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Abstract: This paper analyzes the tradeoff between spatial reso-
lution and noise for simple pinhole imaging systems with position-
sensitive photon-counting detectors. We consider image recovery al-
gorithms based on density estimation methods using kernels that are
based on apodized inverse filters. This approach allows a continuous-
object, continuous-data treatment of the problem. The analysis shows
that to minimize the variance of the emission-rate density estimate at
a specified reconstructed spatial resolution, the pinhole size should be
directly proportional to that spatial resolution. For a Gaussian pinhole,
the variance-minimizing full-width half maximum (FWHM) of the pin-
hole equals the desired object spatial resolution divided by

√
2. Simula-

tion results confirm this conclusion empirically. The general approach
is a potentially useful addition to the collection of tools available for
imaging system design.
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1. Introduction

The design of imaging systems and image recovery algorithms generally involves trade-
offs between spatial resolution and noise. For example, in a simple pinhole imaging
system, a larger pinhole allows more photons to pass through, which reduces the rela-
tive uncertainty of the measurements, but at a price of degraded spatial resolution. The
problem of specifying system parameters such as pinhole size is therefore frequently en-
countered in the system design process. This paper considers the image recovery problem
as an indirect density estimation problem, and considers the following design criterion:
minimize the variance of the object estimate subject to a prespecified object spatial
resolution. We show analytically that the variance-minimizing spatial resolution of the
imaging system is proportional to the desired spatial resolution of the object estimate,
when the kernel of the density estimator is based on an apodized inverse filter. This is
an intuitive relationship, but one that has not been previously established theoretically
to our knowledge.

There are a variety of methods that have been proposed for “optimal” choice
of system parameters in imaging system design. Each such design method has its own
merits and limitations, and it is unlikely that any single design method will be univer-
sally accepted as the canonical choice. Since imaging systems are often built to serve
multiple purposes, system designers can benefit from exploring multiple design criteria.
We make no pretense that the criterion analyzed in this paper is always preferable over
alternatives, but we believe that it is a potentially useful addition to the collection of
tools available for imaging system design.

One very principled approach to imaging system design is to optimize the system
for the performance of a certain task or collection of tasks, e.g. [1, 2, 3, 4, 5, 6, 7, 8,
9, 10]. In the context of detecting a known Gaussian signal in a stationary nonuniform
background, Myers et al.[3] found that the optimum aperture size was fairly close to the
Gaussian signal width. One can evaluate and optimize task performance with respect to
system parameters using either human observers or machine observers. When imaging
systems are designed for specific tasks, such as detecting myocardial perfusion defects
[11], task performance is a natural metric for design. Often imaging systems must serve
multiple purposes, so more generic measures of performance, such as spatial resolution
and noise, are useful to complement task-specific performance measures. Manufacturers
of medical imaging instruments typically report only spatial resolution and sensitivity,
despite their indirect relationships to task performance.

Another approach to analyzing system performance is the Cramer-Rao (CR)
bound. The ordinary CR bound is applicable only to unbiased estimators, which lim-
its its utility in imaging problems where bias is typically inevitable. The uniform CR
bound [12] is a recent extension of the CR bound that allows for biased estimators. The
uniform CR bound provides the minimum achievable variance of an estimator whose
bias-gradient length is below a specified threshold. Although the bias gradient is re-
lated to spatial resolution in some cases [13], in general it is currently fairly challenging
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to interpret the tradeoff between variance and bias gradient length. In particular, we
have observed some counter-intuitive results concerning optimal collimator resolution
as a function of target image resolution, perhaps in part due to nonlinear and system-
dependent relationships between bias gradient length and spatial resolution [14, 15].
Our intuition is that as one reduces the required reconstructed spatial resolution, the
variance-minimizing collimator size should increase1 This intuitive relationship has not
always been apparent in our uniform CR bound experiments, which motivated the work
described in this paper.

One appeal of the uniform CR bound is that it is estimator independent. How-
ever, data from any system must eventually be reconstructed by some estimator, and
the class of reasonable estimators is arguably fairly small. So as a part of exploration of
system performance, it is sensible to also investigate resolution/noise tradeoffs for broad
classes of estimators, albeit without the full generality of the uniform CR bound.

Another difficulty with CR bounds is that they (apparently) require an inher-
ently discrete formulation both for the detector space (which is often but not always
natural) and for the image space (which is somewhat unnatural since emission distribu-
tions are continuous entities). The discrete formulation leads to large matrix inversion
problems, and, as shown in [15], challenges in interpretation due to differences in per-
formance even for neighboring pixels depending on “small” discretization effects.

In this paper, we adopt a completely continuous formulation. The only dis-
cretization is at the final step (numerical integration), which is fundamentally different
from initially formulating a discrete problem. The treatment is closely related to “in-
direct” density estimation [16, 17]. A good reference on direct density estimation is
[18]. Other publications that are relevant to density estimation an image reconstruction
include [19, 20, 21, 22, 23, 24].

Section 2 describes the problem generally. Section 3 describes the density es-
timation approach and analyzes it statistically. Section 4 focuses on the shift-invariant
case, considers a specific kernel for the density estimator based on an apodized inverse
filter, and derives analytic results for specific pinhole shapes. Section 5 reports numerical
simulations that confirm the analysis.

2. Problem

Consider an emitting object with emission-rate density λ(x) having units emissions per
unit time per unit volume. The emission-rate density λ(x) is defined over a subset Ω
of IRd, where typically d = 2 for planar imaging and d = 3 for volumetric imaging.
We assume that the time-ordered sequence of emissions originate from statistically in-
dependent random spatial locations {X1, X2, . . .} drawn from a Poisson spatial point
process [25]. In particular, the joint probability that the first n0 emissions originate in
any (measurable) regions Bn ⊆ Ω is given by2:

P

[
n0⋂
n=1

{Xn ∈ Bn}

]
=

n0∏
n=1

P [Xn ∈ Bn] =

n0∏
n=1

∫
Bn
λ(x) dx∫

Ω
λ(x) dx

.

Spatial locations x ∈ Ω over which the emission-rate density λ(x) has relatively greater
values are the “hot regions” of the object.

For any emission imaging system, not all emitted photons are detected. Let s(x)
denote the sensitivity function of the emission system, i.e., s(x) is the probability that

1This intuition is somewhat consistent with the findings of Myers et al.[3] on the relationship be-
tween optimum aperture size and signal size in the context of signal detection, although low image
variance need not necessarily be associated with high detection SNR since correlation properties are
also important.

2All integrals over dx are d-dimensional.

#4063 - $15.00 US Received November 30, 1997; Revised March 06, 1998

(C) 1998 OSA 16 March 1998 / Vol. 2, No. 6 / OPTICS EXPRESS 240



a photon emitted from location x is detected (somewhere) by the system. Then when
the system detects an emission, the probability (density3) that that emission originated
from spatial location x is given by

f(x) =
λ(x)s(x)∫
λ(x′)s(x′) dx′

=
λ(x)s(x)

r
, (1)

where

r
4
=

∫
λ(x)s(x) dx

is the total rate of detected events (with units detected counts per unit time4).
Unfortunately, emission imaging systems never observe the emission locations

{Xn} directly. Instead, the nth emitted photon is detected by a position-sensitive
measurement device, which records a position V n. (The detector may also record other
event attributes such as energy, and our formulation allows for this generality, but for
simplicity one can think of V n as position.)

For a planar emitting object imaged by an ideal planar detector through an ideal
pinhole located at the center of the transverse coordinates, the recorded spatial locations
would be related to the locations of the emissions through the simple relationship V n =
mXn, n = 1, 2, . . ., where m is the (negative) source magnification factor [26]. In this
hypothetical case one could exactly recover the emission location from the measured
event positions via the simple relationship Xn = 1

mV n. Given the recorded positions of
many such photons V 1, . . . , V N , and therefore the positions of many emissions, one could
estimate the density f(x) by a variety of well-known methods for density estimation,
such as a simple kernel estimate:

f̂(x) =
1

N

N∑
n=1

1

β
k

(
x− V n/m

β

)
=

1

N

N∑
n=1

1

β
k

(
x−Xn

β

)
, (2)

where k is a nonnegative 2D kernel function (e.g. a Gaussian kernel) that integrates to
unity [18]. This type of problem is called “direct” density estimation, since the measure-
ments {Xn} are drawn directly from the density f(x) that we wish to estimate. The
“bandwidth” parameter β controls the tradeoff between spatial resolution and “noise”
(variance of f̂). When more detected events are available, one typically uses narrower
kernels [18]. The problem of choosing the bandwidth for kernel density estimation for
direct observations is well studied, and data-driven methods that are efficient in terms
of mean squared-error are available [27]. However, in the context of image recovery, the
mean squared-error metric, which equally weights bias and variance, may not be the
appropriate loss function.

An ideal pinhole does not allow very many photons to pass, so in practice one
must use a finite-sized pinhole. Furthermore, the position-sensitive detector does not
record the exact position of the incident photon, but rather a noisy version thereof. In
general the recorded positions {V n} are only indirectly related to the emitted positions
{Xn} through some conditional pdf:

f(v|x)

3Strictly speaking this is a conditional pdf, conditioned on the event that the emission is detected.
We consider only the detected emissions, so for simplicity we omit the notation for conditioning on
detection. With such notation, (1) is just a form of Bayes rule.

4Without loss of generality, one can rescale the time axis exponentially to account for radioactive
decay.
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which describes the “infinitesimal probability” that an emission at location x that is
detected will be recorded at detector position v. The pdf f(v|x) includes both the pinhole
collimator response function as well as the detector response function. A maximum
smoothed likelihood approach to the indirect density estimation problem of estimating
f(x) from the measurements {V n} is considered in [28], although without analyzing the
variance or spatial resolution of the estimator.

Note that since f(v|x) is a conditional pdf, it integrates to unity over v. We
assume that this conditional pdf holds for all detected events, i.e.

f(v1, v2, . . . |x1, x2, . . .) =
∏
n

f(vn|xn).

This is reasonable assumption, except possibly at high count rates when deadtime factors
and pulse pile-up effects are significant, e.g. [29].

2.1 The estimation problem

Suppose the imaging system records a total of N events during a prespecified period of
time t0. By assumption, N is a Poisson random variable with mean

E[N ] = t0

∫
λ(x)s(x) dx = t0r. (3)

Note that for a pinhole system the sensitivities s(x) of the system increase with pinhole
size, and thus so does the expected number of recorded events. For each of these N
events the system records independent and identically distributed position attributes
V 1, . . . , V N that each have the following marginal pdf

fV (v) =

∫
f(v|x)f(x) dx (4)

by total probability. This is a list-mode formulation [30, 31].
We would like to estimate λ(x) from the observed random variables N and

{V n}
N
n=1. We assume that t0, s(x), and f(v|x) are known, i.e., previously determined

by some combination of modeling and system measurements. If we can find an estimate
f̂(x) of f(x), then we can also easily estimate λ(x). Combining (1) and (3) we see that

λ(x) =
f(x)

s(x)
r =

f(x)

s(x)

E[N ]

t0
.

Thus a natural estimator for the emission-rate density λ(x) is simply

λ̂(x) =
f̂(x)

s(x)

N

t0
. (5)

We now turn to the problem of finding a suitable estimator f̂(x). This is called an
indirect density estimation problem, since the observed measurements {V n} are only
indirectly related to the density f(x) of interest through (4).

3. Kernel-based indirect density estimator

In this paper, we consider the following class of kernel-based indirect density estimators5:

f̂(x) =
1

N

N∑
n=1

gβ(x, V n), (6)

5Silverman [18, p. 27] refers to such methods as general weight function estimates in the context of
direct density estimation.
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where gβ(x, v) is a user-defined function that typically partially inverts the blurring
caused by the system response f(v|x). A concrete example of gβ is given in (22) below.
The function gβ depends on a user-selected parameter β that determines the spatial

resolution of f̂(x). For f̂(x) to be a valid pdf, it must integrate to unity. Therefore the
function gβ(x, v) should integrate to unity over x:

1 =

∫
gβ(x, v) dx.

In direct density estimation, one usually chooses kernel functions k(·) in (2) that are
nonnegative, since f(x) must be nonnegative, although it is possible to reduce bias
by allowing kernels with negative values [18, p. 66]. In the context of indirect density
estimation, the function gβ generally must contain negative values in order to partially
deconvolve the blur in f(v|x). In the context of image reconstruction, one can think of
the estimator (6) as an event-by-event backprojector6 , where the backprojector includes
the ramp filter, apodizer, etc. Note that estimators in this class are probably suboptimal
since they treat all photons equally. Nevertheless it is a useful class for examining
resolution/noise tradeoffs.

Combining (6) with (5), the corresponding estimator for the emission-rate den-
sity is

λ̂(x) =
f̂(x)

s(x)

N

t0
=

1

t0s(x)

N∑
n=1

gβ(x, V n). (7)

This emission-rate density estimate is a function defined for all x. There are no pixels
or voxels involved, which simplifies the analysis. The effective number of “degrees of
freedom” is determined by N and by β. In the following we examine the statistical
properties of the above estimator λ̂(x).

3.1 Mean function

The mean function for the estimator λ̂(x) is derived as follows7:

µ(x) = E[λ̂(x)]

= EN [EV [λ̂(x)|N ]]

= EN

[
N

t0s(x)
EV [gβ(x, V )]

]
=

r

s(x)
EV [gβ(x, V )] (8)

=
r

s(x)

∫
gβ(x, v)fV (v) dv

=
r

s(x)

∫
gβ(x, v)

[∫
f(v|x′)f(x′) dx′

]
dv

=
r

s(x)

∫ [∫
gβ(x, v)f(v|x

′) dv

]
f(x′) dx′

=

∫ [
s(x′)

s(x)

∫
gβ(x, v)f(v|x′) dv

]
λ(x′) dx′.

6Our purpose here is to analyze such estimators for the goal of system design, not to argue the
merits of such estimators over alternatives.

7Equation (8) is closely related to equation (3.6) on on p. 36 of [18] for direct density estimation;
the remainder of the derivation is distinct to indirect density estimation.
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Thus we have the following linear relationship between the estimator mean and the true
emission density:

µ(x) =

∫
psf(x, x′)λ(x′) dx′ (9)

where

psf(x, x′)
4
=
s(x′)

s(x)

∫
gβ(x, v)f(v|x′) dv (10)

is effectively the overall point-spread function (PSF) for the combined image acqui-
sition / reconstruction process. This PSF depends on the system response, which is
contained in f(v|x), as well as the regularization in the reconstruction algorithm, which
is contained in gβ. Equations (9) and (10) are space-varying generalizations of equation
(10.32) in Barrett and Swindell’s text [32] for the mean of a filtered Poisson point pro-
cess. If one uses a gβ function that has negative values, then the PSF may also have
negative values. The reconstructed spatial resolution is controlled by the PSF (10), so
for good spatial resolution, gβ must partially “deconvolve” any blur caused by f(v|x).

3.2 Second-moment functions

Before computing the autocorrelation function of λ̂, we first note that since N is Poisson,

E[N2] = Var {N}+ (E[N ])2 = E[N ] + (E[N ])2 = t0r + (t0r)
2

so E[N2 −N ] = (t0r)
2. Then from (7), the autocorrelation function for λ̂(x) is derived

as follows:

Rλ̂(x1, x2) = E[λ̂(x1)λ̂(x2)]

= EN [EV [λ̂(x1)λ̂(x2)|N ]]

=
1

t20s(x1)s(x2)
EN

[
EV

[
N∑
n=1

N∑
m=1

gβ(x1, V n)gβ(x2, Vm)

∣∣∣∣∣N
]]

=
1

t20s(x1)s(x2)
EN

[
(N2 −N)EV [gβ(x1, V )]EV [gβ(x2, V )]

+ NEV [gβ(x1, V )gβ(x2, V )]

]
=

(
r2

s(x1)s(x2)

)
EV [gβ(x1, V )]EV [gβ(x2, V )]

+
r

t0s(x1)s(x2)
EV [gβ(x1, V )gβ(x2, V )]

= µ(x1)µ(x2) +
r

t0s(x1)s(x2)
EV [gβ(x1, V ) gβ(x2, V )].

Therefore the autocovariance function for λ̂ is

Kλ̂(x1, x2) = E[λ̂(x1)λ̂(x2)]− µ(x1)µ(x2)

=
r

t0s(x1)s(x2)
E[gβ(x1, V )gβ(x2, V )].

To simplify, note that

E[gβ(x1, V )gβ(x2, V )] =

∫
gβ(x1, v)gβ(x2, v)fV (v) dv
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=

∫
gβ(x1, v)gβ(x2, v)

[∫
f(v|x′)f(x′) dx′

]
dv

=

∫ [∫
gβ(x1, v)gβ(x2, v)f(v|x

′) dv

]
f(x′) dx′,

so the autocovariance function is

Kλ̂(x1, x2) =
1

t0s(x1)s(x2)

∫ [∫
gβ(x1, v)gβ(x2, v)f(v|x

′) dv

]
s(x′)λ(x′) dx′. (11)

In particular, the variance function is

σ2(x)
4
= Var

{
λ̂(x)

}
= Kλ̂(x, x) =

1

t0s2(x)

∫ [∫
g2
β(x, v)f(v|x

′) dv

]
s(x′)λ(x′) dx′.

(12)
(This equation is a space-variant generalization of (10.31) in [32].) Note that the variance
depends inversely on the scan time t0, which is expected.

For a specific imaging system f(v|x), object λ(x), and reconstruction method
gβ of interest, one could compute (9) and (12) for a range of β values or pinhole sizes to
investigate the resolution/noise tradeoff. The computational tractability of such eval-
uations will depend on the complexity of f(v|x) and gβ . To obtain insight into the
tradeoffs, we consider the simpler shift-invariant case in the remainder of this paper.

4. Shift-invariant case

Suppose the system is shift-invariant, i.e. f(v|x) = h(v − x), where for example h is
a normalized pinhole response function. A pinhole that is mechanically scanned over
the emitting object is an example of a shift-invariant system8 . Such systems have been
used for many years [26] and continue to find specialized applications, e.g. [33]. Note
that since f(v|x) is a pdf, it must integrate to unity over v, so we must also have h
integrate to unity. Suppose also that the reconstruction algorithm is shift invariant,
i.e. gβ(x, v) = gβ(x− v) (with a slight notation abuse/reuse). Finally, assume that the
sensitivity is also space-invariant, i.e. s(x) = s0 for some positive constant s0. Then the
above expressions simplify as follows.

The mean expression (9) becomes:

µ(x) =

∫ [∫
gβ(x, v)f(v|x

′) dv

]
λ(x′) dx′

=

∫ [∫
gβ(x− v)h(v − x

′) dv

]
λ(x′) dx′

=

∫ [∫
gβ(x− x

′ − x′′)h(x′′) dx′′
]
λ(x′) dx′

=

∫
(gβ ∗ h)(x− x

′)λ(x′) dx′,

where x′′ = v−x′ and ∗ denotes d-dimensional convolution. Thus we have the following
convolution relationship (cf (10.11) of [32]):

µ = gβ ∗ h ∗ λ, (13)

i.e., the estimator mean is the convolution of the underlying emission-rate density with
the system PSF h(·) and the recovery kernel gβ(·). Therefore the spatial resolution is

8Neglecting edge effects at the boundaries of the field-of-view, and assuming that any magnification
factor has already been accounted for in the V n’s [26].
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controlled by

psf(x)
4
= (gβ ∗ h)(x), (14)

with corresponding frequency response or overall transfer function

PSF(u)
4
= Gβ(u)H(u), (15)

where F (u)
4
=
∫
f(x)e−i2πu·x dx denotes the d-dimensional Fourier transform of f(x).

Similarly, the inner variance term in (12) becomes:∫
g2
β(x, v)f(v|x

′) dv =

∫
g2
β(x− v)h(v − x

′) dv

=

∫
g2
β(x− x

′ − x′′)h(x′′) dx′′

= (g2
β ∗ h)(x− x

′),

which is equivalent to the “noise kernel” of (10.35) of [32]. Thus, in the shift-invariant
case the variance function (cf (10.10) of [32]) simplifies to

σ2(x) =
1

t0s0

∫
(g2
β ∗ h)(x − x

′)λ(x′) dx′

=
1

t0s0
(g2
β ∗ h ∗ λ)(x). (16)

Therefore in the shift-invariant case it is straightforward to compute variances (approx-
imately) using FFTs to calculate the convolutions.

4.1 Spatially smooth objects λ(x)

If the object is spatially smooth, i.e. the scale of the spatial variations of (h ∗ λ)(x) is
large relative to the support of g2

β(x), then the variance expression simplifies as follows.

t0s0σ
2(x) = (g2

β ∗ h ∗ λ)(x)

=

∫
g2
β(x′) (h ∗ λ)(x − x′) dx′

≈ (h ∗ λ)(x)

∫ ∞
−∞

g2
β(x
′) dx′

= λ̃(x)

∫
g2
β(x
′) dx′,

where we define λ̃
4
= h∗λ (cf (10.41) of [32]). For small β or for spatially smooth objects

this approximation should be fairly accurate9 . For pinhole imaging, gβ is a real function,
so by combining the above approximation with Parseval’s theorem:

σ2(x) ≈
λ̃(x)

t0s0

∫
g2
β(x
′) dx′ =

λ̃(x)

t0s0

∫
|Gβ(u)|

2 du. (17)

This is a very tractable approximation to the estimator variance.

9As a further approximation, one can assume λ̃ ≈ λ if the scale of the spatial variations in λ is large
relative to the FWHM of h.
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4.2 Resolution-noise tradeoffs

In general, both the sensitivity s0 and the overall transfer function PSF(u) = Gβ(u)H(u)
depend on the pinhole size. Therefore the expression (17) does not immediately provide
the optimal choice for the pinhole size. In the following we consider a specific class of
choices for gβ(·), and show that the variance-minimizing pinhole size is proportional to
the specified reconstructed spatial resolution.

The relationships (15) and (17) epitomize the resolution-noise tradeoff. For good
spatial resolution in (15), we would like Gβ(u) ≈ 1/H(u), but if H(u) is small, then
such a Gβ(u) is large, which amplifies the variance term in (17).

4.3 Apodized inverse filter

Consider a general pinhole with transmissivity function t(x) ≥ 0, which we assume is
normalized so that

∫
t(x) dx = 1. Let T (u) be the d-dimensional Fourier transform of

t(x). The design problem is to choose the pinhole size w, where the normalized pinhole
response function is defined by h(x) = 1

wd
t(x/w) for which H(u) = T (wu). Define the

apodized inverse filter

Gβ(u)
4
=
A(βu)

H(u)
=
A(βu)

T (wu)
, (18)

where A(βu) is a user-chosen apodizing function which we assume to be real and sym-
metric. Without loss of generality, we assume A(u) has been defined so that the FWHM
of a(x) has unit length. From (15), the overall transfer function of this system is

PSF(u) = Gβ(u)H(u) = A(βu),

so the overall PSF is simply psf(x) = β−da(x/β). Therefore the FWHM of the overall
PSF is precisely β for this estimator for any pinhole size w. We now show that the
variance-minimizing choice for the pinhole width w is directly proportional to β.

We assume s0 = c0w
p for some constant c0 independent of w and for some power

p > 0. Typically p = d; for example, the sensitivity of a circular pinhole is proportional
to its area, which is proportional to w2. From (17) the variance is approximately:

σ2(x) ≈
λ̃(x)

t0c0wp

∫
|Gβ(u)|

2 du

=
c1

wp

∫
|T (wu)|−2A2(βu) du

=
c1

wp+d

∫
|T (z)|−2A2(zβ/w) dz (19)

where z
4
= wu and c1

4
= λ̃(x)/t0c0. To find the pinhole width w that minimizes the

variance, we zero the partial derivative of the variance σ2 with respect to the width w:

0 =
−(p+ d)c1
wp+d+1

∫
|T (z)|−2A2(zβ/w) dz

+
c1

wp+d

∫
|T (z)|−22A(zβ/w)Ȧ(zβ/w)

(
−zβ

w2

)
dz

or, by defining α = β/w:

0 =

∫ p+d
2 A2(αz) + A(αz)Ȧ(αz)αz

|T (z)|2
dz.
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The above equality depends only on the ratio α = β/w. So if there is a root α0 > 0
that corresponds to a global minimizer of the variance σ2, then the variance-minimizing
w is proportional to the reconstructed spatial resolution β through the relationship
wmin = α−10 β.

4.4 Relationship to sieves

The above apodized inverse filter is closely related to the method of sieves for density
estimation [34], in the sense that λ̂(x) is an unbiased estimate of β−da(x/β) ∗ λ(x).

4.5 Gaussian pinhole example

l

0 rr
b

Figure 1. Profile through an approximate Gaussian pinhole.

As a concrete example, consider the Gaussian pinhole illustrated in Fig. 1 for
d = 2 dimensional imaging. To simplify notation, define r = ‖x‖ and ρ = ‖u‖ for
circularly symmetric 2D imaging.

The exact transmissivity of this aperture is

τw(r) =

{
e−µl(r/rb)2

, r ≤ rb
e−µl, r ≥ rb

.

However, if µl is sufficiently large, then we can approximate this transmissivity by

τw(r) = exp

(
−π
( κ
w
r
)2
)

where w is the FWHM of the pinhole response (i.e. τw(w/2) = 1/2) and

κ
4
= 2

√
ln 2

π
. (20)

The sensitivity of this pinhole is therefore

sw =

∫
τw(‖x‖) dx =

(w
κ

)d
, (21)

which is proportional to wd as expected. The normalized transmissivity (for unit pinhole
width w = 1) is

t(r) =
τ1(r)

s1
= κde−π(κr)2

,

with corresponding frequency response

T (ρ) = e−π(ρ/κ)2

.
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We choose a Gaussian apodizing function A(u) = e−π(ρ/κ)2

so that the PSF
corresponding to A(βρ) has FWHM β. The corresponding recovery filter is thus

Gβ(u) =
A(βρ)

T (wρ)
=
e−π(βρ/κ)2

e−π(wρ/κ)2 = exp

(
−π
(
ρ
√
β2 − w2/κ

)2
)
,

with corresponding space-domain recovery kernel

gβ(x) =
κ2

β2 − w2
exp

(
−π
(
rκ/
√
β2 −w2

)2
)
. (22)

Substituting A(·) into (19), the variance function is approximately

σ2(x) ≈ λ̃(x)
κd

t0w2d

∫∫
eπ2(ρ/κ)2

exp

(
−π2

(
ρβ

wκ

)2
)
du

= λ̃(x)
κd

t0w2d

∫∫
exp

(
−πρ2 2

κ2

((
β

w

)2

− 1

))
du

= λ̃(x)
κd

t0w2d

[
2

κ2

((
β

w

)2

− 1

)]−d/2

= λ̃(x)
κ2d

2d/2t0

(
βw2 − w4

)−d/2
,
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Figure 2. Standard deviation of estimate versus Gaussian pinhole width.

where we have applied Parseval’s theorem in conjunction with the Hankel transform to
evaluate the integral. Note that we must have w < β for the integral to be finite, i.e.
the pinhole width must be no larger than the desired spatial resolution. Figure 2 plots

#4063 - $15.00 US Received November 30, 1997; Revised March 06, 1998

(C) 1998 OSA 16 March 1998 / Vol. 2, No. 6 / OPTICS EXPRESS 249



the variance versus pinhole width w. Differentiating the variance with respect to w and
zeroing yields the following relationship:

wmin =
β
√

2
. (23)

Taking the second derivative confirms that this is the variance-minimizing choice. A
plot of the variance as a function of pinhole width is shown in Figure 2.

Therefore, we have shown that for a Gaussian pinhole imaging system and an
apodized inverse filter reconstruction method, the variance-minimizing pinhole width is
proportional to the desired reconstructed spatial resolution.

5. Laplacian pinhole example

l

0 rr
b

Figure 3. Profile through an approximate Laplacian pinhole.

A somewhat more conventional pinhole is the Laplacian10 pinhole shown in
Fig. 3. The exact transmissivity of such a pinhole is

τw(r) =

{
e−µlr/rb , r ≤ rb
e−µl, r ≥ rb.

If µl is sufficiently large, we can approximate this transmissivity by

τw(r) = e−γr/w ,

where γ = 2 log 2 and w is the FWHM of the pinhole response. The sensitivity of this
pinhole is

sw =

∫
τw(‖x‖) dx = 2π

(
w

γ

)2

,

which is also proportional to w2. The normalized transmissivity is

t(r) =
τ1(r)

s1
=
γ2

2π
e−γr

which has corresponding frequency response [35]

T (ρ) =
γ3

[(2πρ)2 + γ2]3/2
.

10The transmissivity of the 1D version of this pinhole has the form of the Laplacian pdf 1
2
e−|x| ,

hence the name—for lack of a better name.
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We again choose a Gaussian apodizing function A(ρ) = e−π(ρ/κ)2

where κ was defined
in (20), so the PSF again has FWHM β. Substituting into (19), the estimate variance
is approximately

σ2(x) ≈
λ̃(x)

t02πw2/γ2

∫ 2π

0

∫ ∞
0

1

γ6
[(2πρ)2 + γ2 ]3 exp

(
−π2

(
ρβ

wκ

)2
)
ρ dρ dθ

=
λ̃(x)

t0w2

1

γ4

∫ ∞
0

ρ[(2πρ)2 + γ2 ]3 exp

(
−π2

(
ρβ

wκ

)2
)
dρ.

After some tedious integration, we arrive at

σ2(x) ≈
λ̃(x)

t0

1

2(βκ)4
[6y2 + 6y+ 3 + y−1] where y = 2π

(
w

κγβ

)2

.

The variance-minimizing pinhole size can be found numerically to be wmin ≈ 0.3β.
The variance for the Laplacian pinhole is also plotted in Fig. 2. The minimum

standard deviation for the Gaussian pinhole is about 2.4 times lower than that of the
Laplacian pinhole, presumably because the Gaussian pinhole is better matched to the
Gaussian-apodized inverse filter.

6. Simulation results

Since the analytical development for the variance-minimizing pinhole width involved ap-
proximations, we performed Monte Carlo simulations to evaluate the empirical variance
of the estimators as a function of pinhole size.

We used a 1D object of the form

λ(x) ∝ 9δ(x− 146) + rect((x− 208)/64) + 2Λ((x− 64)/44),

where Λ(x) = (1 − |x|) rect(x/2) is the unit triangular function. The desired recon-
structed spatial resolution was arbitrarily chosen to be β = 3 mm. The system response
f(v|x) was a 1D Gaussian pinhole whose FWHM w varied from 0.9 to 2.9 mm. For
each pinhole size, we performed 4000 realizations, where the mean number of photons
per realization was 100w, i.e. the sensitivity increased linearly with pinhole size (see

(21)). An estimate λ̂(x) was computed for each realization using the apodized inverse

filter (18), which in this case corresponds to a Gaussian filter with FWHM
√
β2 − w2,

as shown in (22).
Figure 4 shows the sample means of the 4000 realizations for each of the 21

pinhole sizes considered, ranging from 0.9 to 2.9 mm FWHM in 0.1 mm increments.
The 21 curves are indistinguishable because we are fixing the reconstructed spatial
resolution to β = 3mm FWHM, as confirmed by Figure 4. We also computed the
sample standard deviations from the 4000 realizations for each pinhole size. Three of
the 21 curves are shown in Fig. 5. Note that the variance-minimizing pinhole size is
3/
√

2 ≈ 2.1mm FWHM, which has the lowest empirical variance of the three curves
shown. (The plot would be difficult to interpret if all 21 curves were shown.) To verify
that the theoretically predicted variance-minimizing pinhole size indeed yields the lowest
variance, Fig. 6 shows the relative empirical standard deviations for each of the 119
spatial positions x for which λ(x) > 0 as a function of pinhole size w. All of the curves
have a minimum near the predicted value of 2.1 mm FWHM.
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Figure 4. Sample means of 4000 realizations of the estimates of λ(x), for 21
Gaussian pinhole sizes ranging from 0.9 to 2.9 mm FWHM. The 21 mean curves are
virtually indistinguishable since the reconstructed spatial resolution has been held
fixed at 3mm FWHM.
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Figure 5. Sample standard deviations of 4000 realizations of the estimates of
λ(x), for 3 of the 21 Gaussian pinhole sizes: 1, 2.1, and 2.9 mm FWHM.
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Figure 6. Normalized sample standard deviations of 4000 realizations of the esti-
mates of λ(x), versus the FWHM of the Gaussian pinhole sizes. There are 119 plots,
one for each of the x positions for which λ(x) > 0. The minimum is consistently
near the theoretical prediction of 3/

√
2 ≈ 2.1.

7. Discussion

We have analyzed the performance of a kernel-based indirect density estimation method
for image recovery from list-mode measurements. We showed, under a few simplifying
assumptions, that the variance-minimizing pinhole width is proportional to the desired
reconstructed spatial resolution. The simplifying assumptions include consideration of
a shift-invariant imaging system, a spatially smooth emitting object, and a particular
kernel based on an apodized inverse filter. Empirical results confirmed that the predicted
variance-minimizing pinhole size yielded the lowest variability estimates, even for an
object that was far from “spatially smooth.” We conjecture that there should be a
monotonic relationship between desired reconstructed spatial resolution and variance-
minimizing pinhole width even for broader classes of image recovery methods and more
general imaging systems. Exploring this conjecture will be the subject of future work.

Although we have focused on pinhole size in this paper, a more general ques-
tion would be ‘what is the optimal pinhole transmissivity function for a given target
reconstructed spatial resolution?’. We conjecture that the density estimation approach
described in this paper may be useful for exploring this question.
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