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Abstract
PET measurements are usually precorrected for accidental coincidence events byreal-timesubtraction of the delayed window

coincidences. Randoms subtraction compensates in mean for accidental coincidences but destroys the Poisson statistics. We
propose and analyze two new approximations to the exact log-likelihood of the precorrected measurements, one based on a “shifted
Poisson” model, the other based on saddle-point approximations to the measurement probability mass function (pmf). The methods
apply to both emission and transmission tomography; however in this paper we focus on transmission tomography. We compare
the new models to conventional data-weighted least squares (WLS) and conventional maximum likelihood (based on the ordinary
Poisson (OP) model) using simulations and analytic approximations. The results demonstrate that the proposed methods avoid the
systematic bias of the WLS method, and lead to significantly lower variance than the conventional OP method. The saddle-point
method provides a more accurate approximation to the exact log-likelihood than the WLS, OP and shifted Poisson alternatives.
However, the simpler shifted Poisson method yielded comparable bias-variance performance in the simulations. The new methods
offer improved image reconstruction in PET through more realistic statistical modeling, yet with negligible increase in computation
over the conventional OP method.

I. I NTRODUCTION

In PET measurements, accidental coincidence (AC) events are a primary source of background noise. AC events occur when
photons that arise from separate annihilations are mistakenly registered as having arisen from the same annihilation. In trans-
mission scans the photons that originate from different transmission sources (rod or sector sources rotating around the patient)
cause AC events. The ratio of total AC events to “true” events is usually small in transmission scans compared to emission scans.
Nevertheless, the effect of AC events becomes severe for regions of high attenuation coefficients, because projections through
such regions result in low true coincidence rates. These low count rates can become comparable to AC rates. Thus estimates
of the AC events are needed. One can use the “singles” method [1] for this purpose, however this approach is not widely used
because of the necessity for additional hardware and moreover usually singles rate vary during data acquisition [9]. Therefore, in
most PET scans, the AC rates are estimated using delayed-window coincidences and the data are precorrected for AC events by
real-time subtraction. Real-time subtraction of delayed window coincidences compensates in mean for AC events but destroys the
Poisson statistics [7]. To avoid this problem, one needs to maintain the transmission and randoms measurements as two separate
sinograms [8,10]. However even if a PET system allows one to collect randoms (delayed coincidences) sinogram separately, this
process would double the storage space for the acquired data. So in practice most PET centers collect and archive only the randoms
precorrected data. We recommend separate acquisition and storage of delayed coincidences wherever feasible. The purpose of
this paper is to provide accurate statistical methods for PET measurements with pre-subtracted delayed coincidences. Although
our analysis and proposed models apply to both emission and transmission tomography, in this paper we focus on transmission
tomography.

The exact log-likelihood for randoms precorrected data is intractable, so we describe and compare several approximations.
For completeness, we first review the data-weighted least squares (WLS) method and the log-likelihood for the ordinary Poisson
(OP) model for PET measurements. Then, we introduce a new “shifted” Poisson (SP) model [14] which matches both the first
and second-order moments of the model to the underlying statistics of the precorrected data. We derive approximate analytic
expressions for the variance of the different estimators and use the Cauchy-Schwarz inequality to show analytically that the
proposed SP method yields lower variance than the OP method.

Secondly, we introduce a new saddle-point (SD) approximation for the pmf of precorrected measurements. The corresponding
log-likelihood function is shown to have better agreement with the exact log-likelihood than the previous approximations. We
apply the fast grouped-coordinate ascent algorithm [3] (with a few simple modifications) to maximize the proposed saddle-point
objective function.

We also show results of 2D simulations showing that the WLS method leads to systematic bias and the OP method leads to
higher variance than SP and SD methods. We also observe that SP and SD methods yield equivalent bias/variance performance
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whereas SP requires less computation. The contribution of this work lies in the fact that the proposed methods offer significant
improvements in accuracy with minor computation increase.

II. M EASUREMENTMODEL

In conventional PET scans, the data are precorrected for AC events byreal-timesubtraction of the delayed-window coincidences
[7]. The system detects coincidence events during two time windows: “prompt” window and “delayed” window. For each
coincidence event in the prompt window, the corresponding sinogram bin is incremented. The statistics of these increments should
be well approximated by a Poisson process. However, for coincidence events within the second delayed window, the corresponding
sinogram bin is decremented, so the resultant “precorrected” measurements arenot Poisson. Since prompt events and delayed
events are independent Poisson processes, the precorrected measurements correspond to the difference of two independent Poisson
random variables with variance equal to the sum of the means of the two random variables. In other words, randoms subtraction
compensates in mean for AC events, but it also increases the variance of the measurement by an amount equal to the mean of AC
events.

LetY = [Y1, . . . , YN ]′ denote the vector ofprecorrectedmeasurements. The precorrected measurement for thenth coincidence
detector pair is:

Yn = Y promptn − Y delayn , (1)

whereY promptn andY delayn are the number of coincidences within the prompt and delayed windows, respectively. Letµ =
[µ1, . . . , µM ]

′ denote the vector of unknown linear attenuation coefficients. For transmission scans, we assume thatY promptn and
Y delayn are statistically independent Poisson random variables with meansȳpn andȳdn respectively as:

E{Y promptn } = ȳpn(µ) = bne
−ln(µ) + rn (2)

E{Y delayn } = ȳdn = rn, (3)

whereln(µ) =
∑M
j=1 anjµj is the total attenuation betweennth detector pair. Theanj ≥ 0 factors have units of length and

describe the tomographic system geometry. Thebn > 0 factors denote the blank scan counts and thern ≥ 0 factors denote the
mean of AC events.

SinceY promptn andY delayn are statistically independent and Poisson:

E{Yn} = ȳpn(µ)− ȳ
d
n = bne

−ln(µ),

Var{Yn} = ȳpn(µ) + ȳ
d
n = bne

−ln(µ) + 2rn.

III. E XACT LOG-LIKELIHOOD

Let y = [y1, . . . , yN ]
′ be a realization of statistically independent random variablesY given in (1). Under the usual assumption

of independence between different rays, one can express the exact distribution ofY using total probability:

P (Y = y;µ) =

N∏
n=1

∞∑
m=0

P (Y promptn = yn +m;µ) P (Y
delay
n = m)

=

N∏
n=1

∞∑
m=b−ync+

[ȳpn(µ)]
yn+m e−ȳ

p
n(µ)

(yn +m)!

rmn e
−rn

m!
, (4)

wherebxc+ = x if x > 0 and is0 otherwise. The exact log-likelihood forµ becomes

L(µ) = logP (Y = y;µ)

=
N∑
n=1

log


 ∞∑
m=b−ync+

[ȳpn(µ)]
yn+m

(yn +m)!

rmn
m!


 − (ȳpn(µ) + rn). (5)

Since image reconstruction is ill conditioned, usually one includes a roughness penaltyR(µ) in the objective function. From the
Bayesian point of view, this roughness penalty can be thought as a log-prior forµ. Combining this penalty with the log-likelihood
yields a penalized-likelihood objective function:

Φ(µ) = L(µ)−R(µ). (6)

The goal is to estimateµ by maximizingΦ(µ) over the nonnegative cone:

µ̂ = arg max
µ≥0

Φ(µ). (7)

Since the exact log-likelihood function (5) contains infinite summations, the above maximization is intractable. The following two
sections develop tractable yet accurate approximations toL(µ).
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IV. SIMPLE APPROXIMATIONS TO THEEXACT LOG-LIKELIHOOD

In this section, we first review the conventional approximations toL(µ): the WLS model and the conventional OP model. Then
we introduce the SP model [14].

A. Quadratic Approximations

The quadratic approximation to the exact log-likelihood function results in the data-weighted least squares objective function
LWLS(µ) [12]:

LWLS(µ) = −
1

2

N∑
n=1, yn>0

(ln(µ)− l̂n)
2 1

σ̂2n
, (8)

wherel̂n = log
(
bn
yn

)
is the method-of-moments estimate of theline integral of the attenuationln(µ) and σ̂2n =

yn+2rn
y2n

. The

nth weighting factor̂σ2n is an estimate of the variance ofl̂n(yn) based on a second-order Taylor expansion aroundl̂n(ȳn). This
weighting is critical for the WLS method. The errors corresponding to projections with large values ofyn are weighted more
heavily. These projections pass through less dense objects and consequently have higher SNR values.

Alternatively, the choice of̂σ2n = 1 results in the unweighted least-squares (ULS) approach, which leads to much higher
variance.

B. Ordinary Poisson (OP) Approximation

The conventional approach is to assume (approximate) that{Yn}Nn=1 are distributed as independent Poisson random variables
with meanȳn = bne−ln(µ), i.e.:

P (Y = y;µ) ≈
N∏
n=1

[ȳn(µ)]
yn e−ȳn(µ)

yn!
. (9)

The log-likelihood corresponding to this OP approximation is:

LOP (µ) =
N∑
n=1

yn log ȳn(µ)− ȳn(µ)

=

N∑
n=1

yn log(bne
−ln(µ))− bne

−ln(µ), (10)

disregarding the constants independent ofµ.

C. Shifted Poisson (SP) Approximation

A better approach is to match both the first and second order moments by approximating the quantities{Yn+2rn}Nn=1 as having
Poisson distributions with means{ȳn(µ) + 2rn}. This model leads to our proposed SP objective function:

LSP (µ) =

N∑
n=1

(yn + 2rn) log(ȳn(µ) + 2rn)− (ȳn(µ) + 2rn),

=
N∑
n=1

(yn + 2rn) log(bne
−ln(µ) + 2rn)− (bne

−ln(µ) + 2rn).

Note that although bothLWLS andLSP match two moments, in WLS the second moment ofl̂n(yn) is “fixed” independently of
µ, whereas in the SP model the moments vary withȳn(µ) appropriately.

We have previously shown empirically that this model better agrees with the exact log-likelihood than either the WLS or OP
model [14]. Next we provide an analytical result that corroborates those results.

D. Variance Analysis

To analyze the variance of each estimator, we apply the analytic approximations suggested in [2]. IfȲ = E{Y }, then using a
first order Taylor expansion of̂µ(Y ) results in the following approximation to the covariance ofµ̂ [2] :

Cov{µ̂} ≈ P Cov{Y } PT (11)
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whereP = [−∇20Φ(µ̌, Ȳ )]−1 ∇11Φ(µ̌, Ȳ ) and µ̌ = argmax
µ
Φ(µ, Ȳ ).

We apply (11) to find approximate expressions for the variance of the maximum likelihood estimators:µ̂OP = argmax
µ
LOP (µ) and µ̂SP =

argmax
µ
LSP (µ). For this purpose we considered a highly simplified version of transmission tomography where the unknown is

a scalar parameter,i.e. p = 1. This simplified problem provides insight into the estimator bias and variance without the undue
notation of the multi-parameter case. The objective functions used here can be expressed in the form:

Φ(µ, Y ) =

N∑
n=1

hn(µ, Y ).

Since the measurements are statistically independent, for the scalar problem the above approximation (11) reduces to:

Var{µ̂} ≈

(
N∑
n=1

∂2hn(µ̌, Ȳ )

∂µ2

)−2 N∑
n=1

[
∂2hn(µ̌, Ȳ )

∂µ ∂Yn

]2
Var{Yn}. (12)

With some tedious algebra, one can derive the following approximate expressions for variance ofµ̂OP and µ̂SP :

Var{µ̂OP } ≈

∑N
n=1 a

2
n(ȳn(µt) + 2rn)(∑N

n=1 a
2
nȳn(µt)

)2 (13)

Var{µ̂SP } ≈

[
N∑
n=1

a2nȳn(µt)
2

ȳn(µt) + 2rn

]−1
, (14)

whereµt denotes the true attenuation coefficient value andȳn(µ) = bne−anµ.
Lettingsn = a2nȳn(µt) andtn = a2n (ȳn(µt) + 2rn), one can rewrite (13) and (14) as:

1

Var{µ̂OP }
≈
(
∑
n sn)

2∑
n tn

,
1

Var{µ̂SP }
≈
∑
n

s2n
tn

Let a, b ∈ Rn such thatan =
sn√
tn
, bn =

√
tn. Using Cauchy-Schwarz inequality:|aT b| ≤ ‖a‖2 ‖b‖2,

∑
n

sn ≤

(∑
n

s2n
tn

) 1
2
(∑
n

tn

) 1
2

(∑
n

s2n
tn

)−1
≤

∑
n tn

(
∑
n sn)

2 ,

so that within the accuracy of (11):

Var{µ̂SP } ≤ Var{µ̂OP } , (15)

with equality if and only ifrn/ȳn ratios are equal. For PET systems, these ratio terms are never constant, and in fact can be quite
disparate. Thus we have shown the following result: the variance of the SP estimator will always be lower than the variance of the
OP estimator.

V. SADDLE-POINT (SD) APPROXIMATION

An alternative to the previous approximations for the exact pmf (4) of precorrected measurements is to make second order
Taylor series approximations in thez-transform domain (i.e. on the probability generating function) and then to carry out the
inverse transform. For this purpose, we have adopted the saddle-point method [5,13].

Let U ∼ Poisson(α), V ∼ Poisson(β) and Y = U − V with pmf’s PU (k), PV (k) and PY (k) respectively. The generating
function ofY is:

GY (z) =
∑
k

zkPY (k) = GU (z)GV (z
−1)
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whereGU (z) = exp(α(z − 1)) andGV (z) = exp(β(z − 1)). In terms of the generating function,PY (k) is given by the contour
integral

PY (k) =
1

2πj

∮
C+
z−k−1GY (z) dz =

1

2πj

∮
C+
eΦk(z) dz, (16)

wherej =
√
−1 and the contourC+ must lie in the region of convergence ofGY (z) and enclose the origin, and

Φk(z) = −(k + 1) log(z) + α(z − 1) + β(z−1 − 1)

dΦk(z)

dz
= Φ

(1)
k (z) = −

(k + 1)

z
+ α−

β

z2

d2Φk(z)

dz2
= Φ

(2)
k (z) =

(k + 1)

z2
+
2β

z3
.

We observe thatΦk(z) (and hence the integrandeΦk(z)) is convex forz ∈ R, z > 0 andk ≥ 0. The integrand has a minimum
atxo ∈ R, xo > 0 which is called the saddle point,i.e.:

Φ
(1)
k (xo) = −

(k + 1)

xo
+ α−

β

x2o
= 0 and xo > 0

which yields

xo =
(k + 1) + vk

2α
=

2β

−(k + 1) + vk
, (17)

wherevk = x2oΦ
(2)
k (xo) =

√
(|k|+ 1)2 + 4αβ.

Following [5], we deform the contourC+ in (16) into a vertical line through saddle pointxo, asz = xo + jy, −∞ < y < ∞
and a semicircle around the left half plane at infinity. This contour is permissible fork ≥ 0, since the only singularities of the
integrand are atz = 0 andz = ∞ + j0. If |z| → ∞ for <[z] < xo then eΦk(z) → 0. Hence the contribution of the semicircle
around the left half plane at infinity vanishes and (16) reduces to

PY (k) =
1

2π

∫ ∞
−∞
eΦk(xo+jy) dy. (18)

ExpandingΦk(z) in Taylor’s series aroundz = xo, one obtains:

exp [Φk(z)] = exp

[
Φk(xo) +

1

2
Φ
(2)
k (xo)(z − xo)

2 +

∞∑
l=3

1

l!
Φ
(l)
k (xo)(z − xo)

l

]

= exp

[
Φk(xo) +

1

2
Φ
(2)
k (xo)(z − xo)

2

][
1 +
Φ
(3)
k (xo)

6
(z − xo)

3 + . . .

]
,

sinceΦ(1)k (xo) = 0. The integral (18) becomes

PY (k) =
eΦk(xo)

2π

∫ ∞
−∞
e
1
2Φ

(2)
k (xo)(jy)

2

[
1 +
Φ
(3)
k (xo)

6
(jy)3 + . . .

]
dy

=
eΦk(xo)√
2πΦ

(2)
k (xo)

[1 +R] =
x−ko e

vk−α−β

√
2πvk

[1 +R] (19)

where

R =
Φ
(4)
k (xo)

8
[
Φ
(2)
k (xo)

]2 + . . .
Using the algorithm by Rice [11], the residuum R can be written as:

R =
1

24(k + 1)

[
−5 + 12

√
1 + η − 9(1 + η)

(1 + η)3/2

]
+O

[(
1

k + 1

)2]
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whereη = 4αβ
(k+1)2 . The residuum asymptotically goes to zero ask → ∞ and more importantly we have observed empirically

that the approximation error is negligibly small even for very small values ofk. Neglecting R in (19) results in our saddle-point
approximation for the pmfPY (k) as:

PY (k) ' P
s
Y (k) =

x−ko e
vk−α−β

√
2πvk

, k ≥ 0. (20)

For k < 0 the integrand in (16) is not guaranteed to be convex forz > 0. Moreover, the integrand does not vanish along the
semicircle around the left half plane at infinity. Thus we use the change of variablesw = 1/z in (16), so that:

PY (k) =
1

2πj

∮
C+
wk−1GY (w

−1) dw =
1

2πj

∮
C+
eΦ̌k(w) dw (21)

where

Φ̌k(w) = (k − 1) log(w) + α(w−1 − 1) + β(w − 1).

Following similar steps as the case fork ≥ 0, the saddle point approximation fork < 0 can be shown to be :

PY (k) ' P
s
Y (k) =

wkoe
vk−α−β

√
2πvk

, k < 0 (22)

where

wo =
−(k − 1) + vk

2β
=

2α

(k − 1) + vk
.

Thus, combining (20) and (22) the saddle-point (SD) approximation for the log-likelihood (5) is:

LSD(µ) =

N∑
n=1

logP sY (yn; ȳn(µ))

=

N∑
n=1

hsn(µ) (23)

where

hsn(µ) =



yn log

(
ȳn(µ) + rn
yn + 1 + un(µ)

)
− ȳn(µ) + un(µ)−

1

2
log un(µ) , yn ≥ 0

yn log

(
ȳn(µ) + rn
yn − 1 + un(µ)

)
− ȳn(µ) + un(µ)−

1

2
log un(µ) , yn < 0

(24)

with un(µ) =
√
(|yn|+ 1)2 + 4(ȳn(µ) + rn)rn and disregarding constants independent ofµ.

Note that this approximation is considerably simpler than the exact log-likelihood (5), since no infinite sums or factori-
als are needed. Nevertheless, it is remarkably accurate as shown below. Also, one can observe that asrn → 0, hsn(µ) →
[yn log ȳn(µ)− ȳn(µ)] = LOP (µ) (to within constants independent ofµ), which is expected because forrn = 0 the ordinary
Poisson model is appropriate.

Fig. 4 shows a representative comparison of the exact log-likelihood function and the approximations for noiseless data as
a function ofµ. AlthoughLSP (µ) fits the exact log-likelihood better thanLWLS(µ) andLOP (µ), clearlyLSD(µ) has the best
agreement with the exact log-likelihoodL(µ). In a large number of additional comparisons not shown due to space considerations,
we have observed thatLSD(µ) agrees remarkably well with the exact log-likelihoodL(µ) and clearly better than the other models.

VI. 2D SIMULATIONS

To study bias and variance properties of the estimators based on the above approximations, we performed 2D simulations. For
µ we used the synthetic attenuation map shown in Fig. 1, which represents a humanabdomenwith linear attenuation coefficient
0.0096/mm. The image was a 128 by 64 array of 4.5 mm pixels. We simulated a PET transmission scan with 192 radial bins and
256 angles uniformly spaced over 180 degrees. Theanj factors correspond to 6 mm wide strip integrals on 3 mm center-to-center
spacing. Thebn factors were generated using pseudo-random log-normal variates with standard deviation of 0.3 to account for
detector efficiency variations, and scaled so that

∑
n ȳn was one million counts. Thern factors corresponded to a uniform field of



IPMI 97 7

5% random coincidences. Pseudo-random transmission measurements were generated according to (2) and (3). For regularization,
we used the modified quadratic penalty [4], which matches the spatial resolution of different estimators.

We generated 100 independent realizations of the transmission measurements. For each measurement realization, an estimate of
the attenuation map was reconstructed using 20 iterations of the grouped-coordinate ascent algorithms [3] applied to the objective
functions (8), (10), (11) and (23). We computed both the sample mean and sample standard deviation images for all methods.

Fig. 2 shows horizontal profiles through the sample mean images. These profiles show that WLS issystematicallynegatively
biased, whereas the OP, SP and SD models are free of systematic bias. (The overshoot at the edges is due to the quadratic penalty
used in the reconstruction. Even with noiseless data, this blurring effect will still be present.)

To study the variance, we computed theratio of sample standard deviation images of different estimators, over all interior pixels.
Fig. 3 shows the histogram of the standard deviation ratios. The OP model yields, on the average,20% higher standard deviation
than the both SP and SD models. In other words, to achieve the same noise level, the OP method would require about40% greater
scan time.

Although the standard deviation values could be decreased by using higher count rates, the ratio of standard deviations of
different estimators will remain approximately same for higher count rates [2].

We performed additional simulations using the thorax phantom with nonuniform attenuation [14]. The results were comparable.

VII. E STIMATES OF THEAC RATES (r̂n)

One needs to know the mean of the AC events (rn) in order to computeLSP (µ) andLSD(µ). Since thern terms are not readily
available from the real (precorrected) data, some estimates of the randoms must be used.

Fig. 5 displays the scatter plot of real delayed coincidence sinograms for blank scan and transmission scan data. Each point in
the plot corresponds to a specific detector pair. The similarity of both delayed coincidence measurements suggests that one can
acquire the delayed coincidence events during the blank scan and use them (after properly normalizing for different scan durations)
as an estimate of the AC rates for transmission scans performed on the same PET system. We performed additional simulations
(not shown) in which we substituted a simple constantfor rn rather than the true values into the SP and SD objective functions.
This approximation resulted in only a slight increase in the standard deviation (around2%) of the SP and SD estimates without
any systematic bias. These results demonstrate that both the SP and SD approximations are robust to errors in thern estimates.

VIII. D ISCUSSION

AC events are a primary source of background noise in positron emission tomography. After the AC events are precorrected, the
measurement statistics are no longer Poisson. For transmission scans, WLS method and ML method based on ordinary Poisson
(OP) model lead to systematic bias and higher variance, respectively, compared to our proposed shifted Poisson (SP) model for
measurement statistics which matches both the first and second-order moments.

We proposed a new approximation for the exact log-likelihood which is derived using saddle-point approximation to the pmf of
precorrected measurements. Both the analysis of the error term and the log-likelihood plots and 1D simulations (not shown due
to space considerations) show that the new approximation agrees very closely with the exact log-likelihood compared to previous
approximations.

2D simulations show that both SP and SD models perform very closely. They are both free of systematic bias and yield reduced
standard deviation (about20%) compared to OP model. As we observed very close agreement between exact log-likelihood and
SD approximation both from the log-likelihood plots and 1D simulations, we were expecting SD method to perform better than
SP method. However, for the 2D simulations reported here, the SP method performed as well as SD method. Thus the SP method
is particularly attractive since it requires comparable computation to OP method but has reduced variance. We plan to compare the
SD and SP methods to the uniform Cramer-Rao bounds [6].

The high correlation between delayed coincidence events of blank and transmission scans suggest that one can use AC rates
estimated from blank scans. We have seen that even using constant AC rates in 2D simulations resulted in only a slight increase in
the standard deviation without any systematic bias. Thus the proposed SP and SD methods are robust enough for practical use.

We plan to apply the proposed method to emission tomography, where even higher AC rates than the transmission tomography
are common, particularly in 3D PET. Moreover, in 3D PET, very large data sets are likely to preclude separate acquisition of
random coincidences, so the real-time subtraction methods are usually used for emission scans. So the potential benefit of the
proposed models should be even greater.
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Figure 1: Simulated abdomen attenuation map.
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Figure 2: Horizontal profile through the sample mean images for abdomen phantom. The WLS method has a systematic negative
bias. The ordinary Poisson (OP), shifted Poisson (SP) and saddle-point (SD) methods are free of this systematic negative bias.
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Figure 3: Histogram of the ratio of standard deviations in reconstructions of the abdomen phantom. The ordinary Poisson (OP)
method yields, on the average,20% higher standard deviation than the proposed shifted Poisson (SP) and saddle-point (SD)
methods.
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Figure 4: Representative comparison of exact log-likelihood function with objective functions of different models as a function of
line integralln(µ). Randoms rate is5%. The proposed saddle-point approximation agrees with exact log-likelihood significantly
better than the other models.

0 5 10 15
0

5

10

15

Blank Delayed−Event Rate

T
ra

ns
m

is
si

on
 D

el
ay

ed
−E

ve
nt

 R
at

e

Figure 5: Scatter plot of delayed coincidence event of blank and transmission scans.


