Medical Image Analysis(1998) volume 2, number 4, pp 369-378
(© Oxford University Press

Statistical Image Reconstruction Methods for Randoms-Precorrected
PET Scans

Mehmet Yavuz and Jeffrey A. Fessler

Department of EECS, University of Michigan, Ann Arbor Ml

Abstract

PET measurements are usually precorrected for accidental coincidence eveetd-tiyme
subtraction of the delayed window coincidences. Randoms subtraction compensates in mean
for accidental coincidences but destroys the Poisson statistics. Wg® and analyze

two new approximations to the exact log-likelihood of the precorrected measurements, one
based on a “shifted Poisson” model, the other based on saddle-point approximations to the
measurement probability mass function (pmf). The methods apply to both emission and
transmission tomography; however in this paper we focus on transmission tomography. We
compare the new models to conventional data-weighted least squares (WLS) and conventional
maximum likelihood (based on the ordinary Poisson (OP) model) using simulations and analytic
approximations. The results demonstrate that the proposed methods avoid the systematic bias of
the WLS method, and lead to significantly lower variance than the conventional OP method. The
saddle-point method provides a more accurate approximation to the exact log-likelihood than the
WLS, OP and shifted Poisson alternatives. However, the simpler shifted Poisson method yielded
comparable bias-variance performance to the saddle-point method in the simulations. The new
methods offer improved image reconstructionin PET through more realistic statistical modeling,
yet with negligible increase in computation over the conventional OP method.

Keywords: statistical image reconstruction, statistical approximations, randoms-precorrected
PET, maximum likelihood image reconstruction
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1. INTRODUCTION events are needed. One can use the “singles” method (Casey
and Hoffman, 1986) for this purpose, however this approach
In PET measurements, accidental coincidence (AC) eventsis not widely used because of the necessity foritaoithl
are a primary source of background noise. AC events hardware and moreover usually singles rate vary during
occur when photons that arise from separate annihilationsdata acquisition (Ollinger and Fessler, 1997). Therefore, in
are mistakenly registered as having arisen from the samemost PET scans, the AC rates are estimated using delayed-
annihilation. In transmission scans the photons that originatewindow coincidences and the data are precorrected for AC
from different transmission sources (rod or sector sources ro-events by real-time subtraction. Real-time subtraction of
tating around the patient) cause AC events. The ratio of total delayed window coincidences compensates in mean for AC
AC events to “true” events is usually small in transmission events but destroys the Poisson statistics (Hoffretual,,
scans compared to emission scans. Nevertheless, the effect981). To avoid this problem, one needs to maintain the
of AC events becomes severe for regions of high attenuationtransmission and randoms measurements as two separate
coefficients, because projectionsdbgh such regions result  sinograms (Mumcuoglet al, 1996; Politte and Snyder,
in low true coincidence rates. These low count rates can 1991). However even if a PET system allows one to collect
become comparable to AC rates. Thus estimates of the ACrandoms (delayed coincidences) sinogram separately, this
process would double the storage space for the acquired data.

zgcr’r:;‘i?pr;’;‘:\i/zg%“fr‘r“’i;h o) So in practice most PET centers collect and archive only the
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randoms precorrected data. We recommend separate acquihe precorrected measurements correspond to the difference
sition and storage of delayed coincidences wherever feasible of two independent Poisson random variables with variance
The purpose of this paper is to provide accurate statisticalequal to the sum of the means of the two random variables.
methods for PET measurements with pre-subtracted delayedn other words, randoms subtraction compensates in mean
coincidences. Although our analysis and proposed modelsfor AC events, but it also increases the variance of the
apply to both emission and transmission tomography, in this measurement by an amount equal to the mean of AC events.
paper we focus on transmission tomography. Let Y = [Y1,...,Yn]' denote the vector oprecorrected

The exact log-likelihood for randoms precorrected data is measurements. The precorrected measurement fontthe
intractable, so we describe and compare several approxima<coincidence detector pair is:
tions. For completeness, we first review the data-weighted Y. — yprompt_delay (1)
least squares (WLS) method and the log-likelihood for the n n noo
ordinary Poisson (OP) model for PET measurements. Then,where "™ and Y"®'® are the number of coincidences
we introduce a new “shifted” Poisson (SP) model (Yavuz within the prompt and delayed windows, respectively. Let
and Fessler, 1996) which matches both the first and secondy = [, ..., ]’ denote the vector of unknown linear at-
order moments of the model to the underlying statistics tenuation coefficients. For transmission scans, we assume
of the precorrected data. We derive approximate analytic that Y?°™" and Y2*'® are statistically independent Poisson
expressions for the variance of the different estimators andrandom variables with meayg andy? respectively as:
use the Cauchy-Schwarz inequality to show analytically that B
the proposed SP method yields lower variance than the OP E(YEO™P) = YR(W = bre™"W 41y (2)
method. E{Ye™ = y=r, 3)

Secondly, we introduce a new saddle-point (SD) approx- where In(p) = Z'}"zlanjuj is the total attenuation between

imation for the pmf of precorrected measurements. The nth detector pair. They; > O factors have units of length
corresponding log-likelihood function is shown to have better and describe the tomogra_phic system geometry. e 0
agreement with the exact log-likelihood than the previous factors denote the blank scan counts andrthe 0 factors
approximations. We apply the fast grouped-coordinate asceNtyanote the mean of AC events. -

algorithm (Fessleet al, 1997) (with a few simple modi- SinceYPO™! and Y9 are statistically independent and
fications) to maximize the proposed saddle-point objective Poisson:

function.
We also show results of 2D simulations showing that the E{(Ya} = YA(W)—YA=Dbne ¥, (4)
WLS method leads to systematic bias and the OP method Var{Yal = W(W+y = bhe~nW 4 2. (5)

leads to higher variance than SP and SD methods. We also ob-

serve that SP and SD methods yield equivalent bias/variances, EXACT LOG-LIKELIHOOD

performance whereas SP requires less computation. The

contribution of this work lies in the fact that the proposed Let y = [y;,...,yn] be a realization of statistically inde-
methods offer significant improvements accuracy with  pendent random variabléé given in (1). Under the usual
minor computation increase. assumption of independence between different rays, one can

express the exact distribution¥fusing total probability:
2. MEASUREMENT MODEL

In conventional PET scans, the data are precorrected for
AC events byreal-time subtraction of the delayed-window ® [yﬁ(u)]Yn'i'me—ﬁ(u) rMe—Tn
coincidences (Hoffmaret al, 1981). The system detects = |_|/I ' 1 '
coincidence events during two time windows: “prompt” n=1lm=[—yn]+ (Yo +m)! m
window and “delayed” window. For each coincidence event \,ere [X|+ = xif x>0 and is 0 otherwise. The exact log-
in the prompt window, the corresponding sinogram bin is |ikelihood for pbecomes

incremented. The statistics of these increments should be

N o

PY=y1 = 13 P(YrO™Pt = yn+ M) P(Y = m)
n=1m=0
N

, (6)

well approximated by a Poisson process. However, for LW = logP(Y =y;W

coincidence events within the second delayed window, the N @ [yﬁ(p)]y”+m pm
corresponding sinogram bin is decremented, so the resultant = log ( e #)
“precorrected” measurements aret Poisson. Since prompt n=1 m={—yn|+ (yn+m)! '

events and delayed events are independent Poisson processes, — (YR(W) +rn). (7)
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Since image reconstruction is ill conditioned, usually one ables with meary, = bye (¥ j.e:
includes a roughness penaRyy) in the objective function. _
. . ; . N 1o Yn a=Yn(W)
From the Bayesian point of view, this roughness penalty can P(Y =y 1) ~ Yn(W)]*"e (11)
be thought as a log-prior far. Combining this penalty with - ¥ nI:I, V! ’

the log-likelihood yields a penalized-likelihood objective
function: The log-likelihood corresponding to this OP approximation

IS
o) = L(W-—RW. (8)

The goal is to estimatgl by maximizing ®(u) over the
nonnegative cone:

Yn10gYn(H) — Yn(H)

M=z

Lor(W) =

>
Z 1
it

Vi Iog(bne"”(“)) _ bne—|n(U)’ (12)
1

>
Il

p = arg angw(u). 9)
) o . .. ... disregarding the constants independent.of
Since the exact log-likelihood function (7) contains infinite
summations, the above maximization is intractable. The 4, 3 ghifted Poisson (SP) Approximation
following two sections develop tractable yet accurate approx- a petter approach is to match both the first and second order
imations tol (1. moments by approximating the quantitifé, + 2r,}N_, as
having Poisson distributions with meafsg, (H) + 2rn}+. This

4. SIMPLE APPROXIMATIONS TO THE EXACT model leads to our proposed SP objective function:

LOG-LIKELIHOOD
N
In this section, we first review the conventional approxi- Lsp(W) = z(yn—l—Zrn)log(%(u)—i—Zrn)—(%(u)—I—Zrn),
mations toL(p): the WLS model and the conventional OP n=1
model. Then we introduce the SP model (Yavuz and Fessler,
1996). whereyn (1) is defined by (4). Note that although bdtfy, s
andLsp match two moments of the measurement distribution,
4.1. Quadratic Approximations in WLS the second moment &f{yn) is “fixed” independently
The quadratic approximation to the exact log-likelihood Of L, whereas in the SP model the moments vary wiffu)
function results in the data-weighted least squares objectiveappropriately.

functionLw (1) (Sauer and Bouman, 1993): We have previously shown empirically that this model
better agrees with the exact log-likelihood than either the
N fo 1 WLS or OP model (Yavuz and Fessler, 1996). Next we

LwigW) = _Qn le >O(|“(“)_I“) 62’ (10) provide an analytical result that corroborates those results.

4.4. Variance Analysis

To analyze the variance of each estimator, we apply the

the line integral of the attenuatiom,{y) and 62 = y”;% analytic approximations suggested in (Fessler, 1996). If
Y = E{Y}, then using a first order Taylor expansionpg¥)

gleads to the following approximation for the covariancqiof ~
(Fessler, 1996) :

wherel, = log (%) is the method-of-moments estimate of

The nth weighting factord? is an estimate of the variance

of In(yn) based on a second-order Taylor expansion aroun

fn(%). This weighting is critical for the WLS method. The

errors corresponding to projections with large valueg,afre

weighted more heavily. These projections pass through less

dense objects and consequently have higher SNR values.  \yhere P = [-0%0Y) 0MoY) and
Alternatively, the choice of53 = 1 results in the un- = argmad(y,Y).

weighted least-squares (ULS) approach, which leads to es- H

timates with much higher variance.

Coviff ~ PCoVY}P' (13)

We apply (13) to find approximate expressions for the
variance of the maximum likelihood estimatorgipp”™=

4.2, Ordinary Poisson (OP) Approximation arg rTJaX‘OP(“) andsp = arg rr&ax_sp(u). For this purpose

The conventional approach is to assume (approximate) thatwe considered a highly simplified version of transmission
{Y.1N_, are distributed as independent Poisson random vari-tomography where the unknown is a scalar paraméter,



4 M. Yavuz and Jeffrey A. Fessler

p = 1. This simplified problem provides insight into the 5. SADDLE-POINT (SD) APPROXIMATION
estimator bias and variance without the undue notation of
the multi-parameter case. The objective functions describedAn alternative to the previous approximations for the exact

above can be expressed in the form: pmf (6) of precorrected measurements is to make second
order Taylor series approximations in theransform domain
N . . . .
_ (i.e. on the probability generating function) and then to carry
L out the inverse transform. For this purpose, we have adopted

_ o . the saddle-point method (Helstrom, 1978; Snyeeral,
Since the measurements are statistically independent, for the 995).

scalar problem the above approximation (13) reduces to: LetU ~ Poissofa), V ~ PoissoliB) andY = U —V with
pmf's Ry(k), R/(k) and R/ (k) respectively. The generating

Var{ﬂ}: N\ -2 _ function ofY is:
(n; aZhgﬂiY)) 3 [T ] vartn) @ Gr(2)= 3 2R = (D Gyl
With. some tedious algebra, one can derive the following whereGy (2) = exp(a(z— 1)) andGy(2) = exp(B(z— 1)). In
approximate expressions for varianceugp andyisp: terms of the generating functio (k) is given by the contour
Vrlfop) ~ TGO nteore
(125 (1)) Ry(k) = z_irJ?{m 7 Gy(2)dz= 2_;7{@ ?dz  (18)

-1
; (16)

X

Var{fis) [ N aByn(w)?

n= %(H) + 2rn

wherej = /-1 and the contou€™ must lie in the region of
convergence 0By (z) and enclose the origin, and
where |y denotes the true attenuation coefficient value and

(b = bye~arh. ] ®(2) = —(k+D)log?)+a(z—1)+pz 1)
Letting sh = a5yn(1k) andty = a5(Yn(pt) + 2rn), one can do K+1
rewrite (15) and (16) as: dkz(Z) = qa(kl)(z) = _% +o— Z_Bz
2
1 ) 1 ¢ TOE _ gpg= D, 2
Var{flor} = Yntn = Var{fsp} ;E d2 k 2 3

We observe thatb(z) (and hence the integrargf«(?))

S :
Leta be R such that, = v b = v/t Using Cauchy-  is convex forze R, z> 0 andk > 0. The integrand has a
Schwarz inequalityla™b| < ||al|2 ||b|2. minimum atx, € R, X, > 0 which is called the saddle point,
ie.
1 1
%) : ( ) 2 k41
< (g t Wy Kt B _
an_<;tn ;n D (%) = o Xg_Oandxo>O
-1
(z %) < DI 5 which yields
T tn (XnSn)
L . _(k-i—l)-l—Vk_ 2B
so that within the accuracy of (13): Yo=——p — = “Kr D1 (19)
Var{{isp} < Var{fiop} , (17)
wherevy = xgdb(kz)(xo) = /(K| +1)2+ 4ap.
with equality if and only ifr,/y, ratios are equal. For PET Following (Helstrom, 1978), we deform the cont@Lif in

systems, these ratio terms are never constant, and in fac{18) into a vertical line through saddle poix, asz= X, +
can be quite disparate. Thus we have shown the following jy, —o < y < c0 and a semicircle around the left half plane at
result: the variance of the SP estimator will always be lower infinity. This contour is permissible fd¢> 0, since the only
than the variance of the OP estimator. This analytic result is singularities of the integrand are a& 0 andz= o+ j0. If
collaborated by empirical results in section 6. |2) — o for O[Z < % thene®™(@ — 0. Hence the contribution



Statistical Image Reconstruction Methods for Randoms-Precorrected PET Scans

of the semicircle around the left half plane at infinity vanishes
and (18) reduces to

1

— ” (Plxotiy)
21 /_ooe dy

Rr (k) (20)

Expanding®y(z) in Taylor's series around = x,, one
obtains:

exp[®y(2)]

(1)

since®,’ (%) = 0. The integral (20) becomes

eq)k(xo)

Ry (k)

/ ” 30 o) iy)?

(3
(0]

2n

(jy)*+...| dy

(21)
where
oL (%)
2
8|0} ()]

Using the algorithm by Rice (Rice, 1968), the residuum R can
be written as:

1 —5+12/T+n—-9(1+n) 1\?
R= 10| —
24(k+1) (1+n)3/2 k+1
wheren = %. The residuum asymptotically goes to zero

ask — o and more importantly we have observed empirically
that the approximation error is negligibly small even for very
small values ok. Neglecting R in (21) results in our saddle-
point approximation for the pnf& (k) as:

)ervk—a—B

k>0.
2TV

bl -

Ri(k) = (22)

For k < 0 the integrand in (18) is not guaranteed to be
convex forz > 0. Moreover, the integrand does not vanish
along the semicircle around the left half plane at infinity. Thus
we use the change of variables= 1/zin (18), so that:

1

Rr(k) = o

-1 —1 _ i Dy (W)
fﬁvvk Gr(w)dw= 5 fﬁe dw (23)
where

Dy(w) = (k— 1) log(w) + a(w™t — 1) + B(w—1).

Following similar steps as the case for 0, the saddle point
approximation fok < 0 can be shown to be :

\Nlc()evk—G—B
Ry (k) ~ Ry(k) = N k<O (24)
where
We — —(k— l) +Vk 2a
° 28 T (k=1 4w

Thus, combining (22) and (24) the saddle-point (SD)
approximation for the log-likelihood (7) is:

N
Lsp(p) = _l|09F¢(Yn;%(H))
N
= ha(K) (25)
n=1
where
Yn|09<%)—tn(u)a Yn >0
hi (W) = ”y_ W oy (26)
ynlog<%_”17+w£u))—tn(u), Yn <O
with
() = )+ Un(h) — 5 I0gUn ()
() = (Yol + D)2+ AFn(1) + o),

and disregarding constants independent. of

Note that the approximation (25) is considerably simpler
than the exact log-likelihood (7), since no infinite sums or
factorials are needed. Nevertheless, itis remarkably accurate
as shown below. Also, one can observe thatras- 0,
hS(H) — [¥n10gYn(K) — n(H)] = Lop(K) (to within constants
independent of1), which is expected because figr= 0 the
ordinary Poisson model is appropriate.

Fig. 1 shows a representative comparison of the exact
log-likelihood function and the approximations for noiseless
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Figure 1. Representative comparison of exact log-likelihood func-
tion with objective functions of different models as a function of

line integrallp (). Randoms rate is 5%. The proposed saddle-point
approximation agrees with exact log-likelihood significantly better

than the other models. Figure 2. Simulated abdomen attenuation map.
data as a functlon qﬂ AlthoughLSP(u) flts the exact |og- 012 Proflle‘thvough sample‘ means from 15‘0 realizations ‘
likelihood better tharLw (1) and Lop(l), clearly Lsp(1)

has the best agreement with the exact log-likelihbd). oaf 1

In a large number of additional comparisons not shown
due to space considerations, we have observedLi)
agrees remarkably well with the exact log-likelihdgg) and
clearly better than the other models.

0.081

0.06 -

6. 2D SIMULATIONS

Attenuation Coefficient [1/cm]

OP method

SP method

To study bias and variance properties of the estimators based | SD method
on the above approximations, we performed 2D simulations. | S i : ]
For pwe used the synthetic attenuation map shown in Fig. 2,
which represents a humabdomerwith linear attenuation s % 4‘0 w W 00 2
coefficient 00096¢/mm. The image was a 128 by 128
array of 4.7 mm pixels. We simulated a PET transmission Figure 3. Horizontal profile through the sample mean images for
scan with 192 radial bins and 256 angles uniformly spaced abdomen phantom. The WLS method has a systematic negative bias.
over 180 degrees. Thay; factors correspond to 3.1 mm  The ordinary Poisson (OP), shifted Poisson (SP) and saddle-point
wide strip integrals on 3.1 mm center-to-center spacing. (SD) methods are free of this systematic negative bias.
The b, factors were generated using pseudo-random log-
normal variates with standard deviation of 0.3 to account
for detector efficiency variations, and scaled so thig¥n mission measurements. For each measurement realization,
was 3.6 million counts. The, factors corresponded to a an estimate of the attenuation map was reconstructed using
uniform field of 10% random coincidences. Pseudo-random 20 iterations of the grouped-coordinate ascent algorithms
transmission measurements were generated according to (2jFessleret al, 1997) applied to the objective functions (10),
and (3). For regularization, we used the modified quadratic (12), (13) and (25). We computed both the sample mean and
penalty (Fessler and Rogers, 1996). sample standard deviation images for all methods.

We generated 150 independent realizations of the trans- Fig. 3 shows horizontal profiles through the sample mean
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Histogram ofth rato of standard deviaton f OP method fo SP method the price of lower resolution (compared to OP method), we
T have investigated the local resolution and standard deviation
of a pixel at the center of abdomen phantom.

We computed the linear local impulse response (Fessler
and Rogers, 1996), of different estimators at the central pixel
of the abdomen phantom. Table 1 shows the full width
half maximum (FWHM) values of local impulse response
w0 ___Histogram of th ratioofsandad deviaion of OP method 0 S0 method_ functions and the local sample standard deviation for the
central pixel estimates. The table also reports the standard
errors for the sample standard deviation estimates. Therefore
we conclude that the reduction in the standard deviations
are truly due to the improved statistical modeling rather than
resolution differences.

Although the local impulse response functions are asym-
_ ] _ o metric with respect to horizontal and vertical axis, the “av-
Flgur(_e 4. Histogram of the ratio of standard dgwatlons in recon- erage” resolution of each method is matched. As expected
structions of the abdomen phantom. The ordinary Poisson (OP) e 1o statistical FBP method yields much higher standard
method yields, on the average, 19% higher standard deviation thandeviation than statistical methods. The standard deviations of
the proposed shifted Poisson (SP) and saddle-point (SD) methods. the proposed SP and SD estimators are about 27% lower than

the OP method.
The asymmetry of the local impulse responses is caused
images. These profiles show that WLS sgstematically  partly by the eccentricity of theb@lomen phantom Fig. 2,
negatively biased, whereas the OP, SP and SD models are fre@Fessler and Rogers, 1996) and we plan to include a new
of systematic bias. penalty with a symmetric impulse response in our future

To study the variance, we computed ttatio of sample work. In Table 1 the resolution of SP and SD models are
standard deviation images of different estimators, over all observed to be more asymmetric than OP model. In order
interior pixels. Fig. 4 shows the histogram of the standard to investigate this effect we performed additional simulations
deviation ratios. The OP model yields, on the average, 19%using a circularly symmetric disk phantom which yields a
higher standard deviation than the both SP and SD models. Insymmetric impulse response at the center. For the central
other words, to achieve the same noise level, the OP methodoixel (where all methods have the same impulse response)
would require about 40% greater scan time. the reduction in standard deviation with the proposed SP and

Although the standard deviation values could be decreasedSD methods were around 24% compared to OP method.
by using higher count rates, the ratio of standard deviations
of different estimators will remain approximately same for 7. ESTIMATES OF THE AC RATES
higher count rates (Fessler, 1996). This follows from the fact
that analytic approximations (15)-(16) will be more accurate One needs to know the mean of the AC event$ i order
with increasing count rates, and these approximations showto compute Ilsp() and Lsp(M). Since ther, terms are
that for a set of fixed system parameters, the ratio of standardnot readily available from the real (precorrected) data, some
deviation of different estimators remains constant indepen- estimates of the randoms must be used. Fortunately, for PET
dent of the count rate. transmission scans reasonable estimates can be obtained from

We performed additional simulations using a digital thorax a blank scan.
phantom with nonuniform attenuation (Yavuz and Fessler, Fig. 5 displays the scatter plot of real delayed coincidence
1996). The reduction in noise with the proposed methods sinograms for blank scan and transmission scan data. Each
were comparable. point in the plot corresponds to a specific detector pair.

It is well known in tomographic image reconstruction The similarity of both delayed coincidence measurements
that one can compromise between the resolution and noisesuggests that one can acquire the delayed coincidence events
in the reconstructed image. In the simulations reported during the blank scan and use them (after properly normal-
here, we have used the modified quadratic penalty (Fessleiizing for different scan durations) as an estimate of the AC
and Rogers, 1996), which matches the spatial resolution ofrates for transmission scans performed on the same PET
different estimators. In order to show that the noise reduction system. We performed additional simulations (not shown)
with the proposed SP and SD methods does not come within which we substituted a simpleonstantfor r, rather

125 13 135
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Estimator FWHM (pixels) % Std. Dev.
horizontal | vertical | average

FBP 2.66 2.68 2.67 | 18.20+1.05

OoP 2.13 3.22 2.67 9.94 +£0.57

SP 1.94 3.40 2.67 7.70 £0.44

SD 1.93 3.41 2.67 7.94 £0.45

Table 1. Local impulse response and the local sample standard deviation for the central pixel.

15

10

Transmission Delayed-Event Rate

10
Blank Delayed-Event Rate

15

Figure 5. Scatter plot of delayed coincidence event of blank and

transmission scans.

to the pmf of precorrected measurements. Both the analysis
of the error term and the log-likelihood plots and 1D simula-
tions (not shown due to space considerations) show that the
new approximation agrees very closely with the exact log-
likelihood compared to previous approximations.

2D simulations show that both SP and SD models perform
very closely. They are both free of systematic bias and yield
reduced standard deviation (about 19%) compared to OP
model. We further analyzed the resolution and sample stan-
dard deviation at a central pixel of the phantom and showed
that with our proposed methods not only the standard devia-
tionis reduced but also the average resolution of all estimators
are still matched. We observed very close agreement between
the exact log-likelihood and the SD approximation both from
the log-likelihood plots and 1D simulations. Therefore we
were expecting the SD method to perform better than the SP
method. However, for the 2D simulations reported here, the
SP method performed as well as SD method. Thus the SP
method is particularly attractive since it requires comparable
computation to OP method but has reduced variance. We plan
to compare the SD and SP methods to the uniform Cramer-
Rao bounds (Heret al, 1996).

The high correlation between delayed coincidence events

than the true values into the SP and SD Objective functions.of blank and transmission scans suggest that one can use
This approximation resulted in only a slight increase in the AC rates estimated from blank scans. We have seen that
standard deviation (around 2%) of the SP and SD estimateseven using constant AC rates in 2D simulations resulted in
without any systematic bias. These results demonstrate thapnly a slight increase in the standard deviation without any
both the SP and SD approximations are robust to errors in thesystematic bias. Thus the proposed SP and SD methods are

rn estimates.

8. DISCUSSION

robust enough for practical use.

We plan to apply the proposed method to emission to-
mography, where even higher AC rates than the transmission
tomography are common, particularly in 3D PET. Moreover,

AC events are a primary source of background noise inin 3D PET, very large data sets are likely to preclude sep-
positron emission tomography. After the AC events are arate acquisition of random coincidences, so the real-time
precorrected, the measurement statistics are no longer Poissubtraction methods are usually used for emission scans. So
son. For transmission scans, WLS method and ML method the potential benefit of the proposed models should be even
based on ordinary Poisson (OP) model lead to systematic biagreater.
and higher variance, respectively, compared to our proposed
shifted Poisson (SP) model for measurement statistics whichACKNOWLEDGMENTS
matches both the first and second-order moments.

We proposed a new approximation for the exact log- This work was supported in part by NIH grants CA-60711
likelihood which is derived using saddle-point approximation and CA-54362. We gratefully acknowledge Edward Ficaro
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