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ABSTRACT Several reconstruction algorithms based on the Poisson sta-
ia:[ical model for transmission scans [13] have appeared re-

. . -t
This paper presents a new class of algorithms for penahzeCently [6, 10, 11, 14-20], all of which converge faster than

likelihood reconstruction of attenuation maps from low-cour) - . . Lo .
o . . . e original transmission maximum-likelihood expectation-
transmission scans. We derive the algorithms by applying 1o

- S : . maximization (ML-EM) algorithm [9]. Nevertheless, each of
the transmission log-likelihood a version of the convexity tech:- o .

. . . these methods is still less than ideal due to one or more of the
nigue developed by De Pierro for emission tomography. Tl]ge :

. . . ollowing reasons.

new class includes the single-coordinate ascent (SCA) algo-
rithm and Lange’s convex algorithm for transmission tomog- ¢ The EM algorithms [9, 18] and single-coordinate ascent
raphy as special cases. The new grouped-coordinate ascent (SCA) algorithms [6, 10, 11] require at least one exponen-
(GCA) algorithms in the class overcome several limitations as- tiation per nonzero element of the system matrix per itera-
sociated with previous algorithms. (1) Fewer exponentiations tion, which is a large computational expense.
are required than in the transmission ML-EM algorithm or in the . L _ _
SCA algorithm. (2) The algorithms intrinsically accommodate ® Enforcing nonnegativity in gradient-based algorithms [19—

nonnegativity constraints, unlike many gradient-based methods. 22l IS possible but somewhat awkward.

3) _The algorithms are.easily parallelingle, unlike the SCA al- Many algorithms are poorly suited to parallel processors
gorithm and perhaps line-search algorithms. We show that the ¢ ,ch as the i860 arrays that are common at septaless PET
GCA algorithms converge faster than the SCA algorithm, even  gjies. This is true of SCA methods and of algorithms that
on conventional workstations. An example from a low-count ;q¢ jine searches, since a line-search step may not paral-
positron emission tomography (PET) transmission scan illus- |gjize easily.
trates the method.
This paper describes a new class of algorithms for recon-
structing attenuation maps from low-count transmission scans.
|. INTRODUCTION These algorithms are parallelizable, easily accommodate non-
negativity constraints and nonquadratic convex penalties, and

TATISTICAL methods for reconstructing attenuation imieqire a moderate number of exponentiations. The derivation

ages from transmission scans have increased in importage,ese transmission algorithms exploits two ideas underlying
recently for several reasons, including the necessity of recQRzeant developments in algorithms for emission tomography-
structing 2D attenuation maps for reprojection to form 3D aﬁ'pdating the parameters in groups [23, 24], and the convexity
tenuation correction factors in septaless PET [1, 2], the Widet@'chnique of De Pierro [25, 26]. Integrating these two ideas
ing availability of SPECT systems equipped with transmissig@,4s to a new class of algorithms [27] that converge quickly

sources [3], and the potential for reducing transmission Noig&y with less computation than previous statistical methods for
in whole body PET images and in other protocols requirings nsmission tomography.

short transmission scans [4]. The non-statistical filtered back—rnis work can be considered a generalization of previous

projection (FBP) methoq anq the data—WGight‘.ad least-squateshods for tomographic image reconstruction baseden
methqd [5] for transmission image reconstructlon_lead to sy, ientialupdates [5, 10, 11, 23, 24, 28, 29]. The fast convergence
tematic biases for low-count scans [6-8]. These biases are g{i@qqential updates for tomographic problems was analyzed
to the nonlinearity of the logarithm applied to the transmissiqR, £ rier methods and shown empirically to converge faster
data. To eliminate these biases, one can use statistical methds simyltaneousipdates in [5]. Tomographic reconstruction
based on the Poisson measurement statistics, which use theig% important case of the general problem of estimating su-

measurements rather than its !ogarithms_ [6,9-11]. Statis“ﬁ?rimposed signals [30—33]. In [31] a sequential method called
methods also offer reduced variance relative to FBP [6, 8, 12}, “alternating maximization” (AM) algorithm was proposed

This work was supported in part by NIH grants CA-60711 and CA-543630" this estimation problem, Wherea_s [32] proposed a simulta-
Permission granted to publish this abstract separately. neous update based on an EM algorithm. The improved asymp-




2 I PROBLEM

totic convergence rate of the sequential AM algorithm relativength), and the;;’s are the transmission system model (units:
to the simultaneous EM algorithm was shown in ChapterI&ngth) [41]. We assuméb; }, {r;}, and{a;;} are known non-
of [34] (under somewhat restrictive conditions) and later genegative constants.
eralized in [23]. Such sequential algorithms have been givenFor independent transmission measurements, the log-
many names, including iterated conditional modes [35], Gaudikelihood is [9]:
Siedel [5,28], successive over-relaxation [29], cyclic coordinate
ascent [6], and iterative coordinate descent [11, 36]. In this pa-
per we use the namesngle-coordinate ascergnd grouped-
coordinate ascento distinguish the case where one pixel at a
time is updated from the parallelizable case where several piMiere (neglecting constants independertt béreafter):
els are updated simultaneously. y y
After submitting the abstract for [27], we learned of the in- hi(l) = yilog(bie™ + 1) — (bie™" +14). 3)

d_ependent_ quk_ of Sauet al. [37], Whi?“ incl_udes an algo- The algorithms developed below apply to any problem of the
rithm that is similar to one of the algorithms in the class PrYorm (2) with concaveh;, including “data-weighted” least

posed here. The emphasis in [37] is on the parallelizibiIiryquareS estimation [6], the “estimate-weighted” least squares

of the_algorithms. In t.hi.s paper, we emphasize thg point th bjective function described in [42], and penalized-likelihood
when implemented efficiently, the new class of algorithms lea Rission tomography [37]

to faster_compqtatioeven ona con_ventional single-_prqcessor Since maximizingL(-) leads to unacceptably noisy images,

workstation This paper also considers random coincidences . . . . X
. . o our goal is to compute a penalized-likelihood estintatd the

unlike [27, 37]. Finally, unlike in [37], we do not make a one- ttenuation magtue, with 0 defined b

time quadratic approximation to the log-likelihood, since thgt ' y

approximation can lead to systematic biases for low-count PET 0 = argmax ®(0), ®(6) = L(0) — BR(H), (4)

and SPECT transmission scans [6, 8]. 020

_ There has also been work on grouped-coordinate ascent algfere the objective includes a roughness penalty

rithms in the statistics literature [38], which in turn cites related

algorithms dating to 1964! So clearly what is new in this pa- . 1

per is not the general idea of updating parameters sequentially R(9) = Z 2 Z Wit (05 = Or)-

or in groups, but rather is the specifics of how the iterations ! g

and updates can be formulated to achieve a reasonable baldmeefunctionyy should be symmetric and twice differentiable.

betweenconvergence ratandcomputation per iteration the  Ordinarilyw;, = 1 for horizontal and vertical neighboring pix-

PET transmission problem. els,w;, = 1/+/2 for diagonal neighboring pixels, and;; = 0
The remainder of this paper describes the problem, develatiserwise. For the results in Section V we adopt the modifi-

the new algorithms, and presents a representative exampleaifon described in [12, 43, 44], which provides more uniform

performance on real PET transmission data. spatial resolution.

N

L(0) = hi({a;,0)) )

=1

(®)

Il. PROBLEM A. Penalty Function

The Poisson statistical model is widely used for transmis-Although the method applies more generally, for concrete-
sion measurements that have been formed by counting indss in this paper we focus on one of the penalties proposed
vidual photons (SPECT) or photon pairs (PET). In practicé# [16]:
both SPECT and PET transmission measurements also contain 5
extra counts due to “background” events such as random co- ¥(z) = 6" [|/d] —log (1 + [z/d]) ] (6)
incidences [39], scatter [40], emission crosstalk [3], and roofps function approaches(z)

=22 /2 asé — oo, but provides
background. We assume

a degree of edge preservation for finiteSince

y; ~ Poisson{b;e~(@0me) 4 p A =1 ... N, (1) ; d z

—(z) = T [2/0] (7)

whereN is the number of measurements,
, implies [4)(x)| < 4, this potential function has bounded influ-
(ai,0) = Z ai;0; ence. Th_e d_erlvatl_ve (7) af requires no transcendental func-
= tions, which is desirable computationally.

represents thih “line integral” through the attenuation map, B: Concavity
denotes théth row of theN x p system matrixA = {a;;}, y; Whenr; = 0, each functiorh; is concave over all oR, so
denotes the transmission measurement oftthdetectord; de- it is easily verified that’(-) is concave over all oRP. Sincey
notes theth blank scan measurementdenotes the mean num-is strictly convex and.(-) is concave, the objectiv@® is strictly
ber of background counts in tlith measuremeng,; denotesthe concave under mild conditions oA [20]. This concavity is
unknown attenuation coefficient in thiéh voxel (units: inverse central to the development of the algorithms below.



IlI-A Choosing Surrogate Functions 3

C. Why another algorithm? LetS be asubset of the pixe{q, ..., p}, letS be its comple-
nt, and letS| be the cardinality of. In a GCA algorithn,

deata93 while holding#”. fixed at thenth update [23]. Un-
unately it is even too di?ficult to maximize (fs, 0%) over

Direct maximization of (4) is intractable, so one must use e
erative algorithms. Generic numerical methods such as steeﬁ%\%

ascent do not exploit the specific structuredafnor do they ggtdirectly, so we will settle for finding a method for choos-

easily accommodate nonnegativity constraints. Thus for fast il A ) ) .
convergence, one must seek algorithms tailored to this probl%ﬁ?}.gﬁorﬁ_thm will at leastmonotonically increasehe objective

Relevant properties df include:

n+l gn n o Any\ __ n
e L(0) is a sum of concave functiorts(-) (whenr; = 0). D057, 05) > (05,0%) = 2(0").

e The arguments of the functiois are inner products. To ensure monotonicity, we use a generalization of
De Pierro’soptimization transfeidea [25, 26], which is illus-
e The inner product coefficients are all nonnegative. trated in Fig. 1. Instead of trying to finﬁgJrl to maximize

®(0s,0%), we maximize asurrogate functionp(fs; 6™) over a
correspondingegion of monotonicitfRs(9") C RIS! that we
must choose to satisfy:

These properties suggest the use of Jensen’s inequality.

I11. GROUPED-COORDINATE ASCENTALGORITHMS

As shown by frequency domain analysis in [5], sequenti@l(0s,05) — ®(0") > ¢(0s;0™) — ¢(03;0"), Vs € Rs(0™).
updates such as SCA converge very rapidly for tomographic re- (9)
construction. Unfortunately, for transmission tomography thEhe GCA update (cf SAGE algorithm [23, 24]) is then:
SCA update requires a large number of exponentiations. Con-

sider the partial derivative of the log-likelihood (2) with respect gt = arg max  ¢(0s;0"), (10)
to thejth pixel value: sERs(07)
it = 07, jeS.

[ 9 Yi —(a,0)

L;(0) = 0, L(9) = Zaij {1 - yi((g)] bie ) The condition (9) is sufficient to ensure that the iterates pro-

i€ duced by the above generic update will monotonically increase
i H n+1 n

where the objective®(6"') > &(9™).

- _ —(ai,0 ) . .

5i(0) = bie™ " 4 A. Choosing Surrogate Functions

(see Eqn. (8) of [6]), and where We restrict attention here to additively separatdarrogate
. functionsg(-; 6™) satisfying
Ij = {’L L Qg 750}

A SCA algorithm must repeatedly evaluatg(6™) at the cur- 9(6s:0%) = Z 93(05:6")- (11)
. . . . . JjeES
rent image estimaté™. Since(a;,6™) changes immediately
after each pixel is updated, one can see from (8) that eaichoose thesg,’s, we use modifications of De Pierro’s con-
complete iteration requirel®l exponentiations, wher®/ is the vexity method [25, 26] rather than the EM approach of [23, 24].
number of nonzera;;'s. At the other extreme, Lange’s con-The key step is to note that
vex algorithm [15, 20] and scaled-gradient algorithm [16, 20]
for transmission tomography update all pixels simultaneously.
Thus one can compute simultaneously tkgibscripted terms
in (8) prior to the backprojection in (8), so only exponentia-
tions are required. Typically the number of measuremanis
two orders of magnitude smaller thai. In other words, there
is an “economy of scale” in terms of computation by updating )
all pixels simultaneousfy However, simultaneous updates lead Z aij =1, Vi.
to slow convergence rates [5, 6, 23, 24].
Rather than updatingl pixels simultaneously, we propose tqy giscyss specific choices far; in the next section.
update only certaigroups of pixelsimultaneously. If one uses
G groups of pixels, then onlWG exponentiations are needed 3In a GCA method,S varies withn. To simplify notation, we leave this

(see Table 1). On the other hand, if the pixels in each groffgfendence implicit. . . .
To simplify notation, in the presentation we incremerevery time a group

ar_e well-separated spatially, thenlwe an't|C|pate that they will gﬁpixels is updated. We reserve the term “iteration” to mean a complete update
fairly well decoupled, so the algorithm will not suffer from slowo all pixels.

convergence. The results in Section V confirm this intuition. SSeparable surrogate functions are very convenient for enforcing the non-
negativity constraint. There may be alternatives that lead to faster convergence

2Even if the exponentiations are computed approximately, using taliteough.
lookups for example, the ratio betwe&hand M remains unchanged. Swe assumey;; = 0 if and only if a;; = 0 so that (12) is well defined.

(65, 030) = Sy | 22465 - 67) + (esr0™)| - @2
jes K

for any choicé of ai; > 0 that satisfies the constraint

(13)

JES




4 Il GROUPED-COORDINATE ASCENT ALGORITHMS
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Figure 1: One-dimensional illustration of the optimization transfer principle: instead of maximizifg, Gg) overfs, we
maximize the surrogate functiai{s, 0™) iteratively. The higher the curvature ¢f-, ™), i.e. the greater the norm of its Hessian,
the slower the convergence rate [23, 45].

Whenh; is concave over all dR (such as when; = 0), then for s € Rs(6™), where using (12) and (14):
it follows directly from (12) and the convexity equality that:

; Qg 0 _0n ivgn ) . 17
h(<a1, Os, 0% S >Za1] (Clz] 9 _en) <ai,9n>>. 1%;(1] ( ) (a > a7

jES
(14) Assuming the groups are chosen so that no two neighboring pix-
Unfortunately, whem; is nonzeroj; is concave only over the els are in the same gro(then the surrogate function defined

interval (—oo, I®*) where (see [6] or (22) below): by (11) with?
Jmax _ o b, ri=0orr Yi ¢J(017 en) = Q](ejy en) - 5ijk1/)(9j — 92) (18)
i - 1 ? h i k
og ( — n—) , otherwise

will satisfy the monotonicity condition (9). Each; only de-
Thus the inequality in (14) is guaranteed (by the convexity ifyends on oné;, so sinceRs(9") defined in (15) above is sep-

equality) to be satisfied only fdis such that arable, the maximization step in (10) reduces8p separate
s 1D maximizations. Thus (10) becomes the parallelizable oper-
O/, (0 — 07) + (ai, 0") < L™, Vj €S, VieT. ations:
)
Consequently, we defir@s (™) as follows: 07! = arg o< ¢;(0;;0"), j€S. (19)
Rs(0") ={0s 2 0:0; < 071na ¥ €51 (19 B convergence
where Whenr; = 0 Vi so that® is globally strictly concave, it is
. _ . a” s . fairly straightforward to apply the general convergence proof
0] max = argmin {07 + —= ("™ — {a;,0"))}. (16) in [23] to prove that the sequence of estimafés} produced
3 17

by the above algorithm ((10) and (19)) monotonically increases
For typical small values of;, it is reasonable to expect that® and converges from any starting image to the unique global
2% > (a;,0™), SORs(6™) will contain most of the relevant maximizer of® subject tod > 0, under mild assumptions about

part of RIS! . S and thea;’s. There are a few practical caveats that should
USTg the definition (15) as our reglon of monotonmuy 7If a group contains neighboring pixels, then one can also apply De Pierro’s
Rs(0™), it follows from (14) that we have: penalty function approach [25, 26] to ensure (9). For a first or second order

neighborhood, the only change is a factor of 2 following the parameter
(26) and in the denominator of (29) [6].
L([0s, 6 S Z hi({a;, 05, Z Q;(0;;0™) 8Note that thel in (5) disappears in (18) since each pair of pixels is counted
jes twice in (5).
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be considered however. When using finite precision arithmetighere (see [6]):

monotonicity may not hold exactly when the sequence gets very

close to the maximum. Also, usually one will not perform ex- —B-(l) _ |1 _ YiTi b (22)
act 1D maximizations as implied by (19), but rather partial or ! (bie=t+7)2| "
approximate maximizations (see below). Finally, wheg: 0,

it is cumbersome to compute ti#, .. terms, so in our soft- Note that)™ only entersi;(6") through its projectionga;, ™).
ware we take the more pragmatic approach of simply verifyifiusd; (6™) is fairly insensitive tod™, so we replacéa;, 0™)
that & has increased after each complete iteration. (We ha¥éh a precomputed approximation to tith line integral, such
yet to observe nonmonotonicity exceeding numerical precisi@glog(b:/(y: — 7:)). Specifically we replacé; (6™) with the
limits in thousands of reconstructions.) Verifying monotonicpproximation:

ity does not ensure global convergence in the non-concave case.

Nevertheless, it is comforting to know that, at least under ideal afj .. b; a?j (yi —7i)?
circumstances (i.e:; = 0, perfect numerical precision, exact “/ — — Z ij hi <log ;— l) = . a_ij i )
maximizations), global convergence is ensured. ;Ei() ;Ei()

(23)
C. The Maximization Step The advantage of using this approximation is that one can pre-

One simple approach to implementing the maximization (1§9Mpute (23)prior to iterating. The accuracy of this approx-
would be to apply a few sub-iterations of the 1D NewtoriMation is illustrated in Fig. 2. To summarize, we replace the

Raphson method: numerator of (20) with this approximation:
work _ n d n d - n
j = 9 —=9;(0;;0") ~ ¢ (05;0") =
d n d0; 0; =07 403 0;=03"
. ) a0, 95 05:0")| ) _ o
e = 63 + L (20) F n 7 wor n i ( yWor n
’ ! - %@(@;0”)‘ § L") —d; - (6] k—ej)—ﬂzwjk¢(9j K—0p). (24)
i 6;=0y°r k
9;‘“ = H}V"rk, For the denominator of (20), note that
where[z]; = « forz > 0 and is 0 otherwise. Thig. operator a2 .
enforces the nonnegativity constraint. The=" symbol in the 55 ¢;(6;6") =d;(0")+ B> wir(0F — 0}).
middle step above indicates “in place” computation, and typi- J 0;=07 k

cally this step would be repeated a few times. Unfortunately,
the partial derivatives o, (-; §") are fairly expensive to com- Sincey has bounded curvature:
pute exactly, so (20) is impractical. 1
To reduce computation, we apply methods from [11] and [6]. 1L(x) = — 5 <1 (25)
For the numerator, we approximate e function in (17) (but (1 + |z/dl)
not the penalty!) by its second-order Taylor series about the s replace the denominator of (20) with
rent estimaté?, in a spirit similar to [11]. For the denominator,
we use a trick similar to [6] for precomputing an approximation 2
to the second derivative of th@; function, and a new trick for ——=¢;(0;;0") ~~ (ij + 8 Z Wik, (26)
the penalty term that exploits its bounded curvature. do; %
The second-order Taylor expansion abofft for the
Q;(;6™) component of the numerator is: which is independent @f* so can be precomputed as described
in [6]. Note that this replacement has no effect on the fixed point
_d;(6") (0;- 67, of (20). Using the approximation (26) provides a form of built-

- k
93 79;vor

Q;(0;;0™) ~ Q;(07;0™)+L; (6™)(0;—07)

2 in under-relaxation because of the bounded curvature (25) of
. To summarize, for our algorithm for performing the maxi-
because from (17) it follows that mization (19), we replace (20) with (24) and (26), and apply 2
d F) . or 3 sub-iterations of the form (20). No forward or backprojec-
0. @i(05:0") = 59, L00) =L;(0"), tions are computed during these sub-iterations, so they compute
’ 0;=07 ’ o=6m quickly. As in [5, 6, 10, 11], we store the current “forward pro-
and that jection” {{a;, 0™)} to further save computation when evaluating
the “backprojection” step (8). Since proper ordering of the steps
22 a . is essential for efficient computation, we give the details of the
d;(0") = — WQj(ej; ™) = —Z #hi(mi, 6™)), algorithmin Table 1. (Software is also available; see [46].) The
J 0, =07 iez; i Appendix describes a modification to (29) that further improves

(21) the rate of convergence.
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Precompute: Initializé via FBP
A p A . a 2
lFZam@J, i=1,....,N d; = i (i — 1) , Yy
=1 ier; Y3 Yi
Y; 70
for each iteration:
for eachS:
hi=[1—¢} bieTl, i=1,...,N (27)
bie—li +7r;
for eachj € S:
Lj= Zaijhi (28)
i€
work N

for a couple subiterations:

Lj—d;- (Oyer — 0;) - B, wikh(O30* — Or)

0;vork — O;V()rk 4 _ (29)
d] + B Zk: Wik +
end
Zi = lAl + aij (gzvork — éj), Vi S.t. Qij # 0 (30)
0; = 0y

end
end
end

Table 1: The general grouped-coordinate ascent algorithm. Note that the upd@tm@ﬂone “in place.”
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IV. CONVERGENCERATE AND ALGORITHM DESIGN for almost! any positive values;. Sincez; is positive a;; will

The method described in the preceding section is a clas26fPOSItive (Whem; 7 0). In results not shown, we have con-

algorithms since there are several factors that the algorithm gg_ned that this does lead to faster convergence than (32), pre-

signer may specify. Most importantly, one can choose the Si%mably because the largey; values lead to generally smaller

and constituent elements of the groupor eachn, as well as ¢; values and hence larger step sizes. _
the factorsy;; (subject to (13)). The paramet@rthew,,’s,and ~ However, the choice (33) still depends®h precluding pre-
the functiom) are design choices too, but these determine tR@MpUtingd;. To eliminate this dependency, we lgt— oo in
objective function, not the algorithm (at least within the class §83)- This leads to the following choice:

convexy functions with bounded curvature). This section de- ai;
scribes how the algorithm design factors influence convergence 05 = ﬁ’
rate and computation time, starting with thg’s. kes ™

If one were to use a single sub-iteration of the NewtoRghich is independent af*. This choice is similar to that made
Raphson updatethen the “maximization step” ((19), (20), andyy pe Pierro for the emission penalty function in [26], and was
(29)) would have the following form: used in [27, 37]. Note that the denominator in (34) can be eas-

1 n e n ily precomputed and stored once-and-for-all for a given tomo-
93+ =05+ D™V, 2(07), (31) graphic system and choices f8r

We use the choice (34) for the remainder of this paper.
O\4\/hether better choices exist is an open question [47].

(34)

whereD is a |S| x |S| diagonal matrix with entriegd; +
B, wik}jes. We could use (31) to develop expressions f
t_he asymp_tonc convergence rate of_ the algorlthm_(f(_)r any pg- Special Cases

ticular choice ofe;;’'s andS's) following the analysis in [23].

Here we take a more informal approach and simply note that!n the special case where the subSebntains only one pixel
(31) suggests that smaller values for the diagonal entridd of(S = {j}), then the “algorithm” (19) is equivalent to SCA [6,
will lead to larger step sizes, and hence faster convergeénce 10,11],i.e., it turns out that

A. Choosingy;;’s $;(05;0™) = @(07,...,07_1,05,07 1,...,0p).

If the diagonal entrieg/; of D are to be made small, theny g i that case, the choice (34) leads to a coordinate-wise
from (22) we want they;;'s to be as large as possible, but SUbNewton-Raphson update [6, 10, 11].

ject to the constraint (13). Clearly this constraint depends ONAt the other extreme. whe§ — {1,...,p}, then using the

one’s choices fof5, but for the moment assume we have fixegice (32) with one sub-iteration of (20) is equivalent to the
& and we want to choose the;'s. , . convex algorithm of [20]. The choice (34) thus corresponds to

De Pierro [25] proposed an algorithm for emission tomogray, 5iternative convex algorithm (and one that converges faster).
phy that upfjates all pixels s_|multaneously (&%= {1,....p}) However, the algorithms that are “in between” those two ex-
and essentially uses (12) with treme choices aof are the most useful, as discussed next.

;07 ,
i, (32) C. Choosing Groups

> okes aiby o . .
Optimization algorithms of the class described above seem

This was also applied to transmission tomography in [20]. The involve the following tradeoff. The more parameters one
choice (32) has three disadvantages. First}if= 0, then updates simultaneously, the smaller the step sizes must be to
i;=0, S0 (22) would not be well defined. This complicates bo#hsure monotonicity, since the parameters are coupled. Specif-
implementation and convergence analysis. Secor}; as 0, ically, from (32), (33), and (34), as the size®fincreases, the
a;; — 0, so ch — oo. Thus, pixels that approach 0 in thex;; values typically decrease, leading to larges and hence
limit will converge increasingly slowly, perhaps even at sutsmaller step sizes in (31). So updating the parameters in smaller
linear rates (as observed in the emission case [45]). Third, @i@ups typically yields faster per-iteration convergence rates,
choice (32) makeéj dependent o8, so&j cannot be precom- with SCA (one parameter at a time) being the extreme case.
puted. However, as mentioned above there are often “economies of

One way to overcome the first two drawbacks is to express #$eale” that one can exploit when updating several parameters
emission algorithm (PML-SAGE-3) developed in [24] in termsimultaneously. So the actual computation per iteration is often
of De Pierro’s convexity method. This leads to the followingeduced by updating larger groups. Thus for fast convergence
choice: but moderate computation, we would like to update the param-
_ aij (07 + 2;) 33) eters using a few large groups, but chosen such that the parame-
B > kes @ik (0F + 2x)’ ters within each group are relatively uncoupled. By uncoupled,

90ne sub-iteration is adequate wheis quadratic, for example, or when the W& Mean that thev;; terms are not too much smaller than 1,
algorithm has nearly converged. So (31) is useful for studying the asymptaddhich is the value that;; takes wherS = {j}. Specifically,

convergence rate. note from (34) that the only indices that matter are those in
10excepting possible acceleration for smal| due to under-relaxation as

noted in [6, 24] for quadratic penalties. 11The constraint (16) may need to be considered.

Oéij

Q5




8 VI DISCUSSION

Z;. If one can choosé so that fork € S the values oti;;, are  sinogram dimension was 160 radial bins and 192 angles, and
small fori € Z;, thena;; ~ 1. For most tomographic geome-the reconstructed images were 12gith 4.5mm pixels. For
tries with finite-width rays and pixels, there is at least one raffe a;;'s, we used 6mm wide strip integrals having 3mm spac-
that intersects any given pair of pixels, so one cannot simuliag [6], which roughly approximates the system geometry.
neously achievey;; = 1 with multiple-pixel choices foS. But Reconstructions of the phantom are shown in Fig. 3, by both
pixels that are closer together typically share more intersectiRBP and by 20 iterations df x 4 GCA. For the penalized like-
rays than those that are well-separated spatially, S@idntains lihood reconstructions we uséd= 0.004cm! in (6), chosen
only spatially well-separated pixels, the values &5 should by visual inspection. The qualitative properties were rather sen-
be reasonably close to 1. (One might ask “why not just increasitive to the choice of this parameter. (A 3D penalty function
the step size in (31) using an over-relaxation parameter?” Timéght reduce this sensitivity by improving the reconstruction of
danger is that such over-relaxation can destroy monotonicitythin axial structures such as the patient table in Fig. 3.) The sta-
We have investigated the following GCA method. We ditistical method appears to produce somewhat better image qual-
vide the image into blocks of sizex x m, for smallm, and ity. (See [6] for quantitative resolution-vs-noise comparisons.)
then update only 1 pixel out of eaeh x m block on a given  Fig. 4 shows that withn = 4 (16 groups), the proposed GCA
sub-iteratio®®. The number of groups is thus?, with p/m?  algorithm increased the penalized-likelihood objective almost
pixels per group. Thus the required number of exponentiatiossfast as the SCA algorithm per iteration. More important is the
is only m2N, which is considerably smaller than the numbeactual CPU time, which is shown in Fig. 5 (for a DEC AlphaS-
of nonzeroa;;'s for small m. Note thatm = 1 is closely tation 600-5/266 workstation). By using fewer exponentiations
related to the convex algorithm [20], amd = ,/p gives the and floating point operations, the GCA algorithms require far
SCA algorithm [6]. As one increases, the pixels within each less CPU time per iteration than the SCA algorithm. Table 2
group become more separated and therefore less coupled, whimpares the number of iterations and CPU seconds required to
increases the convergence rate, but the computation also(irearly) maximize the penalized-likelihood objective function
creases. Thus there is a basic tradeoff that can be adapte®.toNith m = 3 or m = 4, the GCA algorithms converge in
the characteristics of the particular computer architecture. less than half the CPU time of SCA. Furthermore, the GCA al-
gorithms are parallelizable, so with appropriate hardware could

Method Water  Spine  Lung be significantly accelerated. Note that% 1 GCA’ is closely
FBP, 14 hour related to the convex algorithm of [20].

ROI Mean 0.0939 0.1662 0.034% Table 3 compares the estimated attenuation coefficients for
FBP, 12 min. three rectangular regions of interest (ROIs) corresponding to
ROI Mean 0.0942 0.1685 0.0373 soft tissue, bone, and lung. The ROI values for the 12-minute
ROI Std. Dev. 0.0098 0.0115 0.0068 data both agree well with the 14-hour reference image. How-
PL-GCA, 12 min. ever, the within-ROI standard deviations for the penalized-
ROI Mean 0.0945 0.1656 0.0353 likelihood image are factors of 2-4.5 smaller than those of the
ROI Std. Dev. 0.0030 0.0055 0.0015 FBP image.

Table 3: Mean and standard deviations within rectangular re- VI. DiscussioN

gions of interest for the images shown in Fig. 3. We have described a new class of algorithms for maximizing
(almost) concave penalized-likelihood objective functions for
reconstructing attenuation images from low-count transmission
scans. There is considerable latitude for the algorithm designer
In [27] we presented convergence rate results using simulatedchoose algorithm parameters to achieve the fastest possible
PET transmission scans. Here we present analogous resultcaosvergence rate on a given computer architecture. When the
ing real data. Using an Siemens/CTI ECAT EXACT 921 PE®bjective function is concave, the algorithm converges globally
scanner equipped with rotating rod transmission sources [1], Wethe unique maximum. Thus the algorithm design parameters
acquired a 15-hour blank scaii’é) and two transmission scansonly affect the convergence rate, not the image quality, unlike
(y;'s) of an anthropomorphic thorax phantom (Data Spectruihe many popular unregularized methods.
North Carolina). The duration of one transmission scan was 140ur results demonstrate that even on a conventional work-
hours (64M prompt coincidences in the slice of interest) amtation the new algorithms converge faster than both SCA and
the other scan was 12 minutes (0.921M prompt coincidengas improved version of) the convex algorithm of [20]. The
in the slice of interest). (Most of these counts correspond ftesults in [20] and [6] provide additional comparisons to other
rays that do not intersect the object.) Delayed coincidence siadternative algorithms. Based on all of these comparisons, we
grams were collected separately. The blank and transmissimmsider the transmission EM algorithm [9, 18] to be obso-
scan delayed-coincidence sinograms were in close agreemiené. For penalized-likelihood transmission image reconstruc-
so we used a time-scaled version of the blank scan delayedtionr, our proposed GCA algorithms have fast convergence, re-
incidences as the; factors with no additional processing. Theduced exponentiations per iteration, easily accommodate non-

12gimilar “generalized checkerboard” decompositions of the image haO(,egatiVity’ and are ﬂexibly parallelizabl_e.
been considered for emission tomography [48] [49]. From Table 2, to process the 47 slices of an EXACT PET

V. RESULTS
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GCA
Ix1]2x2[3x3]4x4]| SCA
Number of iterations for convergenge >40 19 14 11
CPU seconds for convergence >54 | 30 24 56
CPU seconds per iteration 1.2 1.3 1.4 15 4.8

Table 2: Comparison of CPU times and iterations for the proposed GCA algorithms versus the SCA algorithm. For purposes of
this table, convergence mead&)™) — ®(6°) > 0.999[®(6) — (6°)].

scanner using 14 iterations 8fx 3 GCA requires about 19 crossing®®. We first search over that set bf+ N; candidate
minutes on a DEC AlphaStation (whereas SCA would requirero crossings (we also check the values O aiile where
about 44 minutes). Such processing times bring this statistieak about 0.02) to bound the zero crossingg@f) within an
method within the realm of clinical utility, although further timeinterval (z_,z). Although the curvature ofy is certainly
reductions would still be helpful. bounded above by 1 as described in (25) and (26), its curva-
One could combine the grouped-ascentidea in this paper witie is bounded above by an even smaller value over the interval
the hybrid Poisson/polynomial approximations described in [6} -, z+). Specifically:
to further reduce computation. The reductions would be less
dramatic than in [6] since for our GCA method the exponentia- ¢(z — x;,) < max{¢(z_ — zz), P (xy — x1)} = Yk (35)
tions in Table 1 have been moved outside of the backprojection
step, whereas for SCA the calculations in (27) must be dohete thaty, < 1. Thus we replace the denominator in (29) with
during the backprojection (8) siné® is continually changing. .
There are additional advantages of GCA that we have not ex- dj + 0 Z Wik Yk
ploited here. Relative to SCA, which is best suited{gs that k

are precomputed and stored, the GCA approach can more &3z |eads to faster convergence since the denominator in (29)
ily exploit the many tricks available for accelerating forwardi—S smaller, therefore the step size is larger. Note that by using

and back-projection operations ((28), (30)), such as symmga 4, nq in (35) rather than some ad hoc value, we still ensure
tries in thea;;'s, projection operators based on image rotatiofnotonic increases i, (-: 67
J\ .

anda;;’s that separate into sparse line-integrals following by a
space-invariant blur implemented using fast Fourier transforms. REFERENCES

In some applications these tricks should lead to further reduc- . .

tions in computation time. Additional improvements may foI—Tl] E l;/i\(/elfrrz]clir(;'n dLWESk:(j; 2 PSerfC(;) :%Oatﬁgglzva%a;:;r?i¥’a

low from further algorithm development. A natural starting . ;
. - A new generation positron scanner ECAT EXAQTComp.
I lax th I 11). :
point would be to relax the separability assumption (11) Assisted Tomo16(5):804—813, Sept. 1992,

VIl. APPENDIX [2] S R Cherry, M Dahlbom, and E J Hoffman. High sensi-
tivity, total body PET scanning using 3D data acquisition

This appendix presents a method for finding the zero-crossing and reconstructionEEE Tr. Nuc. Sci.39(4):1088-1092

of d/d0j¢3j(-; 0™) as defined by (24). This method converges

faster than the modified Newton-Raphson method given in Ta- Aug. 1992.
ble 1. Definer = 0; — 07, andx), = 0} — 07, and [3] E P Ficaro, J A Fessler, W L Rogers, and M Schwaiger.
Comparison of Americium-241 and Technicium-99m
g(z) = Lj(gn) — (flj L= 5ijk¢(x —z1), as tr_ansmission sources _for attenuation correction of
& Thallium-201 SPECT imaging of the headt. Nuc. Med.

35(4):652—-663, Apr. 1994.
so thatg(z) = d/df;¢; (07 + =;6™). We would like to find the
value# whereg(2) = 0 (i.e. its zero crossing), and then assign
0?“ =07 + z. Let N; be the number of neighbors of pixgl
i.e., the number of nonzero,;, terms (typicallyN; = 8). Ob-
serve thay(z) is the sum ofl + N; monotonically decreasing
functions; the first of these functionsis; (9") — d; - z, which  [5] K Sauer and C Bouman. A local update strategy for itera-
crosses zero at = L;(6")/d;, and the othe; functions are tive reconstruction from projection$EEE Tr. Sig. Proc.
the penalty terms, thith of which crosses zero at= z;. 41(2):534-548, Feb. 1993.

The zgro—crossing 0@(33) must occur Som_ew_h_ere between 13Thanks to Ken Sauer for bringing this point to the attention of the first
the maximum and minimum of those+ IV; individual zero author when discussing [11].

[4] SR Meikle, M Dahlbom, and S R Cherry. Attenuation cor-
rection using count-limited transmission data in positron
emission tomographyd. Nuc. Med. 34(1):143-150, Jan.
1993.
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