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and preconditioned conjugate gradient algorithms. The extension
of these algorithms to singular FIM is achieved by using matrix
perturbation methods.

We illustrate these algorithms for an important class of inverse
problems arising in tomographic reconstruction, deconvolution, and
image restoration. We perform numerical studies for the special case
of uptake estimation in radio-isotope imaging (PET). The uptake is
the overall amount of radio-isotope delivered to a region of interest,
and the uptake estimates are derived from a set of noisy tomographic
projections. After treating uptake estimation with full-rank FIM, we
conclude the correspondence by treating the so-called “missing angle

Abstract—Computation of the Cramer-Rao bound (CRB) on estimator Problem,” where only a small range of projection data is available
variance requires the inverse or the pseudo-inverse Fisher information and the FIM is singular.
matrix (FIM). Direct matrix inversion can be computationally intractable
when the number of unknown parameters is large. In this correspondence,
we compare several iterative methods for approximating the CRB using Il. THE CRAMER-RAO BOUND

matrix splitting and preconditioned conjugate gradient algorithms. For a - . . -
large class of inverse problems, we show that nonmonotone Gauss—Seidel Let Y be an observed random variable with probability den-

and preconditioned conjugate gradient algorithms require significantly Sity fv(y;#) dependent on an unknown parameter vedtor=

fewer flops for convergence than monotone “bound preserving” algo- [6:,...,8,]" lying in an open subs& of IR™. Define then x n. FIM
rithms.
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I. INTRODUCTION .
where V, denotes the column gradient operator. ket ¢(d) be

The Cramer-Rao (CR) bound is a widely used lower bound oQ\ynown scalar function of the unknown parameter vector, and let
estimator covariance. When there areunknown parameters, the ; _ #(Y) be an arbitrary estimator of(§) having known mean

calculation of the CR bound involves calculation of the inversg,.iion m(8) = Eli].

or pseudo-inverse of the x n Fisher information matrix (FIM).  The cR bound on the variance of the estimai@r) is [4], [5]
Direct methods of matrix inversion, requiriiig(n?) bytes of memory '

storage and)(n?) floating-point operations (flops), are intractable var (f) > m’ F{ (8)m (1)
if n is large. Often, only a few components of thedimensional -
estimator are of interest, in which case, the entire inverse Flivherei, = Vym is the column gradient vectc[rﬁ%g..., om 1T,

is not needed. For example, in medical image analysis, one mayd F{ denotes the Moore—Penrose pseudo-inverse [6]. WWihen

be primarily interested in a smali-pixel region of interest (ROI) s nonsingularF{- = F', which is the ordinary matrix inverse.

corresponding to a tumor or lesion. Note that the pseudo-inverse form of the CR bound is generally not
In [1] and [2], a recursive method was presented for approximatignerally achievable unless the vectorlies in the range space of

columns of the CR bound for unbiased estimation of an element pf. [4].

the parameter vector and for nonsingular FIM. This method requires-rhroughout this correspondence, we will be interested in cal-

only O(n*) flops per iteration per parameter so that if convergeneilating the right-hand side of (1). The method easily extends to

is fast, a computational saving is achieved. The important featw8iculation of the uniform lower bound presented in [4] for biased

of this algorithm is its monotone convergence, which guarantees&imators.

valid and improving lower bound on estimator covariance at eachfor nonsingular FIM, the right-hand side of the CR inequality (1)
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A. Splitting Algorithms We next present a general class of FIM-dominating splitting
Let F and N be n x n matrices that spliffy in the sense that MatricesF, which ensure monotone convergence whef = 0.
F - N = F,. The matrixF is called a splitting matrix and is Define the(2p — 1)-diagonal banded matrio,,

assumed to be nonsingular. D, = Q +diag|Fy — QJ1) (4)

1) General Splitting Iterations: The following general splitting it- whereQ = ((fi,))i_j<p iS @ (2p — 1)-diagonal banded matrix,

eration for approximation of the CR bound requires an initial vectgx - " - T o

o) F = ((fu)), |A] = ((Ja,1), 1 = [1,...,1]", and diagz) is a

= diagonal matrix with the elements of the vecioalong the diagonal.
i). w= Ng(") +1m In particular,D; is a diagonal matrix with théth diagonal element

N 1) >y Ifij], and D2 is a tridiagonal matrix [8].
ii). Solve : F =u () The following lemma follows directly from the diagonal dominance
D = ! 3D (CRB APPROX. of the matrixD, —Fy = diag|Fy —Q|1)—(Fy —Q,) [9, Corollary
- 7.2.1] and the easily verifiable fact that wh&3- has nonnegative
For any square matrid with eigenvalues{A\}'}, the root entries,(D, — Fy)1 = 0.
convergence factor is defined a6M) = A" |.x (which is also  |emma 1: If Fy is ann x n symmetric matrix, therD, — Fy
known as the spectral radius dff). If p(F 'N) < 1, then3*) s nonnegative definite. Furthermore, By has only nonnegative
converges to the vectd;-'m, and the approximating sequengd) entries, therD, — Fy has rank at most — 1.
converges to the CR bounil’ Fy ' [7]. One can show that a necessary condition f¢2@a— 1)-diagonal
Many algorithms are splitting iterations, such as the Jacobi (danded matrixF to minimize the root convergence factp(I —
and Gauss-Siedel (GS) iterations [7, Section 10.1]. Let the FIF'F) subject toF — Fy > 0 is thatF — F'y be rank deficient.
have the additive decompositiciy = D + U + L, whereD Lemma 1 asserts thd& = D, satisfies this condition whel'y
is diagonal, andU andL are upper and lower triangular matriceshas nonnegative entries. Such Fisher matriEgs arise in many
with zero diagonal entries. The J iteration is obtained by making th@plications, including the inverse problem considered in Section VI.
identificationsF = D, N = —(U + L) in (3). For J iterations,
the spectral radius & ~'N may exceed one, arl¥ is not generally IV. PRECONDITIONED CONJUGATE GRADIENT ALGORITHM
nonnegative definite. Therefore, J iterations may not converge and ar@/hen the FIMFy is positive definite, the preconditioned conju-
generally not monotone. To ensure convergence, the Jacobi algorithate gradient (CG) algorithm can be used to approximate the solution
must be relaxed, corresponding to usiNg= (1 —¢)D —¢(U+L) 2z [7, Section 10.3], giving an approximation to the CR bouinf:z.
in place of —(U + L), wherev € (1,2) is an over-relaxation The CG algorithm converges to the exact solutioin n iterations
parameter. The GS iteration is obtained from the general splittimhen run with infinite precision arithmetic. However, when run to
iteration by identifyingF = D + L andN = —U in (3). Like termination, it is not computationally competitive with Gaussian
J iterations, the GS iterations yield nonmonotonic approximationslimination. We will show that with proper preconditioning matrix
However, the GS iterations always converge for positive definilg, the following prematurely stopped preconditioned CG algorithm
FIM. Step i) of (3) require2n? flops, while step ii) requires a [7, Algorithm 10.3.1] is quite competitive with direct methods and
number of flops depending on the specific form of the maFix has significantly faster convergence than MS iterations.
WhenF is diagonal, as in J iterations, step ii) requiredlops. For
GS iterations, the matrif is lower triangular, and step ii) of (3) A- Preconditioned CG Recursion for CRB
could be accomplished using backsubstitutiof {lops). However, The following preconditioned CG iteration requires initialization
GS iterations are never implemented in this way since, by rearrangioig3® and»® = m — Fy 3
the order of computation, steps i) and ii) of (3) can be accomplished N
in only 2n? flops (largen) via the equivalent iteration 0 P
for j =1 toM (GS lteration) ot = { (rth), 2ty k>0

(r(i—1) L (k—1)y°

Solve : Fg(k) = 7_'(k)

. . (K .

r= (i, - £.0")/1; w _ [2, k=0
3k — . r= PLOMNIPNC) p(kfl). k>0
o, z p )

) (k) (K
'3[“]) 41 =0 2B = B2 . 2)

iln = . Fy p0)

end = =

pHD (0 B gy ()
where[j],. = j modn, f;; denotes thé;th element off'y, and f;. - - -
denotes thejth row of Fy.

2) Monotone Splitting (MS) IterationsAssume thaF is symmet- ) =m” g*+Y  (CRB APPROXIMATION).
ric positive definite andN = F — Fy is symmetric nonnega- o
tive definite. Then, it follows from [1, (9)] thayF+0 — O =
m"F2[F zNF~z]*F~zm > 0. Assume also that the splitting

. . « ey . . p (D) _ . .
ilegqourg:?e(( ‘SJ) ils,S r:()ltr:iltlsﬁg r\:g;hicrez_asigr}ggr::& t;e<i~pgr12;( )I ria;mg the CG recursion; ) is the forward residual®’ = 1~ Fy ) =

\ \ M C Ry AR N imati AR =

7™*) converges to the CR bound from below. Such a monoton]r:(‘:‘_%.E » Where Aj Is the approximation errorj

— 3 s iti
splitting (MS) algorithm vyields a sequence of increasingly tigh?y n E . The speed O_f convergence ofﬁprecondltloned CG
bounds on var(?). generally improves as the eigenvalue spread®of Fy decreases.

We can ensure thatf F~'N) = p(I— F~'Fy) < 1 by selecting 1he asymptotic rate of decrease Ipf 1l = (A Fy[AF™]
a matrixF for which F — Fy is nonnegative definite [1]. This wasis upper bounded bg[| A3 || r, (¥E1)*, wherer is the spectral
accomplished in [1] by selecting a diagonal matrix dendiggh;, condition number of the matri€ ~'Fs-, which is defined as the ratio
which was the FIM associated with a complete data space. of its largest to the smallest magnitude eigenvalues [3, Section 2.3.1].

FEFD = g0 4 A0 (0

When the preconditioneF is a bandedp-diagonal matrix, the
CG algorithm requires the same number of flops per iteration
(2n? + 2np?) as the splitting algorithms previously described. In
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V. CRB APPROXIMATION FOR SINGULAR FIM w  Gaussian distributed (X ray CT) or Poisson distributed (emis-

L . i . i ) sion CT) random vector with diagonal covarian€e
The splitting iterations and CG algorithm described in the previoys, ihis model. the FIM is the nonsingularx » matrix

sections are only applicable to nonsingular FB-. If it is known
that lies in the range space &5y, the CR boundgTFJVrm for
singularFy can be found intn®/3 flops using the QR factorization
to solve for the min-norm solutiom to Fy 2z = m [7. Alg. 5.7.2].
However, typically, the range space Bf- is unknown, and much In many cases, the matriA is sparse withvmnr nonzero en-
more computationally intensive algorithms are required, e.g., tHées, wherev < 1 is the matrix sparsity factor. Due to the
singular value decomposition (SVD)n® flops). Here, we present Simple form (8) of the FIM, the matrix-vector produtt 3/ (2n*
an iterative approximation to the pseudo-inverse form of the Cit@Ps) can be performed in two nested vector-matrix multiplications:
bound for the case of singular FIM arih i # 0. Fyp" = AT[CT'AS™] (4mnv flops). FurthermoreFy need
Consider the following matrix: not be precompute@{nn?v flops) or storedi(* bytes): Only storage
dof . . of the mnr nonzero elements oA and them nonzero elements of
G(e) = (Fy +el)” Fy(Fy +€) C is necessary. Therefore, for matrix sparsity factors 0.05 (more
wheree > 0 is a free parametefa(¢) is a convergent approximation than 95% of all elements oA are zero) commonly encountered in

Fy(8) = A"C'A. (8)

to the pseudo-inverse &y in the sense tomography, use of iterative methods for computing the CR bound
Ff = lim G(e). ) can gi\{e a substantial reduction in.storage apd computgtion.
e—0+ In this correspondence, we consider a positron emission tomogra-
The representation (5) can be easily established by considering iy PET application similar to that considered in [1]. A downsampled
eigendecomposition oF'y 32 x 32 Hoffman brain phantom was used as the true image
"L (20 +€) , intensity 4. Here, the unknown parameter vectbrconsisted of a
F{ — G(e) = Z %ZLEZ (6) lexicographical ordering of thea = 640 pixel intensities within
i=1 oiloite) an ellipsoidal brain boundary. A system matéx corresponding to
whereo; >,...,2> o, > 0 are ther nonzero eigenvalues d&y  axially collimated PET was constructed, which acquires projections

arranged in decreasing order, afd; };=, is an orthonormal set of of the planar phantom over 40 detector angles and 80 radial detector

eigenvectors. Observe that the range spac&¢f) corresponds to bins. This yields a matrixA with m = 3600 rows, n = 640

the range space df'y for all ¢ > 0. columns, and sparsity facter = 0.0427. The goal was to perform
Note thatF{> — G(¢) > 0 so that” G(e)m < m” F{m. Hence, unbiased estimation of the integral ®fover a specified region; this

' G(e)m is a valid lower bound on vaff), which converges to is the so-called uptake estimation problem. Specifically, we defined

the CR boundi’ F{mh ase — 0. In view of (5), we have the #(§) = 1/, .6, wherel, . is a vector indicator function of a

representationh’ G (¢)1a = 7' Fy v, where~ is the solution to the square nine-pixel region of interest within the right ventricle of the

linear equatioriF'y +¢I]y = . Since the perturbed matri€y +¢I]  brain phantom.

is nonsingular for > 0, the CG, GS, and other previously discussed Figs. 1 and 2 show the convergence trajectories of eight algorithms.

algorithms can be applied to the approximatiorof MD1, MD2, and MD50 denote the monotone splitting algorithms
Both the speed of convergence and the normalized asymybtained by using the respective preconditioning matrides D,
totic approximation errors = 1’ (F{ — G(e))m/(n’ F{h) and Dso, which are defined in Section Ill-A2. These algorithms

increase ase increases. It is easily shown via (6) that forhave convergence rates that improve with the nuniher 1 of
€ € Omin = min—1,. {0 }: 7 (F§ — G(e))m =~ 2¢|[F{m||*>. nonzero off-diagonal bands iB,. The monotone algorithm labeled
Hence, the normalized asymptotic approximation erroréis~ EM uses the diagonal splitting matrR = diag (AZ;;/&) given
2¢||Fy1i))* /i’ F{i. The right-hand side of this relation can bein [1], where A.; is the ith column of A and diag(a;) denotes

bounded (see Appendix) to yield a diagonal matrix with the scalars arranged along the diagonal.
m’Fym ; 2¢ It is interesting that while this latter algorithm beats MD1-MD50
26— S0 < — () in the early iterations, it considerably undershoots the CRB in the
[Fy i Tmin

Wh ol rc < s In Socion V1,7l v s o select % LS S0 T8 P oruere e SR L et s
an appropriate value @fto attain a desired magnitude of asymptotic >ymp o gonth lon Imp

. with relaxation parameter numerically selected to minimize the root
normalized error. ; .

convergence factory = 2/[min(|\;|) + max(|A;|)], where{A;}:
VI. APPLICATION TO AN INVERSE PROBLEM are the eigenvalues dliagFy)]™'Fy. The standard unrelaxed

Jacobi algorithm diverged for all cases studied and is not shown.
Slehe JOR algorithm converges faster than the monotone EM, MD1,
MD2, and MD50 algorithms and appears to be monotonic. However,
Y=A0+w guantitative enumeration of the JOR trajectory reveals nhonmonotone
behavior after the first 60 iterations.

We illustrate the iterative CR bound approximations for the inver
problem consisting of estimating the vectbfrom the model

where . . In Fig. 2, we zoom into the trajectories of the nonmonotone
A m xn matrix of coefficients, _ algorithms graphed in Fig. 1. The conjugate gradient algorithm la-
w  vector of independent random noises, beled CGD uses the standard diagonal Jacobi preconditioning matrix
%  parameter of interest. F = diag Fv). The conjugate gradient algorithm labeled CGDF uses

This model arises in computed tomography (CT), such as X-ray Gilspecial preconditioning matrik consisting of a diagonal matrix,

and emission CT, where which is chosen to mak#&y approximately circulant, followed by

a Fourier-type preconditioner. The preconditioner used in CGDF is

Y vector of m projections of a nonnegative object attenuatiotailored to the spatially invariant PET application and is described in
map (X ray CT) or object intensity (emission CT) [10] in the context of fast least squares PET reconstruction algorithms.

A matrix of transition probabilities, The GS algorithm shows very rapid convergence, which is only
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Iterative CRB Algorithms TABLE |
350 AsYMPTOTIC AND FINITE CONVERGENCE PROPERTIES OF THEI TERATIVE
ALGORITHMS. THE CoLUMNS LABELED 5% AND 0.5% ARE ACTUAL NUMBER
300 OF ITERATIONS REQUIRED FOR CONVERGENCE TOWITHIN A TOLERANCE OF 5%
AND 0.5% oF THE CRB. GoLUMN LABELED “BREAKEVEN" | NDICATES THE
NUMBER OF ITERATIONS FORWHICH THE TOTAL NUMBER OF FLOPS OF EACH
__5_250 ALGORITHM WouLb BE CoMPARABLE WITH DIRECT COMPUTATION OF THE CRB
©
>§< 200 Alg. Asy. Conv. Factor | 5% [ 0.5% | Break Even
g_ EM p = 0.9999998 143 | 521 540
g. MD1 p = 0.9983984 160 | 383 540
o 150 MD2™ | p = 0.9983889 153 | 362 | 540
§ MD350 | p = 0.9977878 109 | 259 108
o 100 JOR p = 0.9975000 60 | 152 540
GS p = 0.9376000 3 6 540
sol- CGD p' = 0.9317000 8 12 540
CGDF | p = 0.7940000 3 4 540
0 — H i i i
0 20 40 60 80 100

Iteration Normalized Asymptotic Error

Fig. 1. Trajectories of iterative algorithms for approximating the nonsingular
CR bound for estimates of uptake in a nine-pixel neighborhood. Dotted line
labeled CRB denotes the true value of the CR bound. Rapidly convergent
nonmonotone Gauss—Seidel and preconditioned conjugate gradient algorithms
are unlabeled curves at far left of graph (see Fig. 2).

Non-Monotone iterations

delta

epsilon

x10~°

Bound Approximation

Fig. 3. Error bounds on the asymptotic normalized efr@s a function of
perturbation parameter for the case of singular FIM. The exact calculated
curved = 6(e) (labeled “true”) and the average of the upper and lower bounds
are also shown. Note that this average is very close to the exactcurve for all
values ofé < 0.15, i.e., 15% error or less.

o~ 2 4 6 8 10
Iteration
Fig. 2. Magnified view of the nonmonotone algorithms includingntries in the fourth column monotonically decrease ascreases,
Gauss—Seidel (GS) and preconditioned conjugate gradient algorithms shdhe third column is not monotone decreasing. This illustrates the fact
in Fig. 1. CGD is a conjugate gradient algorithm using the standard diagomght the asymptotic convergence factor can be a poor predictor of the
Jaco_bl prec_ondmoner, and CGDF uses a preconditioner tailored tAthe nonasymptotic behavior of matrix iterations [11].
matrix considered here. . o
Next, we turn to the case of singular FIM arising in the so-called
“missing angle problem,” where image parameters must be estimated

slightly outdone by CGDF. However, the GS displays a prominefirom a greatly reduced number and range of projections. For this
(2%) overshoot that does not occur in any of the other algorithmsstudy, only 10 angles fror to «/4 and 40 radial bins per angle

The convergence properties of these algorithms are quantifiwgre used, corresponding to decimating the rowsAoby a factor
in Table 1. The asymptotic convergence factors (second colurph eight. This resulted in a matriA of dimension400 x 640 with
of Table 1) are defined for the splitting algorithms as = rank 400 and range-space condition number on the order of 1000.
max{|)\,.’_F_lFY|};’:1 and for the conjugate gradient algorithms' N& matrix perturbation method discussed in Section V was used to
as the ratiop’ = Y“=' wherex is the spectral condition number @PProximate the CR bound for uptake estimation.

Flry _Fl/lit/l‘ . . We selected a maximum allowable asymptotic normalized error
£ = Amax” ¥ /Amin 7 Of F7Fy. The third and fourth columns .ijterion ass = 0.05, or 5%, ande = 0.00074 was selected

show the actual number of iterations to achieve convergence Jocording to (7) as the average of the induced lower and upper bounds
within a 5% and a 0.5% tolerance of the CRB, respectively. The fify, .. — [L80min + L|[Fyii)|?/(! Fy1)]/2 (see Fig. 3). To
column shows the number of iterations for which each algorithiplement this selection scheme, the minimum positive singular value
would lose its advantage relative to direct computation of the CRB_ ;. of Fy must be available. In practice,i» can be estimated
(2mnv flops to computeFy plus »*/3 flops to computeFy '  using successive power iterations [7] or using a slightly modified
via Cholesky decomposition). For all algorithms except MD50, thignplementation of the preconditioned conjugate gradient algorithm
number of flops required per iteration is approximatelyny = 0.4 [3].

Mflops. MD50 requires an additional 1.6 Mflops per iteration to Fig. 4 illustrates the trajectories of the GS and CGD iterations.
solve the preconditioning equatidh,gog(’” = u. Note that while the The limiting value of both of these algorithms is 41.3, which, as
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Iterations for Singular FIM: epsilon = 0.00074
110 T T v v

—GS
-- CGD

100}

Bound Approximation

30

200 300
Iteration

400 500

Fig. 4. Trajectories of the Gauss—Siedel (GS) and conjugate-gradient with
diagonal Jacobi preconditioner (GCD) for the case of singular FIM and uptake
estimation. CGD settles to within 5% of the true CR bound after fewer than
15 iterations.

expected, lies below the true CR bound numerically calculated to big]
43.5 by approximately 5%. Note that the GS algorithm has a highly
oscillatory trajectory that does not converge to within 5% of the[z]
limit until after 250 iterations. However, the CGD algorithm settles
down to within 5% of the limit in fewer than 15 iterations. Finally,
while space limitations prevent showing any supporting numerical3]
results, it was observed that a significant tradeoff exists between ti‘fg]
convergence rate and This is because decreasindorces smaller
e, and[Fy + €I] becomes increasingly ill conditioned.

[5]

(6]

VII.
The main conclusions of this paper are as follows:

1) lterative equation solving methods are effective for approxi-m
mating the CRB on estimators of any scalar function of the[8]
parameters.

For sparse-matrix inverse problems, these methods can be im-
plemented with significant savings in memory and computation
load. [0
If monotonicity can be sacrificed for the user's application[,lo]
the nonmonotone Gauss—Seidel and preconditioned conjugate
gradient methods should be implemented due to their advantage
of very rapid convergence.

CONCLUSION

2)

3)

(11]

APPENDIX
BOUNDS ON ASYMPTOTIC ERROR

Lemmas 2: Assume thath does not lie in the nullspace &5,
and let § be the normalized asymptotic errér = m’ (F{ —
G(e)in/ (i’ Ffm). Assume that is dominated by the smallest
mT[F11%m

positive singular value i, of F so that too(e): 6 = 2e=——2——.
m= FJrm

Then
' Fy
IFy ]
Proof: By assumptiormTF;Cm > 0; therefore, the inequal-
ities are well defined. We first show the lower inequality. The
Cauchy-Schwarz inequality states thaf v|*> < u”« - v" v for any
two vectorsu andv. Letting v = F/?w andv = F¥/*'w, we
obtain

<6< 2 ! .

Omin

2e

9)

. k41 3
W' Fit'w o w Fluw

Tk+2 — Tk+1 :
w!'FyPw = w'Fy T w

807

Settingw = F-1h and applying the above fdr= 2, 1,0, we obtain

' [FY)m

.’1‘ +'
m- F{m

. . . . . T .
! Fym !’ Ppom o' Fim

0 Fim o m Fym o m Promm

wherePr,, = F{Fy = FyF{ is a symmetric idempotent matrix
that projects vectors onto the column spac®ef Sincern” F2 1 =

|IFy 1|/, we have established the lower inequality in (9). The upper
inequality in (9) follows from the sequence of identities

m’ [Fy]*m m’ [F{]*n
T Tt < max T Tt
m* Fym {mmTFym>0} | m” Fym
w’ Fim
= max T
m#0 m-m
1
= O
O min
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