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Abstract—This paper presents a new class of algorithms for
penalized-likelihood reconstruction of attenuation maps from
low-count transmission scans. We derive the algorithms by apply-
ing to the transmission log-likelihood a version of the convexity
technique developed by De Pierro for emission tomography. The
new class includes the single-coordinate ascent (SCA) algorithm
and Lange’s convex algorithm for transmission tomography as
special cases. The new grouped-coordinate ascent (GCA) al-
gorithms in the class overcome several limitations associated
with previous algorithms. 1) Fewer exponentiations are required
than in the transmission maximum likelihood-expectation maxi-
mization (ML-EM) algorithm or in the SCA algorithm. 2) The
algorithms intrinsically accommodate nonnegativity constraints,
unlike many gradient-based methods. 3) The algorithms are easily
parallelizable, unlike the SCA algorithm and perhaps line-search
algorithms. We show that the GCA algorithms converge faster
than the SCA algorithm, even on conventional workstations. An
example from a low-count positron emission tomography (PET)
transmission scan illustrates the method.

Index Terms— Biomedical nuclear imaging, Gauss–Seidel
method, iterative methods, maximum likelihood estimation,
nuclear tomography, positron emission tomography, single
photon emission computed tomography.

I. INTRODUCTION

STATISTICAL methods for reconstructing attenuation im-
ages from transmission scans have increased in impor-

tance recently for several reasons, including the necessity
of reconstructing two-dimensional (2-D) attenuation maps
for reprojection to form three-dimensional (3-D) attenuation
correction factors in septaless positron emission tomography
(PET) [1], [2], the widening availability of single photon
emission computed tomography (SPECT) systems equipped
with transmission sources [3], and the potential for reducing
transmission noise in whole body PET images and in other pro-
tocols requiring short transmission scans [4]. The nonstatistical
filtered backprojection (FBP) method and the data-weighted
least-squares method [5] for transmission image reconstruction
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lead to systematic biases for low-count scans [6]–[8]. These
biases are due to the nonlinearity of the logarithm applied
to the transmission data. To eliminate these biases, one can
use statistical methods based on the Poisson measurement
statistics, which use the raw measurements rather than its
logarithms [9]–[11], [6]. Statistical methods also offer reduced
variance relative to FBP [6], [8], [12].

Several reconstruction algorithms based on the Poisson
statistical model for transmission scans [13] have appeared
recently [6], [10], [11], [14]–[20], all of which converge
faster than the original transmission maximum-likelihood
expectation-maximization (ML-EM) algorithm [9]. Never-
theless, each of these methods is still less than ideal due to
one or more of the following reasons.

• The EM algorithms [9], [18] and single-coordinate ascent
(SCA) algorithms [6], [10], [11] require at least one
exponentiation per nonzero element of the system matrix
per iteration, which is a large computational expense.

• Enforcing nonnegativity in gradient-based algorithms
[19]–[22] is possible but somewhat awkward.

• Many algorithms are poorly suited to parallel processors
such as the i860 arrays that are common at septaless PET
sites. This is true of SCA methods and of algorithms
that use line searches, since a line-search step may not
parallelize easily.

This paper describes a new class of algorithms for recon-
structing attenuation maps from low-count transmission scans.
These algorithms are parallelizable, easily accommodate non-
negativity constraints and nonquadratic convex penalties, and
require a moderate number of exponentiations. The derivation
of these transmission algorithms exploits two ideas underlying
recent developments in algorithms for emission tomography:
updating the parameters in groups [23], [24], and the convexity
technique of De Pierro [25], [26]. Integrating these two ideas
leads to a new class of algorithms [27] that converge quickly
and with less computation than previous statistical methods
for transmission tomography.

This work can be considered a generalization of previous
methods for tomographic image reconstruction based onse-
quentialupdates [5], [10], [11], [23], [24], [28], [29]. The fast
convergence of sequential updates for tomographic problems
was analyzed by Fourier methods and shown empirically to
converge faster thansimultaneousupdates in [5]. Tomographic
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reconstruction is an important case of the general problem of
estimating superimposed signals [30]–[33]. In [31] a sequential
method called the “alternating maximization” (AM) algorithm
was proposed for this estimation problem, whereas [32] pro-
posed a simultaneous update based on an EM algorithm.
The improved asymptotic convergence rate of the sequential
AM algorithm relative to the simultaneous EM algorithm was
shown in [34, ch. 5] (under somewhat restrictive conditions)
and later generalized in [23]. Such sequential algorithms have
been given many names, including iterated conditional modes
[35], Gauss–Siedel [5], [28], successive over-relaxation [29],
cyclic coordinate ascent [6], and iterative coordinate descent
[11], [36]. In this paper we use the namessingle-coordinate
ascentand grouped-coordinate ascentto distinguish the case
where one pixel at a time is updated from the parallelizable
case where several pixels are updated simultaneously.

After submitting the abstract for [27], we learned of the
independent work of Saueret al. [37], which includes an
algorithm that is similar to one of the algorithms in the class
proposed here. The emphasis in [37] is on the parallelizibility
of the algorithms. In this paper we emphasize the point that,
when implemented efficiently, the new class of algorithms
leads to faster computationeven on a conventional single-
processor workstation. This paper also considers random co-
incidences, unlike [27] and [37]. Finally, unlike in [37], we
do not make a one-time quadratic approximation to the log-
likelihood, since that approximation can lead to systematic
biases for low-count PET and SPECT transmission scans [6],
[8].

There has also been work on grouped-coordinate ascent
(GCA) algorithms in the statistics literature [38], which in turn
cites related algorithms dating to 1964! So, clearly what is new
in this paper is not the general idea of updating parameters
sequentially or in groups, but rather is the specifics of how
the iterations and updates can be formulated to achieve a
reasonable balance betweenconvergence rateandcomputation
per iteration in the PET transmission problem.

The remainder of this paper describes the problem, develops
the new algorithms, and presents a representative example of
performance on real PET transmission data.

II. PROBLEM

The Poisson statistical model is widely used for transmission
measurements that have been formed by counting individual
photons (SPECT) or photon pairs (PET). In practice, both
SPECT and PET transmission measurements also contain
extra counts due to “background” events such as random
coincidences [39], scatter [40], emission crosstalk [3], and
room background. We assume

Poisson (1)

where is the number of measurements, the inner product

represents theth “line integral” through the attenuation map,
denotes theth row of the system matrix

denotes the transmission measurement of theth detector,
denotes the th blank scan measurement, denotes the

mean number of background counts in theth measurement,
denotes the unknown attenuation coefficient in theth

voxel (units: inverse length), and the ’s are the transmission
system model (units: length) [41]. We assume , , and

are known nonnegative constants.
For independent transmission measurements, the log-

likelihood is [9]

(2)

where (neglecting constants independent ofhereafter)

(3)

The algorithms developed below apply to any problem of
the form (2) with concave , including “data-weighted” least
squares estimation [6], the “estimate-weighted” least squares
objective function described in [42], and penalized-likelihood
emission tomography [37].

Since maximizing leads to unacceptably noisy images,
our goal is to compute a penalized-likelihood estimateof the
attenuation map , with defined by

(4)

where the objective includes a roughness penalty

(5)

The function should be symmetric and twice differentiable.
Ordinarily for horizontal and vertical neighboring
pixels, for diagonal neighboring pixels, and

otherwise. For the results in Section V we adopt the
modification described in [12], [43], and [44], which provides
more uniform spatial resolution.

A. Penalty Function

Although the method applies more generally, for concrete-
ness in this paper we focus on one of the penalties proposed
in [16]

(6)

This function approaches as , but
provides a degree of edge preservation for finite. Since

(7)

implies , this potential function has bounded
influence. The derivative (7) of requires no transcendental
functions, which is desirable computationally.
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B. Concavity

When , each function is concave over all of ,
so it is easily verified that is concave over all of .
Since is strictly convex and is concave, the objective

is strictly concave under mild conditions on [20]. This
concavity is central to the development of the algorithms
below.

C. Why Another Algorithm?

Direct maximization of (4) is intractable, so one must
use iterative algorithms. Generic numerical methods such as
steepest ascent do not exploit the specific structure of, nor
do they easily accommodate nonnegativity constraints. Thus,
for fastest convergence one must seek algorithms tailored to
this problem. Relevant properties ofare as follows.

• is a sum of concave functions (when ).
• The arguments of the functions are inner products.
• The inner product coefficients are all nonnegative.

These properties suggest the use of Jensen’s inequality.

III. GROUPED-COORDINATE ASCENT ALGORITHMS

As shown by frequency domain analysis in [5], sequential
updates such as SCA converge very rapidly for tomographic
reconstruction. Unfortunately, for transmission tomography
the SCA update requires a large number of exponentiations.
Consider the partial derivative of the log-likelihood (2) with
respect to the th pixel value

(8)

where

(see [6, (8)]) and where

An SCA algorithm must repeatedly evaluate at the
current image estimate . Since changes immediately
after each pixel is updated, one can see from (8) that each
complete iteration requires exponentiations, where is the
number of nonzero ’s. At the other extreme, Lange’s convex
algorithm [15], [20] and scaled-gradient algorithm [16], [20]
for transmission tomography update all pixels simultaneously.
Thus, one can compute simultaneously the-subscripted terms
in (8) prior to the backprojection in (8), so only exponenti-
ations are required. Typically, the number of measurements
is two orders of magnitude smaller than. In other words,
there is an “economy of scale” in terms of computation by
updating all pixels simultaneously.1 However, simultaneous
updates lead to slow convergence rates [5], [6], [23], [24].

Rather than updatingall pixels simultaneously, we propose
to update only certaingroups of pixelssimultaneously. If one
uses groups of pixels, then only exponentiations are

1Even if the exponentiations are computed approximately, using table
lookups for example, the ratio betweenN andM remains unchanged.

Fig. 1. One-dimensional (1-D) illustration of the optimization transfer prin-
ciple: Instead of maximizing�(�S ; �n

~S
) over �S ,we maximize the surrogate

function�(�S ; �n) iteratively. The higher the curvature of�(�; �n), i.e., the
greater the norm of its Hessian, the slower the convergence rate [23], [45].

needed (see algorithm p. 171). On the other hand, if the pixels
in each group are well-separated spatially, then we anticipate
that they will be fairly well decoupled, so the algorithm will
not suffer from slow convergence. The results in Section V
confirm this intuition.

Let be a subset of the pixels , be its
complement, and be the cardinality of . In a GCA
algorithm,2 we update while holding fixed at the th
update [23]. Unfortunately, it is even too difficult to maximize

over directly, so we will settle for finding a
method for choosing that will at leastmonotonically
increasethe objective function3

To ensure monotonicity, we use a generalization of De
Pierro’s optimization transferidea [25], [26], which is illus-
trated in Fig. 1. Instead of trying to find to maximize

, we maximize asurrogate function over

a correspondingregion of monotonicity that
we must choose to satisfy

(9)
The GCA update (cf. space-alternating generalized EM
(SAGE) algorithm [23], [24]) is then

(10)

The condition (9) is sufficient to ensure that the iterates
produced by the above generic update will monotonically
increase the objective: .

2In a GCA method,S varies withn. To simplify notation, we leave this
dependence implicit.

3To simplify notation, in the presentation we incrementn every time a
group of pixels is updated. We reserve the term “iteration” to mean a complete
update of all pixels.
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A. Choosing Surrogate Functions

We restrict attention here to additively separable4 surrogate
functions satisfying

(11)

To choose these ’s, we use modifications of De Pierro’s
convexity method [25], [26] rather than the EM approach of
[23], [24]. The key step is to note that

(12)

for any choice5 of that satisfies the constraint

(13)

We discuss specific choices for in the next section.
When is concave over all of (such as when ),

then it follows directly from (12) and the convexity equality
that

(14)
Unfortunately, when is nonzero, is concave only over
the interval where (see [6] or (22) below)

or
otherwise.

Thus, the inequality in (14) is guaranteed (by the convexity
inequality) to be satisfied only for such that

Consequently, we define as follows:

(15)

where

(16)

For typical small values of , it is reasonable to expect that
, so will contain most of the relevant

part of .
Using the definition (15) as our region of monotonicity

, it follows from (14) that we have

for , where using (12) and (14)

(17)

4Separable surrogate functions are very convenient for enforcing the non-
negativity constraint. There may be alternatives that lead to faster convergence
though.

5We assume�ij = 0 if, and only if, aij = 0, so that (12) is well defined.

Assuming the groups are chosen so that no two neighboring
pixels are in the same group,6 then the surrogate function
defined by (11) with7

(18)

will satisfy the monotonicity condition (9). Each only
depends on one , so since defined in (15) above is
separable, the maximization step in (10) reduces toseparate
1-D maximizations. Thus, (10) becomes the parallelizable
operations

(19)

B. Convergence

When so that is globally strictly concave, it is
fairly straightforward to apply the general convergence proof
in [23] to prove that the sequence of estimates produced
by the above algorithm [(10) and (19)] monotonically increases

and converges from any starting image to the unique global
maximizer of subject to , under mild assumptions
about and the ’s. There are a few practical caveats that
should be considered, however. When using finite precision
arithmetic, monotonicity may not hold exactly when the se-
quence gets very close to the maximum. Also, usually one
will not perform exact 1-D maximizations as implied by (19),
but rather partial or approximate maximizations (see below).
Finally, when , it is cumbersome to compute the
terms, so in our software we take the more pragmatic approach
of simply verifying that has increased after each complete
iteration. (We have yet to observe nonmonotonicity exceeding
numerical precision limits in thousands of reconstructions.)
Verifying monotonicity does not ensure global convergence in
the nonconcave case. Nevertheless, it is comforting to know
that, at least under ideal circumstances (i.e., , perfect
numerical precision, exact maximizations), global convergence
is ensured.

C. The Maximization Step

One simple approach to implementing the maximization
(19) would be to apply a few subiterations of the 1-D New-
ton–Raphson method

(20)

where for and is zero, otherwise. This
operator enforces the nonnegativity constraint. The “”

6If a group contains neighboring pixels, then one can also apply De Pierro’s
penalty function approach [25], [26] to ensure (9). For a first- or second-order
neighborhood, the only change is a factor of two following the parameter�

in (26) and in the denominator of (29) [6].
7Note that the1

2
in (5) disappears in (18) since each pair of pixels is

counted twice in (5).
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symbol in the middle step above indicates “in place” compu-
tation, and typically this step would be repeated a few times.
Unfortunately, the partial derivatives of are fairly
expensive to compute exactly, so (20) is impractical.

To reduce computation, we apply methods from [11] and
[6]. For the numerator, we approximate the function in
(17) (but not the penalty!) by its second-order Taylor series
about the current estimate , in a spirit similar to [11]. For
the denominator, we use a trick similar to [6] for precomputing
an approximation to the second derivative of thefunction,
and a new trick for the penalty term that exploits its bounded
curvature.

The second-order Taylor expansion about for the
component of the numerator is

because from (17) it follows that

and that

(21)
where (see [6])

(22)

Note that only enters through its projections
. Thus, is fairly insensitive to , so we

replace with a precomputed approximation to the
th line integral, such as . Specifically, we

replace with the approximation

(23)
The advantage of using this approximation is that one can
precompute (23)prior to iterating. The accuracy of this
approximation is illustrated in Fig. 2. To summarize, we
replace the numerator of (20) with this approximation

(24)

For the denominator of (20), note that

Fig. 2. Comparison of the precomputed curvaturesd̂j from (23) with the
asymptotic curvaturesdj(�̂), where �̂ was taken to be the image shown at
the bottom of Fig. 3. The precomputed values are very good approximations
to the final curvatures of theQj surrogate functions.

Since has bounded curvature

(25)

we replace the denominator of (20) with

(26)

which is independent of , so can be precomputed as de-
scribed in [6]. Note that this replacement has no effect on
the fixed point of (20). Using the approximation (26) provides
a form of built-in under-relaxation because of the bounded
curvature (25) of .

To summarize, for our algorithm for performing the maxi-
mization (19), we replace (20) with (24) and (26), and apply
two or three subiterations of the form (20). No forward or
backprojections are computed during these subiterations, so
they compute quickly. As in [5], [6], [10], and [11], we store
the current “forward projection” to further save
computation when evaluating the “backprojection” step (8).
Since proper ordering of the steps is essential for efficient
computation, we give the details of the algorithm shown at
the top of the next page. (Software is also available; see [46].)
The Appendix describes a modification to (29) that further
improves the rate of convergence.

IV. CONVERGENCERATE AND ALGORITHM DESIGN

The method described in the preceding section is a class of
algorithms since there are several factors that the algorithm
designer may specify. Most importantly, one can choose the
size and constituent elements of the groupsfor each ,
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Precompute: Initialize via FBP

each iteration:

each

(27)

each

(28)

a couple subiterations:

(29)

s.t. (30)

as well as the factors [subject to (13)]. The parameter
, the ’s, and the function are design choices too, but

these determine the objective function, not the algorithm (at
least within the class of convex functions with bounded
curvature). This section describes how the algorithm design
factors influence convergence rate and computation time,
starting with the ’s.

If one were to use a single subiteration of the New-
ton–Raphson update,8 then the “maximization step” [(19),
(20), (29)] would have the following form:

(31)

where is a diagonal matrix with entries
. We could use (31) to develop expressions

for the asymptotic convergence rate of the algorithm (for any
particular choice of ’s and ’s) following the analysis in
[23]. Here, we take a more informal approach and simply note
that (31) suggests that smaller values for the diagonal entries of

will lead to larger step sizes, and hence faster convergence.9

8One subiteration is adequate when is quadratic, for example, or when the
algorithm has nearly converged. So, (31) is useful for studying the asymptotic
convergence rate.

9Excepting possible acceleration for smalljSj due to under-relaxation as
noted in [6] and [24] for quadratic penalties.

A. Choosing ’s

If the diagonal entries of are to be made small, then
from (22) we want the ’s to be as large as possible, but
subject to the constraint (13). Clearly, this constraint depends
on one’s choices for , but for the moment assume we have
fixed and we want to choose the ’s.

De Pierro [25] proposed an algorithm for emission to-
mography that updates all pixels simultaneously (i.e.,

) and essentially uses (12) with

(32)

This was also applied to transmission tomography in [20].
The choice (32) has three disadvantages. First, if , then

, so (22) would not be well defined. This complicates
both implementation and convergence analysis. Second, as

so . Thus, pixels that approach zero
in the limit will converge increasingly slowly, perhaps even at
sublinear rates (as observed in the emission case [45]). Third,
the choice (32) makes dependent on , so cannot be
precomputed.

One way to overcome the first two drawbacks is to express
the emission algorithm (PML-SAGE-3) developed in [24] in
terms of De Pierro’s convexity method. This leads to the
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following choice:

(33)

for almost10 any positive values . Since is positive,
will be positive (when ). In results not shown, we have
confirmed that this does lead to faster convergence than (32),
presumably because the larger values lead to generally
smaller values and hence larger step sizes.

However, the choice (33) still depends on, precluding
precomputing . To eliminate this dependency, we let

in (33). This leads to the following choice:

(34)

which is independent of . This choice is similar to that
made by De Pierro for the emission penalty function in [26],
and was used in [27], [37]. Note that the denominator in (34)
can be easily precomputed and stored once-and-for-all for a
given tomographic system and choices for.

We use the choice (34) for the remainder of this paper.
Whether better choices exist is an open question [47].

B. Special Cases

In the special case where the subsetcontains only one
pixel ( ), then the “algorithm” (19) is equivalent to
SCA [6], [10], [11], i.e., it turns out that

And in that case, the choice (34) leads to a coordinate-wise
Newton–Raphson update [6], [10], [11].

At the other extreme, when , then using the
choice (32) with one subiteration of (20) is equivalent to the
convex algorithm of [20]. The choice (34), thus corresponds
to an alternative convex algorithm (and one that converges
faster).

However, the algorithms that are “in between” those two
extreme choices of are the most useful, as discussed next.

C. Choosing Groups

Optimization algorithms of the class described above seem
to involve the following tradeoff: The more parameters one
updates simultaneously, the smaller the step sizes must be
to ensure monotonicity, since the parameters are coupled.
Specifically, from (32)–(34), as the size of increases, the

values typically decrease, leading to larger’s, and
hence smaller step sizes in (31). So updating the parameters
in smaller groups typically yields faster per-iteration conver-
gence rates, with SCA (one parameter at a time) being the
extreme case. However, as mentioned above there are often
“economies of scale” that one can exploit when updating
several parameters simultaneously. So the actual computation
per iteration is often reduced by updating larger groups. Thus,

10The constraint (16) may need to be considered.

for fast convergence but moderate computation, we would
like to update the parameters using a few large groups,
but chosen such that the parameters within each group are
relatively uncoupled. By uncoupled, we mean that the
terms are not too much smaller than 1.0, which is the value
that takes when . Specifically, note from (34)
that the only indexes that matter are those in. If one
can choose so that for the values of are
small for , then . For most tomographic
geometries with finite-width rays and pixels, there is at least
one ray that intersects any given pair of pixels, so one cannot
simultaneously achieve with multiple-pixel choices
for . But pixels that are closer together typically share more
intersecting rays than those that are well-separated spatially, so
if contains only spatially well-separated pixels, the values
for should be reasonably close to 1.0. (One might ask
“why not just increase the step size in (31) using an over-
relaxation parameter?” The danger is that such over-relaxation
can destroy monotonicity.)

We have investigated the following GCA method: We divide
the image into blocks of size , for small , and
then update only one pixel out of each block on
a given subiteration.11 The number of groups is, thus, ,
with pixels per group. Thus, the required number of
exponentiations is only , which is considerably smaller
than the number of nonzero ’s for small . Note that
is closely related to the convex algorithm [20], and
gives the SCA algorithm [6]. As one increases, the pixels
within each group become more separated, and therefore,
less coupled, which increases the convergence rate, but the
computation also increases. Thus there is a basic tradeoff that
can be adapted to the characteristics of the particular computer
architecture.

V. RESULTS

In [27] we presented convergence rate results using sim-
ulated PET transmission scans. Here, we present analogous
results using real data. Using an Siemens/CTI ECAT EXACT
921 PET scanner equipped with rotating rod transmission
sources [1], we acquired a 15-h blank scan (’s) and two
transmission scans (’s) of an anthropomorphic thorax phan-
tom (Data Spectrum, Chapel Hill, NC). The duration of one
transmission scan was 14 h (64M prompt coincidences in the
slice of interest) and the other scan was 12 min (0.921M
prompt coincidences in the slice of interest). (Most of these
counts correspond to rays that do not intersect the object.)
Delayed coincidence sinograms were collected separately. The
blank and transmission scan delayed-coincidence sinograms
were in close agreement, so we used a time-scaled version
of the blank scan delayed coincidences as thefactors with
no additional processing. The sinogram dimension was 160
radial bins and 192 angles, and the reconstructed images were
128 with 4.5-mm pixels. For the ’s, we used 6-mm-
wide strip integrals having 3-mm spacing [6], which roughly
approximates the system geometry.

11Similar “generalized checkerboard” decompositions of the image have
been considered for emission tomography [48], [49].
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(a)

(b)

(c)

Fig. 3. (a) FBP reconstruction of phantom data from 14-h transmission
scan, (b) FBP reconstruction from 12-min transmission scan, and (c) pe-
nalized-likelihood reconstruction from 12-min transmission scan using 20
iterations of the 4�4 GCA algorithm.

Reconstructions of the phantom are shown in Fig. 3, by both
FBP and by 20 iterations of 4 4 GCA. For the penalized
likelihood reconstructions we used 0.004 cm in (6),
chosen by visual inspection. The qualitative properties were
rather sensitive to the choice of this parameter. (A 3-D
penalty function might reduce this sensitivity by improving the
reconstruction of thin axial structures such as the patient table
in Fig. 3.) The statistical method appears to produce somewhat
better image quality. (See [6] for quantitative resolution versus
noise comparisons.)

Fig. 4 shows that with (16 groups), the proposed
GCA algorithm increased the penalized-likelihood objective
almost as fast as the SCA algorithm per iteration. More
important is the actual CPU time, which is shown in Fig. 5
(for a DEC AlphaStation 600-5/266 workstation). By using

Fig. 4. Objective function increase�(�n)� �(�0) versus iterationn.

Fig. 5. Objective function increase�(�n)� �(�0) versus CPU time on a
DEC AlphaStation.

fewer exponentiations and floating point operations, the GCA
algorithms require far less CPU time per iteration than the SCA
algorithm. Table I compares the number of iterations and CPU
seconds required to (nearly) maximize the penalized-likelihood
objective function . With or , the GCA
algorithms converge in less than half the CPU time of SCA.
Furthermore, the GCA algorithms are parallelizable, so with
appropriate hardware could be significantly accelerated. Note
that “1 1 GCA” is closely related to the convex algorithm
of [20].

Table II compares the estimated attenuation coefficients for
three rectangular regions of interest (ROI’s) corresponding to
soft tissue, bone, and lung. The ROI values for the 12-min data
both agree well with the 14-h reference image. However, the
within-ROI standard deviations for the penalized-likelihood
image are factors of 2–4.5 smaller than those of the FBP
image.
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TABLE I
COMPARISON OFCPU TIMES AND ITERATIONS FOR THEPROPOSEDGCA

ALGORITHMS VERSUS THESCA ALGORITHM. FOR PURPOSES OF THISTABLE,

CONVERGENCEMEANS �(�n)� �(�0) > 0:999[�(�̂)� �(�0)]

GCA

1�1 2�2 3�3 4�4
SCA

Number of iterations for convergence > 40 19 14 13 11
CPU s for convergence > 54 30 24 24 56
CPU s/iteration 1.2 1.3 1.4 1.5 4.8

TABLE II
MEAN AND STANDARD DEVIATIONS WITHIN RECTANGULAR

REGIONS OF INTEREST FOR THEIMAGES SHOWN IN Fig. 3

Method Water Spine Lung

FBP, 14-h ROI mean 0.0939 0.1662 0.0345
FBP, 12-min ROI mean

ROI std. dev.
0.0942
0.0098

0.1685
0.0115

0.0373
0.0068

PL-GCA, 12-min ROI mean
ROI std. dev.

0.0945
0.0030

0.1656
0.0055

0.0353
0.0015

VI. DISCUSSION

We have described a new class of algorithms for maximizing
(almost) concave penalized-likelihood objective functions for
reconstructing attenuation images from low-count transmission
scans. There is considerable latitude for the algorithm designer
to choose algorithm parameters to achieve the fastest possible
convergence rate on a given computer architecture. When the
objective function is concave, the algorithm converges globally
to the unique maximum. Thus, the algorithm design parameters
only affect the convergence rate, not the image quality, unlike
the many popular unregularized methods.

Our results demonstrate that even on a conventional work-
station the new algorithms converge faster than both SCA
and (an improved version of) the convex algorithm of [20].
The results in [6] and [20] provide additional comparisons
to other alternative algorithms. Based on all of these com-
parisons, we consider the transmission EM algorithm [9],
[18] to be obsolete. For penalized-likelihood transmission
image reconstruction, our proposed GCA algorithms have
fast convergence, reduced exponentiations per iteration, eas-
ily accommodate nonnegativity, and are flexibly paralleliz-
able.

From Table I, to process the 47 slices of an EXACT PET
scanner using 14 iterations of 33 GCA requires about 19
min on a DEC AlphaStation (whereas SCA would require
about 44 min). Such processing times bring this statistical
method within the realm of clinical utility, although further
time reductions would still be helpful.

One could combine the grouped-ascent idea in this paper
with the hybrid Poisson/polynomial approximations described
in [6] to further reduce computation. The reductions would
be less dramatic than in [6] since for our GCA method
the exponentiations in the algorithm (See p. 171) have been
moved outside of the backprojection step, whereas for SCA the
calculations in (27) must be done during the backprojection (8)
since is continually changing.

There are additional advantages of GCA that we have
not exploited here. Relative to SCA, which is best suited to

’s that are precomputed and stored, the GCA approach can
more easily exploit the many tricks available for accelerating
forward- and backprojection operations [(28), (30)], such as
symmetries in the ’s, projection operators based on image
rotation, and ’s that separate into sparse line-integrals
following by a space-invariant blur implemented using fast
Fourier transforms. In some applications these tricks should
lead to further reductions in computation time. Additional im-
provements may follow from further algorithm development.
A natural starting point would be to relax the separability
assumption (11).

APPENDIX

This appendix presents a method for finding the zero-
crossing of as defined by (24). This method
converges faster than the modified Newton–Raphson method
given in the subiteration (29). Define , and

, and

so that . We would like to
find the value where (i.e., its zero crossing),
and then assign . Let be the number of
neighbors of pixel , i.e., the number of nonzero terms
(typically ). Observe that is the sum of
monotonically decreasing functions; the first of these functions
is , which crosses zero at , and
the other functions are the penalty terms, theth of which
crosses zero at .

The zero-crossing of must occur somewhere between
the maximum and minimum of those individual zero
crossings.12 We first search over that set of candidate
zero crossings (we also check the values 0.0 and where

is about 0.02) to bound the zero crossing of within an
interval . Although the curvature of is certainly
bounded above by 1.0 as described in (25) and (26), its
curvature is bounded above by an even smaller value over
the interval . Specifically

(35)

Note that . Thus, we replace the denominator in (29)
with

This leads to faster convergence since the denominator in (29)
is smaller, therefore the step size is larger. Note that by using
the bound in (35) rather than somead hocvalue, we still ensure
monotonic increases in .

12Thanks to Ken Sauer for bringing this point to the attention of the first
author when discussing [11].
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