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TABLE I
PSNR (dB) RESULTS FORIMAGE CORRUPTED BYGAUSSIAN AND IMPULSE NOISE

s. It should be noted, however, that the code of the proposed method
and the other methods has not been optimized.

The convergence of the proposed method has been studied exper-
imentally. The algorithm converged for each block of data in the
sliding window during the image restoration.

V. CONCLUSION

A new image approximation scheme is proposed. The structural
constraints are incorporated in an iterativeM -estimator algorithm. As
a result, an image modeling method is obtained that is not influenced
by outliers and reduces Gaussian and heavy-tailed noise efficiently;
and, at the same time it retains important details. The images
are modeled as tensor product bicubicB-splines. The smoothing
parameter� is estimated separately for each processing window, thus
allowing it to adapt to local structures of the image. As a result, one
can expect excellent Gaussian noise removal in smooth and slowly
varying areas where� is large and at the same time very good
preservation of important details (small values of�). Results obtained
by applying the filter based on the presented approximation algorithm
to real scenes indicate that this method is robust with respect to
variations in the statistics of both the noise and the image.
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On “The Convergence of Mean
Field Procedures for MRF’s”

Jeffrey A. Fessler

In [1], Zhang attempts to establish convergence of a mean-field
iteration for an Ising Markov random field (MRF) for large values of
the hyperparameter�. Unfortunately, (16b), which states

jT�(u1)� T�(u2)j � ju1 � u2j

is not correct for the functionT�(u) defined in (15) and Fig. 2. In
fact, any function that satisfies (16b) for allu1 andu2 is necessarily
a continuous function, unlike the particularT�(u) defined in (15).

Thus, the convergence of the mean field iteration remains an
important open question for large�.
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