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Recursive Algorithms for
Computing the Cramer-Rao Bound

Alfred O. Hero, Mohammad Usman,
Anne C. Sauve, and Jeffrey A. Fessler

Abstract—Computation of the Cramer-Rao bound (CRB) on estimator
variance requires the inverse or the pseudo-inverse Fisher information
matrix (FIM). Direct matrix inversion can be computationally intractable
when the number of unknown parameters is large. In this correspondence,
we compare several iterative methods for approximating the CRB using
matrix splitting and preconditioned conjugate gradient algorithms. For a
large class of inverse problems, we show that nonmonotone Gauss–Seidel
and preconditioned conjugate gradient algorithms require significantly
fewer flops for convergence than monotone “bound preserving” algo-
rithms.

I. INTRODUCTION

The Cramer-Rao (CR) bound is a widely used lower bound on
estimator covariance. When there aren unknown parameters, the
calculation of the CR bound involves calculation of the inverse
or pseudo-inverse of then � n Fisher information matrix (FIM).
Direct methods of matrix inversion, requiringO(n

2
) bytes of memory

storage andO(n
3
) floating-point operations (flops), are intractable

if n is large. Often, only a few components of then-dimensional
estimator are of interest, in which case, the entire inverse FIM
is not needed. For example, in medical image analysis, one may
be primarily interested in a smallq-pixel region of interest (ROI)
corresponding to a tumor or lesion.

In [1] and [2], a recursive method was presented for approximating
columns of the CR bound for unbiased estimation of an element of
the parameter vector and for nonsingular FIM. This method requires
only O(n

2
) flops per iteration per parameter so that if convergence

is fast, a computational saving is achieved. The important feature
of this algorithm is its monotone convergence, which guarantees a
valid and improving lower bound on estimator covariance at each
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iteration. As will be shown in this paper, the price of monotonicity
is slow convergence.

In this correspondence, we place the method of [1] in the setting
of a general class of iterative algorithms known as stationary and
nonstationary linear equation solvers [3]. In this setting, we develop
rapidly convergent CR bound approximation methods that can be
applied to the cases of biased parameter estimation, estimation of a
function of the parameters, and singular FIM. The following iterative
equation solvers are considered: monotone and nonmonotone matrix
splitting algorithms, such as the method of [1], Jacobi, Gauss–Seidel,
and preconditioned conjugate gradient algorithms. The extension
of these algorithms to singular FIM is achieved by using matrix
perturbation methods.

We illustrate these algorithms for an important class of inverse
problems arising in tomographic reconstruction, deconvolution, and
image restoration. We perform numerical studies for the special case
of uptake estimation in radio-isotope imaging (PET). The uptake is
the overall amount of radio-isotope delivered to a region of interest,
and the uptake estimates are derived from a set of noisy tomographic
projections. After treating uptake estimation with full-rank FIM, we
conclude the correspondence by treating the so-called “missing angle
problem,” where only a small range of projection data is available
and the FIM is singular.

II. THE CRAMER-RAO BOUND

Let Y be an observed random variable with probability den-
sity fY (y; �) dependent on an unknown parameter vector� =

[�1; . . . ; �n]
T lying in an open subset� of IRn. Define then�n FIM

FY = E� r� ln fY (Y ; �) r
T

�
ln fY (Y ; �)

wherer� denotes the column gradient operator. Lett = t(�) be
a known scalar function of the unknown parameter vector, and let
t̂ = t̂(Y ) be an arbitrary estimator oft(�) having known mean
function m(�) = E�[t̂].

The CR bound on the variance of the estimatort̂(Y ) is [4], [5]

var�(t̂) � _m
T

F
+

Y
(�) _m (1)

where _m = r�m is the column gradient vector[ @m
@�

; . . . ;
@m

@�
]
T ,

andF+
Y

denotes the Moore–Penrose pseudo-inverse [6]. WhenFY

is nonsingularF+
Y

= F
�1

Y
, which is the ordinary matrix inverse.

Note that the pseudo-inverse form of the CR bound is generally not
generally achievable unless the vector_m lies in the range space of
FY [4].

Throughout this correspondence, we will be interested in cal-
culating the right-hand side of (1). The method easily extends to
calculation of the uniform lower bound presented in [4] for biased
estimators.

For nonsingular FIM, the right-hand side of the CR inequality (1)
can be computed inO(n

3
) flops by solving forx in the equation

FY x = _m: (2)

III. RECURSIVE CR BOUND ALGORITHMS FORNONSINGULAR FIM

Here, we describe the monotonically convergent algorithm of [1]
in the context of standard splitting iterations [7, Section 10.1], which
are also known as stationary iterations [3], for approximating the
solution to the linear equation (2).
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A. Splitting Algorithms

Let F andN be n � n matrices that splitFY in the sense that
F � N = FY . The matrixF is called a splitting matrix and is
assumed to be nonsingular.

1) General Splitting Iterations:The following general splitting it-
eration for approximation of the CR bound requires an initial vector
�(0)

i). u = N�
(k)

+ _m

ii). : F�
(k+1)

= u (3)

�
(k+1)

= _m
T
�
(k+1)

(CRB APPROX):

For any square matrixM with eigenvaluesf�Mi g, the root
convergence factor is defined as�(M) = j�Mi jmax (which is also
known as the spectral radius ofM). If �(F�1N) < 1, then �(k)

converges to the vectorF�1Y _m, and the approximating sequence�(k)

converges to the CR bound_mTF�1Y _m [7].
Many algorithms are splitting iterations, such as the Jacobi (J)

and Gauss–Siedel (GS) iterations [7, Section 10.1]. Let the FIM
have the additive decompositionFY = D + U + L, whereD
is diagonal, andU andL are upper and lower triangular matrices
with zero diagonal entries. The J iteration is obtained by making the
identificationsF = D; N = �(U + L) in (3). For J iterations,
the spectral radius ofF�1N may exceed one, andN is not generally
nonnegative definite. Therefore, J iterations may not converge and are
generally not monotone. To ensure convergence, the Jacobi algorithm
must be relaxed, corresponding to usingN = (1� )D� (U+L)

in place of �(U + L), where  2 (1; 2) is an over-relaxation
parameter. The GS iteration is obtained from the general splitting
iteration by identifyingF = D + L andN = �U in (3). Like
J iterations, the GS iterations yield nonmonotonic approximations.
However, the GS iterations always converge for positive definite
FIM. Step i) of (3) requires2n2 flops, while step ii) requires a
number of flops depending on the specific form of the matrixF.
WhenF is diagonal, as in J iterations, step ii) requiresn flops. For
GS iterations, the matrixF is lower triangular, and step ii) of (3)
could be accomplished using backsubstitution (n2 flops). However,
GS iterations are never implemented in this way since, by rearranging
the order of computation, steps i) and ii) of (3) can be accomplished
in only 2n2 flops (largen) via the equivalent iteration

j = 1 M (GS Iteration)

r = _mj � fj��
(k)

=fjj

�
(k)

j = r

�
(k)

[j] +1
= 0

where[j]n = j modn; fij denotes theijth element ofFY , andfj�
denotes thejth row of FY .

2) Monotone Splitting (MS) Iterations:Assume thatF is symmet-
ric positive definite andN = F � FY is symmetric nonnega-
tive definite. Then, it follows from [1, (9)] that�(k+1) � �(k) =

_mTF� [F� NF� ]kF� _m � 0. Assume also that the splitting
algorithm (3) is initialized with�(0) = 0. Then, the approximating
sequence�(k) is monotone nondecreasing ink and, if�(F�1N) < 1,
�(k) converges to the CR bound from below. Such a monotonic
splitting (MS) algorithm yields a sequence of increasingly tight
bounds on var�(t̂).

We can ensure that�(F�1N) = �(I�F�1FY ) < 1 by selecting
a matrixF for which F � FY is nonnegative definite [1]. This was
accomplished in [1] by selecting a diagonal matrix denotedFEM ,
which was the FIM associated with a complete data space.

We next present a general class of FIM-dominating splitting
matricesF, which ensure monotone convergence when�(0) = 0.
Define the(2p � 1)-diagonal banded matrixDp

Dp = Q+ diag(jFY �Qj1) (4)

whereQ = ((fij))ji�jj�p is a (2p � 1)-diagonal banded matrix,
F = ((fij)), jAj = ((jaij j)); 1 = [1; . . . ; 1]T , and diag(x) is a
diagonal matrix with the elements of the vectorx along the diagonal.
In particular,D1 is a diagonal matrix with theith diagonal element

n

j=1
jfij j, andD2 is a tridiagonal matrix [8].

The following lemma follows directly from the diagonal dominance
of the matrixDp�FY = diag(jFY �Qj1)�(FY �Qp) [9, Corollary
7.2.1] and the easily verifiable fact that whenFY has nonnegative
entries,(Dp � FY )1 = 0.

Lemma 1: If FY is ann � n symmetric matrix, thenDp � FY
is nonnegative definite. Furthermore, ifFY has only nonnegative
entries, thenDp � FY has rank at mostn � 1.

One can show that a necessary condition for a(2p� 1)-diagonal
banded matrixF to minimize the root convergence factor�(I �
F�1FY ) subject toF � FY � 0 is thatF � FY be rank deficient.
Lemma 1 asserts thatF = Dp satisfies this condition whenFY
has nonnegative entries. Such Fisher matricesFY arise in many
applications, including the inverse problem considered in Section VI.

IV. PRECONDITIONED CONJUGATE GRADIENT ALGORITHM

When the FIMFY is positive definite, the preconditioned conju-
gate gradient (CG) algorithm can be used to approximate the solution
x [7, Section 10.3], giving an approximation to the CR bound_mTx.
The CG algorithm converges to the exact solutionx in n iterations
when run with infinite precision arithmetic. However, when run to
termination, it is not computationally competitive with Gaussian
elimination. We will show that with proper preconditioning matrix
F, the following prematurely stopped preconditioned CG algorithm
[7, Algorithm 10.3.1] is quite competitive with direct methods and
has significantly faster convergence than MS iterations.

A. Preconditioned CG Recursion for CRB

The following preconditioned CG iteration requires initialization
of �(0) and r(0) = _m � FY �

(0)

: Fz
(k)

= r
(k)

�
(k)

=
0; k = 0

hr ;z i

hr ;z i
; k > 0

p
(k)

=
z(0); k = 0

z(k) + �(k) p(k�1); k > 0

�
(k)

=
hr(k); z(k)i

hp(k);FY p(k)i

r
(k+1)

= r
(k) � �

(k)
FY p

(k)

�
(k+1)

= �
(k)

+ �
(k)

p
(k)

�
(k+1)

= _m
T
�
(k+1)

(CRB APPROXIMATION):

When the preconditionerF is a bandedp-diagonal matrix, the
CG algorithm requires the same number of flops per iteration
(2n2 + 2np2) as the splitting algorithms previously described. In
the CG recursion,r(k) is the forward residualr(k) = _m�FY �

(k) =

FY��
(k), where ��(k) is the approximation error��(k) =

F�1

Y _m � �(k). The speed of convergence of preconditioned CG
generally improves as the eigenvalue spread ofF�1FY decreases.
The asymptotic rate of decrease ofkr(k)k2 = [��(k)]TFY [��

(k)]

is upper bounded by2k��(0)kF (
p
��1p
�+1

)k, where� is the spectral

condition number of the matrixF�1FY , which is defined as the ratio
of its largest to the smallest magnitude eigenvalues [3, Section 2.3.1].
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V. CRB APPROXIMATION FOR SINGULAR FIM

The splitting iterations and CG algorithm described in the previous
sections are only applicable to nonsingular FIMFY . If it is known
that _m lies in the range space ofFY , the CR bound _mT

F
+
Y _m for

singularFY can be found in4n3=3 flops using the QR factorization
to solve for the min-norm solutionx to FY x = _m [7. Alg. 5.7.2].
However, typically, the range space ofFY is unknown, and much
more computationally intensive algorithms are required, e.g., the
singular value decomposition (SVD) (20n3 flops). Here, we present
an iterative approximation to the pseudo-inverse form of the CR
bound for the case of singular FIM andFY _m 6= 0.

Consider the following matrix:

G(�)
def
= (FY + �I)

�1
FY (FY + �I)

�1

where� > 0 is a free parameter.G(�) is a convergent approximation
to the pseudo-inverse ofFY in the sense

F
+
Y = lim

�!0
G(�): (5)

The representation (5) can be easily established by considering the
eigendecomposition ofFY

F
+
Y �G(�) =

r

i=1

�(2�i + �)

�i(�i + �)2
uiu

T
i (6)

where�1 �; . . . ;� �r > 0 are ther nonzero eigenvalues ofFY

arranged in decreasing order, andfuig
n
i=1 is an orthonormal set of

eigenvectors. Observe that the range space ofG(�) corresponds to
the range space ofFY for all � > 0.

Note thatF+
Y �G(�) � 0 so that _mT

G(�) _m � _m
T
F
+
Y _m. Hence,

_m
T
G(�) _m is a valid lower bound on var�(t̂), which converges to

the CR bound _m
T
F
+
Y _m as � ! 0. In view of (5), we have the

representation_mT
G(�) _m = 
TFY 
, where
 is the solution to the

linear equation[FY +�I]
 = _m. Since the perturbed matrix[FY +�I]

is nonsingular for� > 0, the CG, GS, and other previously discussed
algorithms can be applied to the approximation of
.

Both the speed of convergence and the normalized asymp-
totic approximation error� = _m

T
(F

+
Y � G(�)) _m=( _mT

F
+
Y _m)

increase as� increases. It is easily shown via (6) that for
� � �min = mini=1;...;rf�ig: _m

T
(F

+
Y �G(�)) _m � 2�kF+

Y _mk
2.

Hence, the normalized asymptotic approximation error is� �

2�kF+
Y _mk

2= _m
T
F
+
Y _m. The right-hand side of this relation can be

bounded (see Appendix) to yield

2�
_m
T
FY _m

kFY _mk2
� � �

2�

�min

(7)

which is valid for�� �min. In Section VI, (7) will be used to select
an appropriate value of� to attain a desired magnitude of asymptotic
normalized error.

VI. A PPLICATION TO AN INVERSE PROBLEM

We illustrate the iterative CR bound approximations for the inverse
problem consisting of estimating the vector� from the model

Y = A� + w

where

A m � n matrix of coefficients,
w vector of independent random noises,
� parameter of interest.

This model arises in computed tomography (CT), such as X-ray CT
and emission CT, where

Y vector ofm projections of a nonnegative object attenuation
map (X ray CT) or object intensity (emission CT)�,

A matrix of transition probabilities,

w Gaussian distributed (X ray CT) or Poisson distributed (emis-
sion CT) random vector with diagonal covarianceC.

For this model, the FIM is the nonsingularn � n matrix

FY (�) = A
T
C
�1
A: (8)

In many cases, the matrixA is sparse withmn� nonzero en-
tries, where� � 1 is the matrix sparsity factor. Due to the
simple form (8) of the FIM, the matrix-vector productFY �

(k) (2n2

flops) can be performed in two nested vector-matrix multiplications:
FY �

(k)
= A

T
[C
�1
A�(k)] (4mn� flops). Furthermore,FY need

not be precomputed (2mn2� flops) or stored (n2 bytes): Only storage
of themn� nonzero elements ofA and them nonzero elements of
C is necessary. Therefore, for matrix sparsity factors� < 0:05 (more
than 95% of all elements ofA are zero) commonly encountered in
tomography, use of iterative methods for computing the CR bound
can give a substantial reduction in storage and computation.

In this correspondence, we consider a positron emission tomogra-
phy PET application similar to that considered in [1]. A downsampled
32 � 32 Hoffman brain phantom was used as the true image
intensity �. Here, the unknown parameter vector� consisted of a
lexicographical ordering of then = 640 pixel intensities within
an ellipsoidal brain boundary. A system matrixA corresponding to
axially collimated PET was constructed, which acquires projections
of the planar phantom over 40 detector angles and 80 radial detector
bins. This yields a matrixA with m = 3600 rows, n = 640

columns, and sparsity factor� = 0:0427. The goal was to perform
unbiased estimation of the integral of� over a specified region; this
is the so-called uptake estimation problem. Specifically, we defined
t(�) = 1

T
region�, where1region is a vector indicator function of a

square nine-pixel region of interest within the right ventricle of the
brain phantom.

Figs. 1 and 2 show the convergence trajectories of eight algorithms.
MD1, MD2, and MD50 denote the monotone splitting algorithms
obtained by using the respective preconditioning matricesD1, D2,
and D50, which are defined in Section III-A2. These algorithms
have convergence rates that improve with the number2p � 1 of
nonzero off-diagonal bands inDp. The monotone algorithm labeled
EM uses the diagonal splitting matrixF = diagi A

T
�i1=�i given

in [1], whereA�i is the ith column ofA and diagi(ai) denotes
a diagonal matrix with the scalarsai arranged along the diagonal.
It is interesting that while this latter algorithm beats MD1–MD50
in the early iterations, it considerably undershoots the CRB in the
later iterations and ends up converging to the CRB at a much slower
asymptotic rate. The JOR algorithm is a Jacobi iteration implemented
with relaxation parameter numerically selected to minimize the root
convergence factor: = 2=[min(j�ij) + max(j�ij)], wheref�igi
are the eigenvalues of[diag(FY )]

�1
FY . The standard unrelaxed

Jacobi algorithm diverged for all cases studied and is not shown.
The JOR algorithm converges faster than the monotone EM, MD1,
MD2, and MD50 algorithms and appears to be monotonic. However,
quantitative enumeration of the JOR trajectory reveals nonmonotone
behavior after the first 60 iterations.

In Fig. 2, we zoom into the trajectories of the nonmonotone
algorithms graphed in Fig. 1. The conjugate gradient algorithm la-
beled CGD uses the standard diagonal Jacobi preconditioning matrix
F = diag(FY ). The conjugate gradient algorithm labeled CGDF uses
a special preconditioning matrixF consisting of a diagonal matrix,
which is chosen to makeFY approximately circulant, followed by
a Fourier-type preconditioner. The preconditioner used in CGDF is
tailored to the spatially invariant PET application and is described in
[10] in the context of fast least squares PET reconstruction algorithms.
The GS algorithm shows very rapid convergence, which is only
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Fig. 1. Trajectories of iterative algorithms for approximating the nonsingular
CR bound for estimates of uptake in a nine-pixel neighborhood. Dotted line
labeled CRB denotes the true value of the CR bound. Rapidly convergent
nonmonotone Gauss–Seidel and preconditioned conjugate gradient algorithms
are unlabeled curves at far left of graph (see Fig. 2).

Fig. 2. Magnified view of the nonmonotone algorithms including
Gauss–Seidel (GS) and preconditioned conjugate gradient algorithms shown
in Fig. 1. CGD is a conjugate gradient algorithm using the standard diagonal
Jacobi preconditioner, and CGDF uses a preconditioner tailored to theA

matrix considered here.

slightly outdone by CGDF. However, the GS displays a prominent
(2%) overshoot that does not occur in any of the other algorithms.

The convergence properties of these algorithms are quantified
in Table I. The asymptotic convergence factors (second column
of Table I) are defined for the splitting algorithms as� =

maxfj�
I�F F

i
jgni=1 and for the conjugate gradient algorithms

as the ratio�0 =
p
��1p
�+1

, where� is the spectral condition number

� = �F F

max =�
F F

min of F�1FY . The third and fourth columns
show the actual number of iterations to achieve convergence to
within a 5% and a 0.5% tolerance of the CRB, respectively. The fifth
column shows the number of iterations for which each algorithm
would lose its advantage relative to direct computation of the CRB
(2mn� flops to computeFY plus n3=3 flops to computeF�1

Y
_m

via Cholesky decomposition). For all algorithms except MD50, the
number of flops required per iteration is approximately4mn� = 0:4

Mflops. MD50 requires an additional 1.6 Mflops per iteration to
solve the preconditioning equationD50�

(k)
= u. Note that while the

TABLE I
ASYMPTOTIC AND FINITE CONVERGENCEPROPERTIES OF THEITERATIVE

ALGORITHMS. THE COLUMNS LABELED 5% AND 0.5% ARE ACTUAL NUMBER

OF ITERATIONS REQUIRED FORCONVERGENCE TOWITHIN A TOLERANCE OF 5%
AND 0.5% OF THE CRB. COLUMN LABELED “BREAKEVEN” I NDICATES THE

NUMBER OF ITERATIONS FORWHICH THE TOTAL NUMBER OF FLOPS OFEACH

ALGORITHM WOULD BE COMPARABLE WITH DIRECT COMPUTATION OF THE CRB

Fig. 3. Error bounds on the asymptotic normalized error� as a function of
perturbation parameter� for the case of singular FIM. The exact calculated
curve� = �(�) (labeled “true”) and the average of the upper and lower bounds
are also shown. Note that this average is very close to the exactcurve for all
values of� < 0:15, i.e., 15% error or less.

entries in the fourth column monotonically decrease as� increases,
the third column is not monotone decreasing. This illustrates the fact
that the asymptotic convergence factor can be a poor predictor of the
nonasymptotic behavior of matrix iterations [11].

Next, we turn to the case of singular FIM arising in the so-called
“missing angle problem,” where image parameters must be estimated
from a greatly reduced number and range of projections. For this
study, only 10 angles from0 to �=4 and 40 radial bins per angle
were used, corresponding to decimating the rows ofA by a factor
of eight. This resulted in a matrixA of dimension400� 640 with
rank 400 and range-space condition number on the order of 1000.
The matrix perturbation method discussed in Section V was used to
approximate the CR bound for uptake estimation.

We selected a maximum allowable asymptotic normalized error
criterion as � = 0:05, or 5%, and� = 0:00074 was selected
according to (7) as the average of the induced lower and upper bounds
on �: � = [ 1

2
��min + 1

2
kFY _mk2=( _mT

FY _m)]=2 (see Fig. 3). To
implement this selection scheme, the minimum positive singular value
�min of FY must be available. In practice,�min can be estimated
using successive power iterations [7] or using a slightly modified
implementation of the preconditioned conjugate gradient algorithm
[3].

Fig. 4 illustrates the trajectories of the GS and CGD iterations.
The limiting value of both of these algorithms is 41.3, which, as
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Fig. 4. Trajectories of the Gauss–Siedel (GS) and conjugate-gradient with
diagonal Jacobi preconditioner (GCD) for the case of singular FIM and uptake
estimation. CGD settles to within 5% of the true CR bound after fewer than
15 iterations.

expected, lies below the true CR bound numerically calculated to be
43.5 by approximately 5%. Note that the GS algorithm has a highly
oscillatory trajectory that does not converge to within 5% of the
limit until after 250 iterations. However, the CGD algorithm settles
down to within 5% of the limit in fewer than 15 iterations. Finally,
while space limitations prevent showing any supporting numerical
results, it was observed that a significant tradeoff exists between the
convergence rate and�. This is because decreasing� forces smaller
�, and [FY + �I] becomes increasingly ill conditioned.

VII. CONCLUSION

The main conclusions of this paper are as follows:

1) Iterative equation solving methods are effective for approxi-
mating the CRB on estimators of any scalar function of the
parameters.

2) For sparse-matrix inverse problems, these methods can be im-
plemented with significant savings in memory and computation
load.

3) If monotonicity can be sacrificed for the user’s application,
the nonmonotone Gauss–Seidel and preconditioned conjugate
gradient methods should be implemented due to their advantage
of very rapid convergence.

APPENDIX

BOUNDS ON ASYMPTOTIC ERROR

Lemmas 2: Assume that _m does not lie in the nullspace ofFY ,
and let � be the normalized asymptotic error� = _mT (F+

Y �
G(�)) _m=( _mT

F
+
Y _m). Assume that� is dominated by the smallest

positive singular value�min of F so that too(�): � = 2�
_m [F ] _m

_m F _m
.

Then

2�
_mT

FY _m

kFY _mk2
� � � 2�

1

�min

: (9)

Proof: By assumption _mT
F
+
Y _m > 0; therefore, the inequal-

ities are well defined. We first show the lower inequality. The
Cauchy–Schwarz inequality states thatjuT vj2 � uTu � vT v for any
two vectorsu and v. Letting u = F

k=2

Y w and v = F
k=2+1

Y w, we
obtain

wT
F
k+1
Y w

wTF
k+2
Y w

�
wT

F
k
Y w

wTF
k+1
Y w

:

Settingw = F
+
Y _m and applying the above fork = 2; 1; 0, we obtain

_mT
FY _m

_mT
F2
Y _m

�
_mTPF _m

_mT
FY _m

�
_mT

F
+
Y _m

_mTPF _m
�

_mT [F+
Y ]

2 _m

_mT
F
+
Y _m

wherePF = F
+
Y FY = FY F

+
Y is a symmetric idempotent matrix

that projects vectors onto the column space ofFY . Since _mT
F
2
Y _m =

kFY _mk2, we have established the lower inequality in (9). The upper
inequality in (9) follows from the sequence of identities

_mT [F+
Y ]

2 _m

_mT
F
+
Y _m

� max
f _m: _m F _m>0g

_mT [F+
Y ]

2 _m

_mT
F
+
Y _m

= max
_m6=0

_mT
F
+
Y _m

_mT _m

=
1

�min

:
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