS. 9a-9f also show the error sinograms. There is sub-
stantial error because the inversion in (17) is a noise-
amplifying step due to the similarities between the two
spectra in FIGS. 2g and 2band the similarities of the mass
attenuation coefficients in FIG. 3.

FIGS. 10a—10f show ramp-filtered FBP reconstructions of
the soft-tissue and bone components from the S;’S shown in
FIGS. 10a-10f. FIGS. 10a—10f also show the error images.
Substantial noise propagates from the $’s into the FBP
images.

FIGS. 11a-11f show PL dual-energy reconstruction of
soft tissue and bone components. The density units are i/cm.

FIGS. 10a—10f and 11a—11f illustrate the current tradeoff
that faces X-ray CT imaging. Ordinary single-energy meth-
ods are inaccurate, whereas FBP-based dual-energy methods
are unacceptably noisy.

Although the algorithm description in the preceding sec-
tions did not include regularization, it is straightforward to
include regularization in this algorithm. A penalized-
likelihood extension of the ML dual-energy method was
implemented. In our implementation, we used pairwise pixel
differences with a Huber potential function and a second-
order neighborhood for the regularizing penalty function.
The strength parameter was modulated to help provide
resolution unifor, ty (away from object boundaries). Many
other regularization methods could be used instead.

FIG. 12 shows the cost function changes W(x"-W(x?)
versus iteration for a 1 subset version of the algorithm with
precomputed curvatures as described in (68). The 4 subset
version “converges” nearly 4 times faster than the 1 subset
version. This acceleration factor is typical for ordered-subset
methods.

Conclusion

A statistical method for reconstructing dual-energy X-ray
CT images is described herein. The method is applicable to
related tomographic imaging problems having energy diver-
sity. The method can accommodate a very wide variety of
statistical models and is likely to be sufficiently general to
cover all useful choices since the mathematical assumptions
on X are quite flexible.

Undoubtably, many simplifications are possible for spe-
cial cases of the above general framework. For simplicity,
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we have used an approximate physical model that ignores
the nonlinearity caused by the exponential edge-gradient
effect. Using optimization transfer methods similar to those
used here, one could extend the algorithm derivation to
account for this effect. Other blurring effects like detector
after-glow, finite X-ray focal spot size, flying focal spot,
detector response, could also be included.

Another extension would be to incorporate Compton
scatter into the measurement model since a basis material
formulation should facilitate model-based scatter
approaches such as those used successfully in PET. The
importance of scatter is well known.

Using a dual-energy approach eliminates the need for
beam-hardening corrections, and the use of statistical meth-
ods also reduces metal artifacts.

As derived here, our final surrogate function is completely
separable, both spatially and spectrally (in terms of the
component density coefficients x,). It may be preferable to
modify the derivation to only invoke spatial separation, but
leave the spectral components coupled since they are jointly
constrained so should be considered together.

The method is potentially applicable to all known dual-
energy CT problems, including attenuation correction for
PET-CT systems.

The invention relates to a method for statistical tomo-
graphic reconstruction from dual-energy X-ray CT scans or
other sets of two or more transmission scans with differing
energy spectra. This method has potential application in a
variety of X-ray (and polyenergetic gamma ray) imaging
applications, including medical X-ray CT, non-destructive
evaluation in manufacturing, security purposes like baggage
inspection, and accurate attenuation correction for PET
scans from X-ray CT images.

Existing dual-energy methods are largely non-statistical
and lead to unacceptably noisy images that have impeded
their commercial adoption. Our statistical approach controls
the noise by using more sophisticated modern iterative
algorithms. This method extends the previously developed
algorithm described in U.S. Pat No. 6,507,633 for recon-
struction from single X-ray CT scans to the case of dual-
energy scans.

While embodiments of the invention have been illustrated
and described, it is not intended that these embodiments
illustrate and describe all possible forms of the invention.
Rather, the words used in the specification are words of
description rather than limitation, and it is understood that
various changes may be made without departing from the
spirit and scope of the invention.

What is claimed is:

1. A method for statistically reconstructing images from a
plurality of transmission measurements having energy
diversity, the method comprising:

providing a plurality of transmission measurements hav-

ing energy diversity; and

processing the measurements with an algorithm based on

a statistical model which accounts for the energy diver-
sity to obtain at least one final component image which
has reduced noise.

2. The method as claimed in claim 1, further comprising
providing a cost function based on the statistical model
wherein the cost function is minimized during the step of
processing.

3. The method as claimed in claim 2, wherein the cost
function has a gradient which is calculated during the step of
processing.

4. The method as claimed in claim 3, wherein the gradient
is calculated by backprojecting.
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5. The method as claimed in claim 1, further comprising
analyzing the at least one final component image.

6. The method as claimed in claim 1, further comprising
calibrating spectra of the measurements to obtain calibration
data wherein the step of processing utilizes the calibration
data.

7. The method as claimed in claim 1, further comprising
displaying the at least one final component image.

8. The method as claimed in claim 3, wherein the gradient
is calculated by approximately using a subset of the
measurements, such as an ordered subset of projection
views, to accelerate the algorithm.

9. The method as claimed in claim 2, wherein the cost
function has a regularizing penalty term.

10. The method as claimed in claim 1, wherein the
measurements are dual-energy X-ray CT scans.

11. The method as claimed in claim 1, wherein the
measurements are transmission scans with differing energy
spectra, such as X-ray sources with different tube voltages or
different filtrations, or gamma-ray sources with multiple
energies.

12. The method as claimed in claim 2, wherein the cost
function includes a log-likelihood term.

13. The method as claimed in claim 2, wherein the cost
function consists solely of a log-likelihood function, which
is called maximum likelihood reconstruction, or wherein the
cost function consists of both a log-likelihood function and
a regularizing penalty function, which is called penalized-
likelihood or maximum a posteriori image reconstruction.

14. The method as claimed in claim 1, further comprising
preprocessing the measurements prior to the step of pro-
cessing to obtain preprocessed measurements and wherein
the preprocessed measurements are processed in the step of
processing to obtain the at least one component image.

15. The method as claimed in claim 12, wherein the log
likelihood term is a function that depends on a model for an
ensemble mean of the transmission measurements, and the
model incorporates characteristics of an energy spectrum.

16. The method as claimed in claim 12, wherein the
log-likelihood term is a function of the transmission
measurements, prior to any pre-processing such as taking a
logarithm of the measurements.

17. The method as claimed in claim 3, wherein the
gradient of the cost function is calculated using a parametric
approximation, such as polynomials, tables, or piecewise
polynomials.

18. The method as claimed in claim 9, wherein the
regularizing penalty term is based on quadratic functions of
linear combinations of voxel values or nonquadratic (edge-
preserving) functions of such combinations.

19. The method as claimed in claim 2, wherein parameter
constraints such as non-negativity of voxel values are
enforced during or after minimization of the cost function.

20. The method as claimed in claim 14, wherein the
processing step is based on the preprocessed measurements
and uses a cost function based on a statistical model for
variability of the preprocessed measurements.

21. An image reconstructor apparatus for statistically
reconstructing images from a plurality of transmission mea-
surements having energy diversity, the apparatus compris-
ing;

means for providing a plurality of transmission measure-

ments having energy diversity; and

means for processing the measurements with an algorithm

based on a statistical model which accounts for the

energy diversity to obtain at least one final component
image which has reduced noise.

22. The apparatus as claimed in claim 21, further com-

prising means for providing a cost function based on the
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statistical model wherein the cost function is minimized by
the means for processing.

23. The apparatus as claimed in claim 22, further com-
prising means for calculating a gradient of the cost function.

24. The apparatus as claimed in claim 23, wherein the
means for calculating calculates the gradient by backproject-
ing.

25. The apparatus as claimed in claim 21, further com-
prising means for analyzing the at least one final component
image.

26. The apparatus as claimed in claim 21, further com-
prising means for calibrating spectra of the measurements to
obtain calibration data wherein the means for processing
utilizes the calibration data.

27. The apparatus as claimed in claim 21, further com-
prising a display for displaying the at least one final com-
ponent image.

28. The apparatus as claimed in claim 23, wherein the
means for calculating calculates the gradient approximately
using a subset of the measurements, such as an ordered
subset of projection views, to accelerate the algorithm.

29. The apparatus as claimed in claim 22, wherein the cost
function has a regularizing penalty term.

30. The apparatus as claimed in claim 21, wherein the
measurements are transmission scans with differing energy
spectra, such as X-ray sources with different tube voltages or
different filtrations, or gamma-ray sources with multiple
energies.

31. The apparatus as claimed in claim 21, wherein the cost
function includes a log-likelihood term.

32. The apparatus as claimed in claim 22, wherein the cost
function consists solely of a log-likelihood function, which
is called maximum likelihood reconstruction, or wherein the
cost function consists of both a log-likelihood function and
a regularizing penalty function, which is called penalized-
likelihood or maximum a posteriori image reconstruction.

33. The apparatus as claimed in claim 22, wherein the cost
function includes a maximum likelihood or penalized like-
lihood algorithm.

34. The apparatus as claimed in claim 21, further com-
prising means for preprocessing the measurements to obtain
preprocessed measurements wherein the preprocessed mea-
surements are processed by the means for processing to
obtain the at least one component image.

35. The apparatus as claimed in claim 31, wherein the log
likelihood term is a function that depends on a model for an
ensemble mean of the transmission measurements, and the
model incorporates characteristics of an energy spectrum.

36. The apparatus as claimed in claim 31, wherein the
log-likelihood term is a function of the transmission
measurements, prior to any preprocessing such as taking a
logarithm of the measurements.

37. The apparatus as claimed in claim 23, wherein the
gradient of the cost function is calculated using a parametric
approximation, such as polynomials, tables, or piecewise
polynomials.

38. The apparatus as claimed in claim 29, wherein the
regularizing penalty term is based on quadratic functions of
linear combinations of voxel values or nonquadratic (edge-
preserving) functions of such combinations.

39. The apparatus as claimed in claim 22, wherein param-
eter constraints such as non-negativity of voxel values are
enforced during or after minimization of the cost function.

40. The apparatus as claimed in claim 34, wherein the
means for processing processes the preprocessed measure-
ments and uses a cost function based on a statistical model
for variability of the preprocessed measurements.
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