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Abstract—This paper presents a new class of algorithms for lead to systematic biases for low-count scans [6]-[8]. These
penalized-likelihood reconstruction of attenuation maps from pjases are due to the nonlinearity of the logarithm applied
low-count transmission scans. We derive the algorithms by apply- 1 1he transmission data. To eliminate these biases, one can

ing to the transmission log-likelihood a version of the convexity istical hods b d h .
technique developed by De Pierro for emission tomography. The US€ statistical methods based on the Poisson measurement

new class includes the single-coordinate ascent (SCA) algorithm Statistics, which use the raw measurements rather than its
and Lange’s convex algorithm for transmission tomography as logarithms [9]-[11], [6]. Statistical methods also offer reduced
special cases. The new grouped-coordinate ascent (GCA) al-yariance relative to FBP 6], [8], [12].

gorithms in the class overcome several limitations associated . . .
with previous algorithms. 1) Fewer exponentiations are required Several reconstruction algorithms based on the Poisson

than in the transmission maximum likelihood-expectation maxi- Statistical model for transmission scans [13] have appeared
mization (ML-EM) algorithm or in the SCA algorithm. 2) The  recently [6], [10], [11], [14]-[20], all of which converge
algorithms intrinsically accommodate nonnegativity constraints, faster than the original transmission maximum-likelihood
unlike many gradient-based methods. 3) The algorithms are easily expectation-maximization (ML-EM) algorithm [9]. Never-

arallelizable, unlike the SCA algorithm and perhaps line-search . . .
glgorithms. We show that the chA algorithpms copnverge faster theless, each of these methods is still less than ideal due to

than the SCA algorithm, even on conventional workstations. An one or more of the following reasons.
example from a low-count positron emission tomography (PET) « The EM algorithms [9], [18] and single-coordinate ascent

transmission scan illustrates the method. (SCA) algorithms [6], [10], [11] require at least one
Index Terms— Biomedical nuclear imaging, Gauss-Seidel exponentiation per nonzero element of the system matrix
method, iterative methods, maximum likelihood estimation, per iteration, which is a large computational expense.

nuclear tomography, positron emission tomography, single

photon emission computed tomography. « Enforcing nonnegativity in gradient-based algorithms

[19]-[22] is possible but somewhat awkward.
* Many algorithms are poorly suited to parallel processors
. INTRODUCTION such as the i860 arrays that are common at septaless PET

TATISTICAL methods for reconstructing attenuation im-  sites. This is true of SCA methods and of algorithms
ges from transmission scans have increased in impor- that use line searches, since a line-search step may not
tance recently for several reasons, including the necessity parallelize easily.
of reconstructing two-dimensional (2-D) attenuation maps This paper describes a new class of algorithms for recon-
for reprojection to form three-dimensional (3-D) attenuatiogtructing attenuation maps from low-count transmission scans.
correction factors in septaless positron emission tomographijese algorithms are parallelizable, easily accommodate non-
(PET) [1], [2], the widening availability of single photonnegativity constraints and nonquadratic convex penalties, and
emission computed tomography (SPECT) systems equippe@uire a moderate number of exponentiations. The derivation
with transmission sources [3], and the potential for reducing these transmission algorithms exploits two ideas underlying
transmission noise in whole body PET images and in other piecent developments in algorithms for emission tomography:
tocols requiring short transmission scans [4]. The nonstatistig;}dating the parameters in groups [23], [24], and the convexity
filtered backprojection (FBP) method and the data—weight@gchnique of De Pierro [25], [26]. Integrating these two ideas
least-squares method [5] for transmission image reconstructiggs to a new class of algorithms [27] that converge quickly
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reconstruction is an important case of the general problemsgfdenotes the transmission measurement ofitheletector,

estimating superimposed signals [30]-[33]. In [31] a sequentigl denotes theith blank scan measurement, denotes the

method called the “alternating maximization” (AM) algorithnmean number of background counts in tle measurement,

was proposed for this estimation problem, whereas [32] pré; denotes the unknown attenuation coefficient in il

posed a simultaneous update based on an EM algorithwvoxel (units: inverse length), and the;’s are the transmission

The improved asymptotic convergence rate of the sequensgbktem model (units: length) [41]. We assufite}, {r;}, and

AM algorithm relative to the simultaneous EM algorithm waga;;} are known nonnegative constants.

shown in [34, ch. 5] (under somewhat restrictive conditions) For independent transmission measurements, the log-

and later generalized in [23]. Such sequential algorithms halkelihood is [9]

been given many names, including iterated conditional modes

[35], Gauss—Siedel [5], [28], successive over-relaxation [29], N

cyclic coordinate ascent [6], and iterative coordinate descent L(#) = Z hi({a:,9)) (2)

[11], [36]. In this paper we use the namsisigle-coordinate =1

ascentand grouped-coordinate ascemd distinguish the case . .

where onegpixepl at a time is updated from gtJhe parallelizabthahere (neglecting constants independend dfereatter)

case where several pixels are updated simultaneously.
After submitting the abstract for [27], we learned of the

independent work of Sauest al. [37], which includes an

algorithm that is similar to one of the algorithms in the clas

proposed here. The emphasis in [37] is on the parallelizibili o o : .
of the algorithms. In this paper we emphasize the point thgUares estimation [6], the “estimate-weighted” least squares

when implemented efficiently, the new class of algorithm ’j_ect_ive function described in [42], and penalized-likelihood
leads to faster computatioaven on a conventional single-EMission tomography [37]. o
processor workstatianThis paper also considers random co- >Nc€ maximizingl(-) leads to unacceptably noisy images,
incidences, unlike [27] and [37]. Finally, unlike in [37], weCUr 90alis to compute a penalized-likelihood estinéatd the
do not make a one-time quadratic approximation to the logttenuation mag™<, with ¢ defined by
likelihood, since that approximation can lead to systematic .
biases for low-count PET and SPECT transmission scans [6], 0= arg Iglgg‘b(@)’ ©(0) = L(9) - BR(6) (4)
[8]. B

There has also been work on grouped-coordinate asc@itfere the objective includes a roughness penalty
(GCA) algorithms in the statistics literature [38], which in turn
cites related algorithms dating to 1964! So, clearly what is new . 1 ' o
in this paper is not the general idea of updating parameters R(9) = Z 2 zk:w]kw(ej Or)- ©)
sequentially or in groups, but rather is the specifics of how !

the iterations and updates can be formulated to achieverge fynctiony should be symmetric and twice differentiable.
reasonable balance betwemmvergence ratandcomputation Ordinarily w;; = 1 for horizontal and vertical neighboring

per iteration'in the PET transmissiop problem. pixels, w;, = 1/y/2 for diagonal neighboring pixels, and
The remainder of this paper describes the problem, develops _ y giherwise. For the results in Section V we adopt the

the new algorithms, and presents. a _representative examplqng’T ification described in [12], [43], and [44], which provides
performance on real PET transmission data. more uniform spatial resolution.

hi(l) = yilog (bie™" + ;) — (bie™ 4+ 1). ©)

he algorithms developed below apply to any problem of
e form (2) with concavé;, including “data-weighted” least

. P [
ROBLEM A. Penalty Function

The Poisson statistical model is widely used for transmission .
N Ithough the method applies more generally, for concrete-
measurements that have been formed by counting |nd|V|duaef2S in this paber we focus on one of the penalties proposed
photons (SPECT) or photon pairs (PET). In practice, bofh 16] bap P prop
SPECT and PET transmission measurements also contair{

extra counts due to “background” events such as random 2 ]
coincidences [39], scatter [40], emission crosstalk [3], and (x) = 87[|2/8] - log(1 + |=/8])]. 6)

room background. We assume ) )
This function approacheg(z) = z?/2 as§ — oo, but

Yi ~ Poissor{bie*‘“’9“‘“> + n}, i=1,---,N (1) provides a degree of edge preservation for finit&ince
where N is the number of measurements, the inner product . d T
= —_— = — 7

p
(ai,6) =Y aijb;
I=t implies |¢/(x)| < 6, this potential function has bounded

represents théth “line integral” through the attenuation map,nfluence. The derivative (7) af requires no transcendental
a; denotes théth row of theV x p system matrixA = {a,;}, functions, which is desirable computationally.
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B. Concavity ]

Whenr; = 0, each function:; is concave over all ofIR,
so it is easily verified that.(-) is concave over all ofRP.
Since is strictly convex andL(-) is concave, the objective
® is strictly concave under mild conditions ok [20]. This
concavity is central to the development of the algorithms
below.

C. Why Another Algorithm?

Direct maximization of (4) is intractable, so one mustag
use iterative algorithms. Generic numerical methods such
steepest ascent do not exploit the specific structurg,afor ,/
do they easily accommodate nonnegativity constraints. Thus, L -
for fastest convergence one must seek algorithms tailored to '0n '9n+1 0s
this problem. Relevant properties ffare as follows. ss

. L(g) is a sum of concave functior}&(.) (When r; = ()), F_ig. 1. One—dimensi_on_a_l (1-D) illustration of the optimiz_ation transfer prin-

e The arguments of the functiorig are inner products. C|ple:. Instead of m.'c1><|m|.2|ng>(es7eg) over 6s,we maximize the §urrogate

. .. . function ¢(6s, 6™) iteratively. The higher the curvature of-, ™), i.e., the
» The inner product coefficients are all nonnegative.

greater the norm of its Hessian, the slower the convergence rate [23], [45].
These properties suggest the use of Jensen’s inequality.

#(0s;0™) "‘\

needed (see algorithm p. 171). On the other hand, if the pixels
in each group are well-separated spatially, then we anticipate
As shown by frequency domain analysis in [5], sequentigthat they will be fairly well decoupled, so the algorithm will
updates such as SCA converge very rapidly for tomographriot suffer from slow convergence. The results in Section V
reconstruction. Unfortunately, for transmission tomographgonfirm this intuition.
the SCA update requires a large number of exponentiationsLet S be a subset of the pixel§l,---,p}, S be its
Consider the partial derivative of the log-likelihood (2) withcomplement, andS| be the cardinality ofS. In a GCA
respect to thejth pixel value algorithm? we updatefs while holding 9g fixed at thenth
update [23]. Unfortunately, it is even too difficult to maximize

Li(6) = ai L(#) =) a; {1 i 9)}5 e~lanf) (8) @(fs,6%) over s directly, so we will settle for finding a

lll. GROUPEDCOORDINATE ASCENT ALGORITHMS

icZ; method for choosing2™ that will at leastmonotonically
where increasethe objective functioh
n+1 gn n gn n
5i(0) = b= 47, 057, 05) = (05, 65) = 2(0").
(see [6, (8)]) and where To ensure monotonicity, we use a generalization of De
' Pierro’s optimization transferidea [25], [26], which is illus-
Z; = {t:a; #0}. trated in Fig. 1. Instead of trying to find™ to maximize

®(fs,0%), we maximize asurrogate functlonj)(es,en) over

a correspondingegion of monotonicityRs(6") C RISl that
we must choose to satisfy

An SCA algorithm must repeatedly evaluaig(6™) at the
current image estima#®. Since{a,, §") changes immediately
after each pixel is updated, one can see from (8) that eac
complete iteration require® exponentiations, wher#/ is the @(957971) o(O™) > d)(@s;@") _(/)(gg;gn)’ Vhs € Rs(67).
number of nonzera,;’s. At the other extreme, Lange’s convex 9)
algorithm [15], [20] and scaled-gradient algorithm [16], [20frhe GCA update (cf. space-alternating generalized EM
for transmission tomography update all pixels simultaneousWsAGE) algorithm [23], [24]) is then

Thus, one can compute simultaneously tfeibscripted terms
in (8) prior to the backprojection in (8), so only exponenti-
ations are required. Typically, the number of measurem&nts gl LA
is two orders of magnitude smaller thad. In other words, 0;7 =0, Jjes. (10)

there S an “economy of scale” in terms of cqmputatlon b¥he condition (9) is sufficient to ensure that the iterates
updating all pixels simultaneouslyHowever, simultaneous
produced by the above generic update will monotonically

updates lead to slow convergence rates [5], [6], [23], [24]. increase the objectiveb(6"+1) > &(6").
Rather than updatingll pixels simultaneously, we propose
to update only certaigroups of pixelsimultaneously. If one  2in a GCA method,S varies withn. To simplify notation, we leave this

usesG groups of pixels, then onlWWG exponentiations are dependence implicit.
3To simplify notation, in the presentation we incrementevery time a
1Even if the exponentiations are computed approximately, using taljeoup of pixels is updated. We reserve the term “iteration” to mean a complete
lookups for example, the ratio betwe@h and M remains unchanged. update of all pixels.

n+1 . QN
b5 =arg, max  ¢(0s6")
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A. Choosing Surrogate Functions Assuming the groups are chosen so that no two neighboring
pixels are in the same gro8pthen the surrogate function

We restrict attention here to additively separélsierrogate , ,
defined by (11) with

functions ¢(-; 6™) satisfying
3(05:07) = > ¢;(6:6™). (11) 6;(05:0") = Q;(05:0") = B wantp(0; —6%)  (18)
k

JES

will satisfy the monotonicity condition (9). Eachk; only
epends on ong;, so sinceRs(6™) defined in (15) above is
separable, the maximization step in (10) reducestseparate
1-D maximizations. Thus, (10) becomes the parallelizable

" Aij n " t
(o 06, 020) = S [ 220~ 07) )| a2y operatons
jes ! 9;»”'1 =arg elréagg $i(6;;6™), jeS. (19)

To choose these;’'s, we use modifications of De Pierro’s
convexity method [25], [26] rather than the EM approach
[23], [24]. The key step is to note that

for any choicé of a;; > 0 that satisfies the constraint

ZO@' -1, Vi (13) B. Convergence
jes Whenr; = 0 Vi so that® is globally strictly concave, it is
fairly straightforward to apply the general convergence proof
in [23] to prove that the sequence of estimafé%} produced
by the above algorithm [(10) and (19)] monotonically increases
Y% and converges from any starting image to the unique global
maximizer of & subject tof > 0, under mild assumptions
(<a“ 05, 0" S Z aijh <au 9 _ en) (ai, 9n>>' aboutS and the_aij’s. There are a few prac_tical _cgveats t_hgt
should be considered, however. When using finite precision
(14) arithmetic, monotonicity may not hold exactly when the se-
Unfortunately, wherr; is nonzero,h; is concave only over quence gets very close to the maximum. Also, usually one
the interval(—oo, [!***) where (see [6] or (22) below) will not perform exact 1-D maximizations as implied by (19),
but rather partial or approximate maximizations (see below).

We discuss specific choices fox; in the next section.
When h; is concave over all oR (such as when; = 0),
then it follows directly from (12) and the convexity equalit

that

JES

i =00rr 2y
[nax — {1 ) b, ! h 0 D=y Finally, whenr; # 0, it is cumbersome to compute th#, ..
08 ( ym—m) otherwise. terms, so in our software we take the more pragmatic approach
Thus, the inequality in (14) is guaranteed (by the convexi)f Simply verifying that® has increased after each complete
inequality) to be satisfied only fats such that iteration. (We have yet to observe nonmonotonicity exceeding

numerical precision limits in thousands of reconstructions.)

a” (0, — 07) + (@i, 0") <™, VjeS, Viel;. Verifying monotonicity does not ensure global convergence in
* the nonconcave case. Nevertheless, it is comforting to know
Consequently, we definRs(6™) as follows: that, at least under ideal circumstances (ie.= 0, perfect
) numerical precision, exact maximizations), global convergence
Rs(0") ={0s>0:6; < 07 max> VI E S} (15) is ensured.
where
aij C. The Maximization Step
" _ . : TL ) max _ . 12
9j7111ax—arg£r€1111}{9] + a;j (lz (s, 0 >)} (16) One simple approach to implementing the maximization

(19) would be to apply a few subiterations of the 1-D New-

For typical small values of;, it is reasonable to expect thaton "Raphson method

I > (a,;, 0™), soRg(6™) will contain most of the relevant

part of RIS, Oy = 6}
Using the definition (15) as our region of monotonicity 6. on
Rs(6™), it follows from (14) that we have a5 93 (0536, _ o
eyvork — eyvork 175 (20)
’ | —d—22¢j(9j%9")‘
957 S Zh <a/17 957 S ZQJ 9 971 daj ejzeyork
JES 9n+1 _ eyvork
J J

for s € Rs(6™), where using (12) and (14 . . .
s s(6") 912 (14) where [z]y = « for > 0 and is zero, otherwise. This

9 9n Z aih <au 9 _ en) (a;, 9n>>_ (17) []+ operator enforces the nonnegativity constraint. The'“

61f a group contains neighboring pixels, then one can also apply De Pierro’s
penalty function approach [25], [26] to ensure (9). For a first- or second-order
4Separable surrogate functions are very convenient for enforcing the naighborhood, the only change is a factor of two following the paramter
negativity constraint. There may be alternatives that lead to faster convergeinc€26) and in the denominator of (29) [6].
though. "Note that thel in (5) disappears in (18) since each pair of pixels is
Swe assumey;; = 0 if, and only if, a;; = 0, so that (12) is well defined. counted twice in (25)

i€
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symbol in the middle step above indicates “in place” compu- 4qq
tation, and typically this step would be repeated a few times.
Unfortunately, the partial derivatives af;(-;6™) are fairly
expensive to compute exactly, so (20) is impractical.

To reduce computation, we apply methods from [11] and
[6]. For the numerator, we approximate thg function in ¢
(17) (but not the penalty!) by its second-order Taylor serie§
about the current estimat®', in a spirit similar to [11]. For ‘:;:':250'
the denominator, we use a trick similar to [6] for precomputings
an approximation to the second derivative of thefunction, 8200-
and a new trick for the penalty term that exploits its bounde@
curvature. 2-150 I

350

300}

The second-order Taylor expansion abofft for the =
Q,;(-;6™) component of the numerator is < 100}
Qs(0:07) ~ Qu(05:07) + Ly (6) (65 — 07)
d;(6™) 2 50r
—=5—=(6; - 6})
. 0 A A i
because from (17) it follows that 0 100 200 300 400
J 5 Precomputed curvatures
%Qi(eﬁ 6") . = ﬁL(e) . = L;(6") Fig. 2. Comparison of the precomputed curvatudesfrom (23) with the
! 03=07 ! o=0 asymptotic curvaturedj(é), whereé was taken to be the image shown at
the bottom of Fig. 3. The precomputed values are very good approximations
and that to the final curvatures of th€; surrogate functions.
d? a; .
4(0") = _@Qj(ej;e ) - - ; i hi({a:,67)) Since+ has bounded curvature
o 21) )= —L <1 25
where (see [6]) V@) (14 |z/6)? ~ (29)
. YiTi . we replace the denominator of (20) with
—hi()=|1—- —F— |bie™". (22)
(bie=t 4 1;)2 P2 )
i L ———=p,;(0;;0" ~d+ Wik 26
Note that #" only entersd;(6") through its projections d6? ¢3(65;6") ith zk: o (20)

e k
6;=67°r

(ai, ™). Thus, d;(§™) is fairly insensitive to6", so we
replace {a;, ™) with a precomputed approximation to thewhich is independent of”, so can be precomputed as de-
ith line integral, such asog(b;/(y; — r;)). Specifically, we scribed in [6]. Note that this replacement has no effect on
replaced; (6™) with the approximation the fixed point of (20). Using the approximation (26) provides
) ) ) a form of built-in under-relaxation because of the bounded
d; = — Z %ij s <log ) _ Z ai; (yi = 1i) _ curvature (25) ofi.
= oy Yi — T = oy W To summarize, for our algorithm for performing the maxi-
vi0 vi 0 mization (19), we replace (20) with (24) and (26), and apply
_ _ o (23) two or three subiterations of the form (20). No forward or
The advantage of using this approximation is that one Cgi.yoroiections are computed during these subiterations, so
precomputg (23)pr|or to |ter§1t|ng.. The accuracy of this they compute quickly. As in [5], [6], [10], and [11], we store
approximation is illustrated in .F|g. 2 To summarize, We,a" cyrrent “forward projection (a;, ")} to further save
replace the numerator of (20) with this approximation computation when evaluating the “backprojection” step (8).
d d - Since proper ordering of the steps is essential for efficient
dfoj%(ej%en) o ~ %%(eﬁen) computation, we give the details of the algorithm shown at
05=63 ! the top of the next page. (Software is also available; see [46].)
= Ly(67) = d; - (67 - 67) — /jzwjkz/}(e}"ork —67). The Appendix describes a modification to (29) that further
& improves the rate of convergence.

R k
6;=6%°r

(24)

. IV. CONVERGENCERATE AND ALGORITHM DESIGN
For the denominator of (20), note that ) _ _ o
The method described in the preceding section is a class of

A6 4 P gn _ gn algorithms since there are several factors that the algorithm
= d;(0") + [ Zwﬁkw( 7= 60k)- designer may specify. Most importantly, one can choose the
K size and constituent elements of the groupdor eachn,

d2
— s 6i(0556™)
daJQ AN

6;=67
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Precompute: Initializé) via FBP
. P . . a 2
li=>aib;, i=1---,N d; = Y (i =ra)”
=1 iz, g Yi
¥ #0
for each iteration:
for eachS :
hi:[l—$}bie—ﬂ, i=1- N @7)
bie=bt +7;
for eachj e S :
Lj = Z aijhi (28)
i€T;

work __ /.
oy = 4,

for a couple subiterations:

elyvork — |‘9/V'V01‘k + LJ - dJ : (9}V0rk _A 91) - /3 Ek wjkr(/;(ejwork — ek) (29)
! ! d;+ 3 Ek Wik +
end
Zi = ZAZ + aij(H}"ork - éj), V; s.t. Qij 75 0 (30)

H. . pwork
b; =0}
end
end

end

as well as the factorsy;; [subject to (13)]. The parameterA. Choosinge;;'s
3, thew;,’s, and the function) are design choices too, but

these determine the objective function, not the algorithm (i%m (22) we want the;;’s to be as large as possible, but
(] ’

least W|th|nTtL1_e clas_s of dconv%xz fuhnct|or;]s W:th *?‘r’]“”dded .subject to the constraint (13). Clearly, this constraint depends
curvature). This section describes how the algorithm desi i} one’s choices foss, but for the moment assume we have

factors influence convergence rate and computation ti”?f?ced S and we want to choose the ;s
;'S.

starting with the;;’s. De Pierro [25] proposed an algorithm for emission to-

If one were to use a single subiteration of the NeV\{- - - .
S ography that updates all pixels simultaneously (i&.=
ton-Raphson updafethen the “maximization step” [(19), ! 9”pp]?/) and egsentially uges (12) with y(

(20), (29)] would have the following form:

If the diagonal entriesl; of D are to be made small, then

__ b

gt =02 + DIVE (") (31) R ST (32)
whereD is a |S| x |S| diagonal matrix with entries{dj + This was also applied to transmission tomography in [20].
B>, wik}tjcs- We could use (31) to develop expression$he choice (32) has three disadvantages. First; i 0, then
for the asymptotic convergence rate of the algorithm (for any;; = 0, so (22) would not be well defined. This complicates
particular choice ofy;;’s and S’s) following the analysis in both implementation and convergence analysis. Second, as
[23]. Here, we take a more informal approach and simply nof¢ — 0, «;; — 0, sod; — oc. Thus, pixels that approach zero
that (31) suggests that smaller values for the diagonal entriedrofhe limit will converge increasingly slowly, perhaps even at
D will lead to larger step sizes, and hence faster convergéncgiblinear rates (as observed in the emission case [45]). Third,

the choice (32) makes; dependent o™, so d; cannot be
80ne subiteration is adequate wheris quadratic, for example, or when the precomputed.

i‘j?n"v”etl‘grgnhcfrgfg fly converged. So, (31) is useful for studying the asymptotic 5o \yay to overcome the first two drawbacks is to express
9Excepting possible acceleration for smifl| due to under-relaxation as the emission algorlthm (PML'SAGE'3) devel‘)ped in [24] n

noted in [6] and [24] for quadratic penalties. terms of De Pierro’s convexity method. This leads to the
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following choice: for fast convergence but moderate computation, we would
like to update the parameters using a few large groups,
_ aij(H}L “I‘Zj) but chosen such that the parameters within each group are
- > res ik (92 +Zk) relatively uncoupled. By uncoupled, we mean that the
terms are not too much smaller than 1.0, which is the value
for almost® any positive values;. Sincez; is positive,«;; that ai; takes whenS = {;j}. Specifically, note from (34)
will be positive (whena;; # 0). In results not shown, we havethat the only: indexes that matter are those 1). If one
confirmed that this does lead to faster convergence than (30 chooseS so that fork € S the values ofa;, are
presumably because the largey; values lead to generally Small for < € Z;, then «;; ~ 1. For most tomographic
smallerd, values and hence larger step sizes. geometries with finite-width rays and pixels, there is at least
However, the choice (33) still depends 6, precluding ©ne ray that intersects any given pair of pixels, so one cannot
precomputingd,. To eliminate this dependency, we let — simultaneously achieve;; = 1 with multiple-pixel choices

(33)

Qg5

o in (33). This leads to the following choice: for S. But pixels that are closer together typically share more
intersecting rays than those that are well-separated spatially, so

s — Gij (34) if S contains only spatially well-separated pixels, the values

" > okes Gik for «;; should be reasonably close to 1.0. (One might ask

o _ S “why not just increase the step size in (31) using an over-
which is independent of™. This choice is similar to that relaxation parameter?” The danger is that such over-relaxation
made by De Pierro for the emission penalty function in [26kan destroy monotonicity.)
and was used in [27], [37]. Note that the denominator in (34) We have investigated the following GCA method: We divide
can be easily precomputed and stored once-and-for-all fogh@ image into blocks of sizen x m, for small m, and

given tomographic system and choices &r then update only one pixel out of eagh x m block on
We use the choice (34) for the remainder of this papei. given subiteratioA! The number of groups is, thus?,
Whether better choices exist is an open question [47].  with p/m? pixels per group. Thus, the required number of
exponentiations is onlyn? N, which is considerably smaller
B. Special Cases than the number of nonzerg;’s for smallm. Note thatm = 1

In the special case where the subSetontains only one IS closely related to the convex algorithm [20], amd= \/p
pixel (S = {4}), then the “algorithm” (19) is equivalent to 9IVES the SCA algorithm [6]. As one increases the pixels

SCA [6], [10], [11], i.e., it turns out that within each group become more separated, and therefore,
less coupled, which increases the convergence rate, but the
$;(6;:0™) = <I>( P 6O en) computation also increases. Thus there is a basic tradeoff that

N 3 - ) ) 1— LV ) 3 ) ) P N

can be adapted to the characteristics of the particular computer

And in that case, the choice (34) leads to a coordinate-widkhitecture.
Newton—Raphson update [6], [10], [11].

At the other extreme, whef = {1, ---,p}, then using the V. RESULTS
choice (32) with one subiteration of (20) is equivalent to the . —
convex algorithm of [20]. The choice (34), thus corresponqﬁ In [27] we presented convergence rate results using sim

. ) ated PET transmission scans. Here, we present analogous
to an alternative convex algorithm (and one that CONVET9R K ults using real data. Using an Siemens/CTI ECAT EXACT
faster). :

. " 921 PET scanner equipped with rotating rod transmission
However, _the algorithms that are “in betwgen those twgources [1], we acquired a 15-h blank scaris] and two
extreme choices of are the most useful, as discussed neXt[ransmission scang(s) of an anthropomorphic thorax phan-
tom (Data Spectrum, Chapel Hill, NC). The duration of one
transmission scan was 14 h (64M prompt coincidences in the
Optimization algorithms of the class described above seaice of interest) and the other scan was 12 min (0.921M
to involve the following tradeoff: The more parameters ongrompt coincidences in the slice of interest). (Most of these
updates simultaneously, the smaller the step sizes mustcdoents correspond to rays that do not intersect the object.)
to ensure monotonicity, since the parameters are coupl&klayed coincidence sinograms were collected separately. The
Specifically, from (32)—(34), as the size 6f increases, the blank and transmission scan delayed-coincidence sinograms
«; values typically decrease, leading to Iargéfs, and were in close agreement, so we used a time-scaled version
hence smaller step sizes in (31). So updating the parametfrshe blank scan delayed coincidences assthiactors with
in smaller groups typically yields faster per-iteration convenro additional processing. The sinogram dimension was 160
gence rates, with SCA (one parameter at a time) being ttalial bins and 192 angles, and the reconstructed images were
extreme case. However, as mentioned above there are ofte® with 4.5-mm pixels. For thes;;'s, we used 6-mm-
“economies of scale” that one can exploit when updatingide strip integrals having 3-mm spacing [6], which roughly
several parameters simultaneously. So the actual computatmproximates the system geometry.
per iteration is often reduced by updating larger groups. Thus

C. Choosing Groupss

Lisimilar “generalized checkerboard” decompositions of the image have
10The constraint (16) may need to be considered. been considered for emission tomography [48], [49].
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Fig. 4. Objective function increase(¢™) — ®(6°) versus iteratiom.
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Fig. 3. (a) FBP reconstruction of phantom data from 14-h transmissighy 5 opjective function increase(#”) — @(#°) versus CPU time on a
scan, (b) FBP reconstruction from 12-min transmission scan, and (c) ?EC AlphaStation
g .

nalized-likelihood reconstruction from 12-min transmission scan using
iterations of the 4 4 GCA algorithm.

fewer exponentiations and floating point operations, the GCA
%gorithms require far less CPU time per iteration than the SCA

Calgorithm. Table | compares the number of iterations and CPU
FBP and by 20 iterations of 44 GCA. For the penalized 9 :

likelihood reconstructions we usetl = 0.004 cnt! in (6), zﬁjcgcrlg/ser?g#ért?:ntg (nveviﬂy%mfmglzoer t:;f Tnj “fﬁg-lggl:]md

chosen by Yigual inspection.. The qua.litative properties Weé?gorithms converge in less than half the CPU time of SCA.
rather sensitive to the choice of this parameter. (A 3'Purthermore, the GCA algorithms are parallelizable, so with

penalty function might reduce this sensitivity by improving thg o, riate hardware could be significantly accelerated. Note
reconstruction of thin axial structures such as the patient talet «q « 1 GCA” is closely related to the convex algorithm

in Fig. 3.) The statistical method appears to produce somewggat[>q).

better image quality. (See [6] for quantitative resolution versusTaple || compares the estimated attenuation coefficients for
noise comparisons.) three rectangular regions of interest (ROI's) corresponding to

Fig. 4 shows that withn = 4 (16 groups), the proposedsoft tissue, bone, and lung. The ROI values for the 12-min data
GCA algorithm increased the penalized-likelihood objectivieoth agree well with the 14-h reference image. However, the
almost as fast as the SCA algorithm per iteration. Mongithin-ROI standard deviations for the penalized-likelihood
important is the actual CPU time, which is shown in Fig. fmage are factors of 2—-4.5 smaller than those of the FBP
(for a DEC AlphaStation 600-5/266 workstation). By usingmage.

Reconstructions of the phantom are shown in Fig. 3, by b
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TABLE | There are additional advantages of GCA that we have
CompPARISON OF CPU TIMES AND ITERATIONS FOR THEPROPOSEDGCA not exploited here. Relative to SCA, which is best suited to
ALGORITHMS VERSUS THESCA ALGORITHM. FOR PURPOSES OF THISTABLE, s
CONVERGENCEMEANS & (67 ) — @(6°) > 0.999[(6) — B(6°)] a;;'s that are precomputed and stored, the GCA approach can
more easily exploit the many tricks available for accelerating
GCA ScA forward- and backprojection operations [(28), (30)], such as
1x1 2x2 3x3 4x4 symmetries in they;;’s, projection operators based on image

rotation, anda;;’s that separate into sparse line-integrals
Number of iterations for convergence  >40 19 1413 11 fg|lowing by a space-invariant blur implemented using fast

CPU's for convergence >54 30 2424 56 ourier transforms. In some applications these tricks should
CPU sliteration 1.2 13 14 15 4.8 . . . . .. .
lead to further reductions in computation time. Additional im-
provements may follow from further algorithm development.
TABLE I A natural starting point would be to relax the separability
MEAN AND STANDARD DEVIATIONS WITHIN RECTANGULAR assumption (11).
REGIONS OF INTEREST FOR THEIMAGES SHOWN IN Fig. 3
Method Water Spine  Lung
APPENDIX
FBP, 14-h ROl mean 0.0939 0.1662 = 00345  rpic 5nnendix presents a method for finding the zero-
FBP, 12-min ROI mean 0.0942 0.1685 0.0373 . ~ . -
ROI std. dev. 0.0098 00115 00068 crossing ofd/df;¢;(-;6™) as defined by (24). This method
PL-GCA, 12-min ROl mean 0.0945 0.1656 0.0353 converges faster than the modified Newton—Raphson method
RO std. dev. 0.0030 0.0055 0.0015 given in the subiteration (29). Define = 6; — ¢, and

x, = 60 — 67, and

J 1
VI. DISCUSSION

g(x) = Lj(en) - CZj s L - /Jijkz/)(a: — .’Ijk)
k

We have described a new class of algorithms for maximizing
(almost) concave penalized-likelihood objective functions for
reconstructing attenuation images from low-count transmissigq that glz) = d/d6;$;(6" + x;6™). We would like to
scans. There is considerable latitude for the algorithm desigfigly the values where g(agj) = 0 (i.e., its zero crossing),
to choose algorithm parameters to achieve the fastest possiig then assigg”*! = 67 + 2. Let N, be the number of
convergence rate on a given computer architecture. When figghbors of pixelj, i.e., the number of nonzerw;; terms
objective function is concave, the algorithm converges globalfypically N; = 8). Observe thay(z) is the sum ofl + N,
to the unique maximum. Thus, the algorithm design parametefgnotonically decreasing functions; the first of these functions
only affect the convergence rate, not the image quality, unIiI@Lj(gn) - ch .z, which crosses zero at— Lj(gn)/czj, and
the many popular unregularized methods. the otherV; functions are the penalty terms, thth of which

Our results demonstrate that even on a conventional wodfosses zero at = z.
station the new algorithms converge faster than both SCAThe zero-crossing ofi(x) must occur somewhere between
and (an improved version of) the convex algorithm of [20kthe maximum and minimum of those+ N; individual zero
The results in [6] and [20] provide additional comparisongrossings? We first search over that set of+ N; candidate
to other alternative algorithms. Based on all of these comero crossings (we also check the values 0.0-a6fle where
parisons, we consider the transmission EM algorithm [94,is about 0.02) to bound the zero crossinggaf) within an
[18] to be obsolete. For penalized-likelihood transmissianterval (z_,z,). Although the curvature of) is certainly
image reconstruction, our proposed GCA algorithms haveunded above by 1.0 as described in (25) and (26), its
fast convergence, reduced exponentiations per iteration, easvature is bounded above by an even smaller value over
ily accommodate nonnegativity, and are flexibly parallelizhe interval(x_,z, ). Specifically
able.

From Table |, to process the 47 slices of an EXACT PET ¢/(z — ;) < max {¢(z_ — z1), ¥ (24 — 2x)} £ . (35)
scanner using 14 iterations ofx33 GCA requires about 19
min on a DEC AlphaStation (whereas SCA would requirbote thaty; < 1. Thus, we replace the denominator in (29)
about 44 min). Such processing times bring this statisticaith
method within the realm of clinical utility, although further R
time reductions would still be helpful. d; +/3ijwk-

One could combine the grouped-ascent idea in this paper k
with the hybrid Poisson/polynomial approximations describef:in

. . : is leads to faster convergence since the denominator in (29
in [6] to further reduce computation. The reductions WOUI&‘ g (29)

smaller, therefore the step size is larger. Note that by using
e bound in (35) rather than soraé hocvalue, we still ensure
notonic increases im;(-;6").

be less dramatic than in [6] since for our GCA metho
the exponentiations in the algorithm (See p. 171) have be
moved outside of the backprojection step, whereas for SCA the
Cfilcu'atpns n (27) must be dpne during the backprojection (8)12Thanks to Ken Sauer for bringing this point to the attention of the first
since #™ is continually changing. author when discussing [11].
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