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ABSTRACT tion [5, 6]. In contrast, the smoothness that one obtains through

. . . . . stppping rules is limited by the characteristics of the iterative al-
This paper examines the spatial resolution properties of . . : . S

) - . . orithm. A possible disadvantage of penalized-likelihood meth-
penalized-likelihood image reconstruction methods by analyz- R,
: . . ods has been the absence of an intuitive method for choos-
ing thelocal impulse responseThe analysis shows that stan-

dard regularization penalties ind ce-varianiocal impulse ing the value of the regularization parameter, even for simple

. ) . : uadratic penalties. One contribution of this paper is a new
response functions, even for space-invariant tomographic sg

tems. Paradoxically, for emission image reconstruction th‘l:)]ect-independent method for specifying the regularization pa-
Iocal.resolution is génerally poorest in_high-count regionsrameter in terms of the desired resolution of the reconstructed

- : . ; Image.
We show that the linearized local impulse response induced > . . )
by quadratic roughness penalties depends on the object On@hls paper describes another possibly undesirable property of

through its projections. This analysis leads naturally to a mocm(_analized-_likelihood image reconstruc_tion methods that has not
fied regularization penalty that yields reconstructed images witf€" Previously documented (except in [7] to our knowledge),
nearly uniform resolution. The modified penalty also provide¥'d then proposes a solution to the problem. Through analysis
a very practical method fathoosing the regularization param-a”d emp|rlc§1l re;ults we demonstrate Fhat when one uses stgn—
eter to obtain a specified resolutiamimages reconstructed bydard space-invariant roughness penalties, the reconstructed im-

penalized-likelihood methods. ages havebject-dependent nonuniform spatial resolution, even
for space-invariant tomographic systenkf®r emission imaging
I. INTRODUCTION the resolution is generally poorest in high-count regions, which

is opposite to what one might expect or prefer. In Section V we
Statistical methods for image reconstruction can provide ifgropose a new modified space-variant roughness penalty that
proved spatial resolution and noise properties over CONVEfields images with nearly uniform resolution. Based on our
tional filtered backprojection (FBP) methods. However, itergnalysis, one could extend the method to provide other reso-
tive methods based solely on maximum-likelihood criteria pregtion characteristics, such as “higher resolution in high count
duce images that become unacceptably noisy as the iteratiggtﬁonsn etc., in a manner similar to methods for space-varying
proceed. Methods for reducing this noise include: StOpp"’r]qularization [8, 9], but in this paper we focus on the goal of
the iteration before the images become too noisy (long befejgyiding uniform resolution.
convergence) [1], iterating until convergence and then POSt-rjs paper is somewhat in the spirit of previous studies that

smoothing the image [2], using smooth basis functions [3], arl]ged thelocal impulse responsfl0—14] or an effective lo-

replacing the maximume-likelihood criterion with a penalizedéal Gaussian resolution [15] to quantify the resolution prop-
likelihood (or maximuna posterior) objective function that in-

ud h v t s h eéll:s of the unregularized maximum-likelihood expectation-
cludes a roughness penally lo encourage image smoothnes ximization (ML-EM) algorithm for emission tomography.

_ Penalized-likelihood approaches for reducing noise have tWo, yever, there is an important difference in our approach: since
important advantages over alternatives such as stopping rylgs 1 -Em algorithm is rarely iterated until convergence, pre-
and sieves. First, the penalty function improves the conditiofy, 5 stydies examined the spatial resolution properties of ML-
ing of the problem, so certain iterative algorithms converge\, 55 4 function of iteration In contrast, since there are
very quickly. Second, one can choose penalty functions thaf,,, tast andglobally convergentlgorithms for maximizing
control desired properties of the reconstructed images, sucl,gg, penalized-likelihood [16—19] and penalized weighted least
preserving edges [4] or incorporating anatomical side informgs ares [20-22] objective functions, rather than studying the

*This work was supported in part by NIH grants CA-60711 and CA—5436@T0pertieS of thalgprithmsas a function of it_e_ration, we _StUdy
and DOE grant DE-FG02-87ER60561. directly the properties of thestimatoras specified by thebjec-
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tive function(Sections Il and Il1). This simplifies the practicalmetry [11] [29]. An advantage of the penalized-likelihood ap-
use and interpretation of our analysis since the specifics of gmach is that one can modify the penalty to overcome the reso-
iterative algorithm are unimportant (provided one uses a gldition nonuniformity (Sections V, VI, and VII), whereasi it is not
ally convergent method). Our main results (14) and (16) showbvious how to modify ML-EM to achieve uniform resolution.
therefore be applicable to a broad range of inverse problemsPET and SPECT systems usually have intrinsically nonuni-
(Although we focus on image reconstruction, most of the issulsm spatial resolution [30] (although PET systems are usually
also pertain to quantum-limited image restoration.) nearly space invariant near the center of the scanner [30]). In
In conventional FBP image reconstruction, one controls thigs paper our simulations focus on an idealized PET system that
tradeoff between resolution and noise by adjusting the cutésfessentially space invariant, except perhaps for the effects of
frequencyf. of a filter. Sincef. has units of inverse length,discretizing the Radon transform. Thus, the resolution nonuni-
there is an intuitive (and object-independent) relationship besmities we report are due solely to the interaction between the
tween f. and the spatial resolution of the reconstructed imagdeg-likelihood and the penalty terms of the objective function,
For idealized tomographs, one can use the Hankel transfoand not due to the system response. We hope to study the effects
to compute the point spread function (PSF) as a function @f penalty functions in systems with intrinsically space-variant
f- [23]. Butfor real systems, one usually determines the (mon@solution in future work.
tonic) relationship betweef, and the full-width half-maximum  This paper is condensed from [31]. In [31] we also analyze a
(FWHM) of the PSF through the following empirical approacttontinuous idealization of penalized least-squares image recon-
First, acquire a sinogram using a point or line source, posstruction.
bly at several locations within the scanner. Then pick a filter

type (e.g. Hanning) and reconstruct images for several differ- ll. LOCAL IMPULSE RESPONSE

ent values off.. Finally, compute the FWHM of the PSF for LetY = [V3,...,Yy] denote a random measurement vec-
each case, and record a table ¢f,(FWHM) value pairs. In tor (e.g. a noisy sinogram) with density functigty; 6), where
subsequent studies, one typically chooses the desired resolugiea [9;,...,6,]" is an unknown parameter inadimensional

(FWHM) by experience or by visually observing the resolutiorparameter spac®, and’ denotes vector transpose. In imag-
noise tradeoff, and then obtains the appropriatéom the ta- ing problemsg typically denotes image pixel values in lexico-
ble. One needs to perform this tabulation only once for a givgnaphic ordering an® = {¢: ; >0, j =1,...,p}. Given a
scanner, since FBP is linear (and hence its resolution proper@sticular realizatiort” = y, an estimator of the forr = 0(y)
are object-independent). has mean:

In contrast, in penalized-likelihood image reconstruction, a
regularization parametegs controls the tradeoff between res- w(0) = Egld(Y)] = /é(y)f(y;g) dy. (1)
olution and noise, but the units ¢f are at best opaquely re-

Iated. to spatial res.olupon. Therefore it is not obvious hOW. tl‘—;or linear and space-invariant problems, one can characterize
specify the regularization parameter. As a further comphcatlofﬂe properties of, either in the spatial domain by specifying the
one finds that for a fixe@, the reconstructed spatial resolutio lobal) impulse response, or in the spectral domain by speci-

:{arleﬁ/be(t)ween sulgjeﬁts, and even V\{'t?'r:.th? sa_{ne_ SUbJeth( ﬁfg the frequency response (Fourier transform of the impulse
ion 1V). One could choos@ using statistical criteria suc as.o ponse), as in [31].

minimum mean-squared error [24,25]. However, mean-square pectral methods are generally inapplicable to nonlinear es-

error is composed equally of both bias (resolution) and varianﬁ ators for which the impulse response is space variant. For

_(n0|se), whgreas t_hose_: tWO. contnbgﬂons usually_have UNEAHZinear estimators one can analyzeltdwal impulse response
importance in medical imaging, particularly when images areé}rR

be interpreted visually. Furthermore, data-driven methods et [L1]). For an estimator with megu(6), we define the local

choosing@ can be unstable in imaging problems [26]. Man{/ pulse response of thth parameter (pixel) to be:

oth_er alternative_s have been propos_ed, e.g. [27], [28], most of ; w0+ 6e7) — u(b)

which have again been assessed with respect to mean-squared Vo) = %1_{% 5

error. One practical contribution of this paper is that we de- 9

velop a method for normalizing the penalty function such that = 0),3i=1,...,p, (2)

—
the object-dependent componentids nearly eliminated. This 00

allows one to build an object-independent table relain® \ynere i is the jth unit vector of lengthp. This impulse re-
spatial resolution (FWHM) for a given tomographic system, 9, is |ocal in two different senses. First, it is a function of

that one can seleg to achieve a consistent specified resolype ingex;, reflecting the space-variant nature of nonlinear es-

tion within planes, between planes, and even between subjegfation. “Second, it depends on the location in the parameter

The task of choosing the “optimal” resolution is left to the useépace@ through the argumertt, reflecting the nonlinear ob-

just as the “optimal” cutoff frequency (and filter) for FBP argacy qenendence. The local impulse response also depends on
determined by different criteria in different contexts.
1We restrict our discussion to estimators where the above limit is well de-

Nonuniform resolution properties are not unique ta . ; . :
. o . . fined. The reader is cautioned that non-convex penalties can lead to estimates
p_enahzed'“ke“hOOd metho_ds- The ML'_EM aIg_or!thm for emisgat arediscontinuousunctions of the data [32]. We focus here on well-behaved
sion tomography also exhibits resolution variation and asynrwpnvex penalties.
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the measurement distribution through (1). Thus, the local im-e Select an objedt of interest and generate multiple realiza-

pulse response characterizes the object, system, and estimatortions{y(m)}ﬂf‘{=1 of noisy measurements according to the

dependent properties. The local impulse response measures thedensity f (y; 9).

change in the mean reconstructed imalye to perturbation of ) _

a particular pixel in the noiseless objéct ° Applly the estlmator. of |nt.erest to each of the measurement
To confirm that (2) is a natural generalization of the usual def- "ealizations to obtain estimaté&(y™)},_,.

inition of impulse response, consider an estimator whose mean

is linear inf: u(#) = LO. Then the conventional definition of

impulse response jg(e’), which is thejth column ofL. Eval- | M

uating (2), one finds that is also thejth column ofL. (If i) = — Z O(y™). (4)

in additionL is a circulant matrix, then the impulse response M m=1

is space-invariant, anli corresponds to a convolution [33].)

Also note thay:(#) = 6 for unbiased estimators, in which case e Choose a pixej of interest and small valu§ and gener-

I’ = ¢J. Penalized-likelihood estimators are always biased, so ate a second set of noisy measurements according to the

local impulse responses will typically be bump-like functions,  densityf(y; 0 + de’).

rather than the ideal impulsé (e.g. Fig. 1).

As a specific example, consider the penalized weighted least® APPly the estimator to the second set of noisy measure-
squares estimator [21]; ments, and compute the sample mean to obtain an estimate

a6 + de).

Estimate the estimator mean using the sample mean:

0 = 0(y) = argmin (y — AG)'W(y — Af) + BO'R,
4 e Estimate the local impulse response:

whereW andR are symmetric nonnegative definite matrices

for which the null spaces @& andWA are disjoint. For a fixed 19 (0) ~ (0 + se?) — () . 5)
‘W, this estimator is linear ip: 4
é(y) = [A'WA + BR]‘lA’Wy, By taking ¢ sufficiently small andM sufficiently large, one
can obtain arbitrarily accurate estimates of the local impulse re-

and assumingdzy[Y] = A6, one can evaluate (2) to show sponse.

J / —1 A’ J

! [A'WA + SR]"A'WAe'. (3) B. Unbiased Estimator for Local Impulse Response

For such linear estimators, the local impulse response is indeff gne wants to evaluate the local impulse response for pixels
pendent off. As we show in Section Ill, the local impulse; . of interest, the above procedure requitgst 1)M
responses of the nonlinear penalized-likelihood estimators {ﬁfage reconstructions. The following method [34-36] reduces
image reconstruction have approximately the same form as (@l computation to only\/ image reconstructions. Note that

except thaW andR may depend oA. from (2),
There are at least three reasons to study the local impulse re-
sponse. The first reason is simply to understand the resoluti%a 0 0 - 0 / A
) = — () = —EL0(Y)=— [ 0 -0) d
0) = g5-1(0) = 55 Bold(V)) = 75~ [ 60 (w:0) dy

properties of penalized-likelihood estimators. The second rea-
son is that the local impulse response allows one to quantify lo-
cal resolution, which in turn allows one to choose the smoothing A 0

T . . . = FEpl0(Y)—1 Y:0)].
paramete3 sensibly. The third reason is that comprehension ol6( )aej 0g f(¥;30)]
of the resolution properties enables the design of better penql%s one can show [35, 36] that
functions. In particular, we show how to modify the standard ’

regularization penalty to achieve nearly uniform resolution. - M (m).
_ 15(0) = 1 3Oy — ﬁ(g))w (6)
A. Brute Force Evaluation of Local Impulse Response M—1 = 00,

Unlike the simple penalized weighted least squares estimator . . ) N i ]
described above, most estimatétg) do not have an explicit 'S @n unbiased estimator fof(0), wherei(9) was deﬂr;;d n
analytical form. When there is no explicit form 6(y), there (4)- Once one performs thef reconstructiongd(y ™)}l
is usually no explicit form for the estimator megai¥) either. then one can estimate the local impulse respor(gg for many
Thus it would at first appear that to investigate the local impuléxels with little additional effort.
response of a nonlinear estimator of interest, one must resort t8Y taking M sufficiently large, one can obtain arbitrarily ac-

a numerical approach based on (1) and (2), replacing the expga#ate estimates of the local impulse response. Unfortunately,

tation in (2) by the sample mean in a computer simulation. THd may need to be very large for sufficient accuracy. Often

following recipe illustrates this brute-force approach. we would gladly accept aapproximationto the local impulse
2Because of this interpretation, we use the tomt spread functiofPSF) response if we could avoid performing extensive numerical sim-

synonymously with local impulse response, even though this stretches the uéugltions_- The rem_ain_der of this paper is deVO_ted to approxima-
meaning of PSF. tions suitable for likelihood-based estimators in tomography.
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C. Linearized Local Impulse Response resolution of the nonlinear ML-EM estimator is clearly nonuni-
form, whereas the FBP resolution is uniform since the smooth-

In the context of emission tomography, several investig?- rovided by the Hanning window is space-invariant. Us-
tors have observed [13, 14, 37, 38] that the ensemble mean i provic y : 9 SP Co
a similar perturbation approach applied to both the noise-

likelihood-based estimator is approximately equal to the val e

. . : . .less mean of the dafé(¢) and to a single noisy realizatidn,
that one obtains by applying the estimator to noiseless data: Stamoset al. [10] reported strongly object-dependent point re-

sponse functions for the ART and ML-EM algorithms.
Several investigators have used this easily implemented em-

pirical approach to study the properties of maximum-likelihood
estimators in emission tomography. However, being empirical,

Y (0) = EyY] = / yf(y;0) dy (8) it fails to reveal general estimator properties. &malyticalex-
pression for the linearized local impulse response would facil-

denotes the mean of the measurement vectorfatehotes the itate understanding general properties of image reconstruction

value of the estimator when given noiseless détd). This methods. The next section derives an analytical expression for

approximation is equivalent to assuming that the estimatorti¥¢ local impulse response of implicitly defined estimators.

>

() = Epl0(Y)] =~ 0(Y(0)) = 0. 7)

Here

i — [9 _9 i irst-
locally finear. Let Vy_ B [?yl "’yN,] and consider the first I1l. ANALYSIS OF LOCAL IMPULSE RESPONSE FOR
order Taylor expansion @i(Y’) aboutY’(6): IMPLICITLY DEFINED ESTIMATORS
é(y) ~ é(f/(e)) + Vyé(Y(e)) (Y —V(0)); Many estimators in tomography are defined implicitly as the

maximizer of some objective function:
taking the expectation of both sides yield@. The remainder

of this paper uses this local linearity approximation. 6 =0ly) = arg %leaé(q)(g’ y)- (11)
Substituting (7) into (2) yields the following definition of the ] ) A
linearized local impulse response We assume has a unique global maximum, so thgy) is well
defined. There is often no analytical form for such estimators;
, . O(Y(0+6e?)) — (Y (0)) hence the ubiquitous use of iterative algorithms for perform-
r@) = lim 5 ing the required maximization. Fortunately, the linearized local
9 . impulse response (9) depenasly on the partial derivatives
= 8_@-90/(0))' (9) of the implicitly defined estimatof(y). As discussed in [38],

even though?(y) itself is unknown, one can determine its par-

Since we focus on th|s form in the remainder Of th|s paper’ fBal deriVatiVeS Using the Imp|ICIt function theorem and the Chain
brevity we usually omit the adjective “linearized.” rule. Disregarding the nonnegativity constrdjihe maximizer
The form of (9) leads to a much simpler recipe for numerff @ satisfies:

cally evaluating the local impulse response. o .
_(I)(gvy) :07 J :17"'7p, (12)

e Select an object of interest, a pixelj of interest, and a 09; 0=0(y)
small values. Generate two noiseless measurements veg; anyy. In vector notation:
tors: Y () andY (6 + de?). ' '

. . . VY(b(y),y) = 0 Wy,
e Apply the estimator of interest to each of the two noiseless

measurements, obtaining estimaié¥ (0)) andd(Y (0 + whereV0 = [59- ...%] is the row gradient operator (with
de’)). respect to the first argument®). Now differentiate again with

. } respect tg; using the chain rule:
e Estimate the local impulse response:

V2®(b(y), y)V,0(y) + VI 8(0(y),y) =0,  (13)

O(Y (0 +6e7) — O(Y(9)).

J ~ 2
(o) ~ 5 19 \where the(j, k)th element ofV?° is ﬁ and the(j,i)th
element of V1! is %2%. For simplicity we drop the depen-

By takingd sufficiently small, one can obtain very accurate e
timates of the linearized local impulse responsé.iff linear in _VQOCD(GV,}—,) is positive definite, substitutg — Y into (13)

y, then (10) is exact of course. . o s i
To illustrate this method, Fig. 1 shows a profile through se\e}-nd solve for the partial derivatives @fY'(6)):

eral local impulse response functions of FBP and of the emis- v é(?(())) = [-V28(4, V)] Ve (4, T).
sion ML-EM algorithm [39] (stopped at 30 iterations, well be T :_t - trat (12) hod f’ o ©)

H H H F ougn It appears we are assuming tha olas Tona m one
fore convergence). The Objmvas auniform elllpse of activity sees we really only need (12) to hold near the gaseY (), i.e. the noiseless

Wit_hin a uniform eIIipticaI_ at_tenuat_or (see [31]_ for detai_ls_)- De€zase. The nonnegativity constraint is often largely inactive for noiseless data,
spite the fact that the elliptical object has uniform activity, the (12) is a reasonable assumption.

Yence of” on except where explicitly needed. Assuming that
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Combining with the chain rule applied to (9): represent the mean contribution of background events (random
coincidences, scatter, etc.). Simple calculations [31] using (17)
) = ié(?(g)) v/ é(*(g))if/(g) show that
06, Y 06,
< o oy 0 - 20 / Yi
= [=V?%0,Y)]'VH®0,Y)—Y(0). (14 —-V2L(8, —AD[— }A
1
This equality expresses the local impulse response solely in VUL, y) = AID[Y-(OJ )

terms of the partial derivatives of the objective function and the
measurement mean, i.e., we have eliminated the dependenc\(lev

n , .
the implicitly defined estimata(y). RereA = {a;j} isanN x p sparse matrix anfd[u,] denotes a

N x N diagonal matrix with diagonal entries, . .., ux. Not-
. o . i Oy - J ituting i i
A. Penalized-Likelihood Estimators ing that 6,‘%Y(é?) = Ae’ and substituting into (16) yields the

. . .__local impulse response:
In the remainder of this paper, we focus on penallzeé)— P P

likelihood objective function® of the form: 7:(0)
I (0) = [A’D[ —
YZ(0)

] A 4+ BR(A)TA'D [ 1 } Ael.
®(0,y) = L(8,y) — BR(O), (15) Yi(0)
whereL(0,y) = log f(y;0) denotes the log-likelihood?(f) For moderate or small values 8f4 is a slightly blurred version
is a roughness penalty function, afids a nonnegative regular-of ¢ (see (7)). Since the projection operatidr is a smooth-
ization parameter that controls the influence of the penalty, ang operator, the projectiori§(¢) andY () are approximately
hence the tradeoff between resolution and noise. equal. Therefore we simplify the above expression to
DefineR(0) = V2R(0) to be the Hessian of the penalty, and
note thatv'! R = 0. For penalized-likelihood estimators of the ;i (¢) ~ [A’D[us™5(60)] A + SR(6)] A’ D [ug™5(6)] Ae?,

form (15) we have from (14) the following expression for the (18)
local impulse responée where
emis _ 1
B(0) = [~V V) + BRG] VLG, F) 50V (). w0 = 5 9)
J
(16)

This exoression should b ful for investioatin timator ils the reciprocal of the variance &f under the assumed Pois-
S expression should be usetul 1o estigating esimatorsdg, \,qel. For penalized-likelihood estimators in emission to-

a variety of imaging problems. Next we evaluate expressi h : ' L .
. T : . b 1 final he local I
(16) for Poisson distributed measurements, which will be tlpgsg;igey’ (18) is our final approximation to the local impulse

focus of the remainder of this paper. . . .
To summarize, we have derived a general local impulse re-
B. Poisson Statistics sponse expression (14) for penalized-likelihood estimators, and

specific expressions (18) for emission (and transmission [31
Both emission and transmission tomographic systems yi%%nographs/ (18) ( 31D

independent measurements with Poisson statistics; the primary
difference is in the form of their assumed measurement means

Y (). In both cases the assumed log-likelihood has the form: IV. RESOLUTION PROPERTIES

B B The local impulse response approximations for penalized-

L(0,y) = > _yilog¥i(0) — Yi(6), likelihood image reconstruction in emission tomography (18)
i and transmission tomography [31] differ only by the definitions

of thewu; terms in the diagonal matrix. Thus, the local impulse

neglecting constants independentjofin this paper we focus
g g P pap gsponse has the following generic form:

on emission tomography; we derive parallel results for the trarl
mission case in [31].
For emission tomography [39},; denotes the radioisotope
concentration in thegth voxel, and the measurement mean is
linear ino: whereDy = D[u;(6)] is an object-dependent diagonal matrix
_ P with u;(0) defined by (19) for emission tomography and simi-
Yi(0) =) aijf; + i (17) Jarly [31] for transmission tomography.
=1 Many penalty functions used in tomography can be written in
The {a;;} are nonnegative constants that characterize the to-

mographic System, and tlr{ez} are nonnegative constants that 5The diagonal tgrm; in (18) anq th? preceding equation arg sandwiched be-
tween the backprojection and projection operatArsand A, which smooth

“We consider the class of objective® for which the Hessian out most differences betwedfi(d) and¥ (6). In a sense, the heavy-tailddr
—V2°L(6,Y) 4+ BR(O) is positive definite; i.e.®(8,y) is at leastlocally  kernel that makes tomography ill-posed works to our advantage when making
strictly concave near the noiseless cé&gY (6)). the above approximations.

17(0) ~ [A'DgA + BR(0) " A'DyAe, (20)
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the following forn®: the local impulse response is vergnuniform even for standard
uniform quadratic penalties. (See Section VI.)
1 The next section elaborates on this property, but one can par-
R(9) = Z 2 Z wikt (05 — Oh), (21) tially understand the source of the resolution nonuniformity by
considering (22). If the measurement noise was homoscedas-
tic with variancer, thenD would be simply a scaled identity
matrix: D = v!I, and from (22) the local impulse response
¢ would be

where\; is a neighborhood of pixels near pixgly is a sym-
metric convex function, anay;, = wy;. For a “first-order”
neighborhood one chooses;, to equal 1 for horizontal an
vertical neighboring pixels, and 0 otherwise; for a “second- j _ Ay AT A LG
order” neighborhood one also includes;, = 1/v/2 for di- pe) = , AA +ﬁf_{1] ,V A Ac

agonal neighbors. With either of these standard choices for the = [A'A+vBR|TA’Ae (24)

wj's, we refer toR(6) as auniform penalty since it is shift-

invariant; i.e., translating the image yields an identical value B} other words, noise with vanenoele_adf to an |r_npulse re-
R(9). sponse that corresponds to an “effective” smoothing parameter

vf3. Thus, the influence of the smoothing penaltn@ invari-

ant to changes in the noise varianeehich perhaps explains in
part why choosing} is considered by many investigators to be

a difficult process. The Poisson case is more complicated since

One of the simplest uniform penalties is theniform
quadratic penaltywhich refers to the case whepér) = z2/2.
In this case the penalty has a quadratic form:

1, the values oDy vary along the diagonal. Since a given pixel is
R(0) = 59 Ro, primarily affected by the detectors whose rays intersect it, each
pixel sees a different “effective variance” and hence a different
whereR is af-independenp x p matrix defined by: effective smoothing parameter.
. This resolution nonuniformity can also be explained from a
R, = { ZzaNj wji, k= J ) Bayesian perspective. The Fisher informatioiDgy A is a mea-
Wik, k#j sure of thecertainty in the data. For pixels where this data

certainty is smaller (due to higher noise variance in the rays

In the quadratic case the local impulse response simplifies tot'hat intersect that pixel), the posterior estimate will give more

19(0) ~ [A'DgA + SR]1A’DyAe’ (22) weight to the prior, which (being a smoothness prior) will cause
' more smoothing. In emission tomography, pixels with higher
A. Projection Dependence activity yield rays with higher counts and hence highbksolute

) i o variance otower certainty. Paradoxically, penalized-likelihood
WhenR(9) is a quadratic form so th& is independent o,  nethods using the standard uniform penalty thus Haweer
then remarkably the local impulse response approxim&ti®)  gpatial resolution in high-count regionsThis property is cer-
given by (22)depends on the objeétonly through its projec- (ainly undesirable, and may explain in part why many authors
tionsY'(0) (see (19)). Even if the object is unknown, its projegsaye characterized the uniform quadratic penalty as causing

tions are approximately known through the noisy measuremeqigersmoothing,” since the most prominent image features are
y. Thus, even for real noisy measurements, we can predict H&erally smoothed the most!

local impulse response simply by replaciyi¢g) with y in (18).
This simple approach is effective primarily because the diag8: Choosings for one pixel
nal terms in (18) are sandwiched between the backprojectio
and projection operatorA’ and A, which greatly smooth out
the noise iry, i.e.

"Since (22) allows one to predict the local impulse response
(and hence the spatial resolution) at any pixals a function

of 3, one could use (22) to choose a value fbthat induces

a desired resolution at some pixglof interest in the image.
However, the induced resolutions at other points in the image
would still be different, which motivates the modified penalty

developed in the next section.
One might expect that a uniform penalty such as (21) would

induce uniform spatial resolution, just as space-invariant sieves V. RESOLUTION UNIFORMITY

do [2]. Using the preconditioned conjugate gradient [22, 40] or Thjs section analyzes the problem of resolution nonunifor-
Gauss-Siedel [20, 21] algorithms, one can evaluate (20) or (2gty more closely. This analysis leads to a natural modified
and then display the local impulse response for several locatigas ity function that induces more uniform resolution. For sim-
within the object. Upon doing this, one immediately finds th?stlicity we focus on emission tomography; parallel arguments

8if 4j(2) > 0 for all z, then it is easily shown that the only vectors in the2PPlY to transmission tomography.
null space of the matri%’2 R(9) are of the formv = 1,v1, wherel,, is the
lengthp vector of ones. For any tomographic system that sati@igd 1, # A. Emission Tomography
0 (i.e. the projection of a uniform image is nonzero), we can then conclude .. . . . .
that A’Dy A + BR(9) is positive definite and therefore invertible, as required In emission tomography, the Fisher information matrix
by (16). A'DyA is an operator that, due to the lexicographic ordering

A'D[Yi(0)] " A~ A'D[y] " A. (23)

B. Nonuniformity
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of pixels, one can treat as a mapping from image space to iBue to thel /r response of tomographE(9) is fairly concen-
age space. The operatArDyA is shift-variant for emission trated about its diagonal, so (29) suggests the approximation:
tomography, which is the crux of the problem of resolution

nonuniformity. The previous section noted that the nonuniform  F(6) = D[s;] G'D[q;(0)] GD[s;] = AgG'GAy,  (31)
diagonal of théDy term is partially responsible for the nonuni-

form local impulse response. But even without that term, théhere

spatial resolution would still be nonuniform because typically A9 = DIk;(6)] (32)
evenA’A is a shift-variant operator in PET and SPECT. How- . ) .
ever, one often models the system mafkies a product of three 'S @P < p diagonal matrix. From (29) one sees that approxi-
factors: a;; = cigi;s;, such thalG/G is approximately shift- mation (31) is exact along the diagonallbff), and would be

invariant, whereG = {g,;} represents the object-indepencfenfexam on th? off-diagonal elements if thes were equal. The
geometric portion of the tomographic system response cTée approxmat'lon (31) turns out to be reasonably accurate even for
represent ray-dependent factors that change between studies GhY nonumfﬁrrrqi S be;au;e thl,ei s vary SIOV;’}'_y as a function
cluding detector efficiency factors, dead time, radioisotope d€-/- due to the smoothing implicit n (30). This appromma_'gon
cay, and (in PET) attenuation factors. T represent pixel- also reflectg the_ fact that the local impulse response of_ pixel
dependent factors such as spatial variations in sensitivity, é}ﬁ]oen_dslpnmanly on the;’s that correspond to rays that inter-
(in SPECT) “first-order” attenuation correction factors (cf th&ct PXel. _ _ _
image-space Chang method [41] for SPECT attenuation correcl® Visualize (31), Fig. 2 shows the various matrices for a

tion). For our PET work thus far, we have simply usgd= 1. Y PET problerf (Wit,h s; = 1). The nearly Toeplitz-block-
In matrix notation: Toeplitz structure of3’G is apparent.

Substituting (31) into (26) and rearranging yields the follow-
A = D[¢;] GD]sj]. (25) ing approximation to the local impulse response:

e o on® deses ook 0) (MGGl + RO 0aG G
’ -1 / —1 M A —11—1 7 j
strive to chooséc; } and{s;} so thatG’'G is “as shift-invariant A _[1G c,; A _?(H)VA‘Q _]1 f’ (,;A"?j
as possible” (cf (38) below). (See [42] for additional analyses = r;(0)Ay [G'G + BA;R(0)A,7] 7 G'Ge’, (33)
of shift-invariant and shift-variant imaging systems.) ) )
Substituting (25) into (18) and simplifying: because\ge’ = r;(0)e’.
What does\y represent statistically? From (30), we see that
I’(0) =~ [D[s;] G'D[q:(0)] GD[s;] + BR(H)] " k;(0) is a normalized backprojection ¢f; }, whereg; is the
inverse of the variance of thi¢h corrected measurement/c;.

- D[s;] G'D[q;(0)] GD[s;] ¢, (26)  Thus k;(0) represents an aggregatertainty of the measure-
where ment rays that intersect thgh pixel. Since the local impulse
¢ (0) = cf/}_fi(e), (27) responsé’ is typically concentrated about pixgla somewhat

. . cruder but nevertheless very useful approximation that follows
In PET, thesey;’s are very nonuniform due to attenuation cor; y PP

rection factors that range from 1 to 100, detector eﬁicienciggm (33)is
that vary over an order of magnitude in block crystal systems, 1(0) ~ [G'G + 8/x2(0) R(é)]flG/Gej (34)
and the intrinsic count variations of Poisson measurements. J ’

The Fisher information matrix for estimatirigs: (cf (24)). The accuracy of this approximation improvesdas

F(0) = A’ D[u;(0)] A = D[s;] G'D[g:(0)] GD[s;]. (28) decregses (qnq hentleapproaches the impulse). Th_is ex-
pression again illustrates the property that the effective amount
As a consequence of the nonuniformity of fhis, the diagonal of smoothingﬁ/:ﬁ(@) increases with decreasing measurement
of F(0) is also nonuniform, which contributes greatly to theertaintyx; ().
shift-variance of th& (¢) operator in PET. Approximation (34) illuminates the paradoxical oversmooth-
Understanding the structure BY9) is the key to correcting ing of high-count regions with the uniform penalty. If pixel
the resolution nonuniformity. From (28) the diagonal elemenjsis transected by rays with high counts, then from (27) and
of F(#) can be written: (30) we see thag; and hencex; () will be small, so the effec-
tive smoothing parametg¥/« ;(6)? above will be large, causing
Fi;(0)=57Y ¢7a:(0) =r3(0)) g3, j=1,...,p, (29) lower resolution. A; increases, the rays that intersect it wil
i i also increase, so the local resolution decreases

where we define 8The object was & x 2 uniform rectangle in & x 6 image. We used; = 1,
so the only nonuniformity in the;'s was due to thd /Y; () contribution of
ki(0) = 5. 2 q.(0 2 30) Poisson noise.
i(0) j\/z g’J%( )/ Zg” (30) ®However, note that even uniform objects (efg= [1 ... 1]) lead to
g g nonuniform resolution (i.e. to shift-variant local impulse response), Sihgd

“In SPECTG will only be approximately object-independent due to attenwill be a nonuniform vector due to the different lengths of the line integrals
uation. through the object.
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B. A Modified Penalty asymmetry in the local impulse response. As illustrated in
Section VI, such asymmetry can occur with or without our
modifications to the penalty. Further work is needed to
correct these asymmetries.

The form of (33) suggests several possible methods for modi-
fying the penalty function to improve resolution uniformity. We
focus on one approach that is easily implemented. RgY)
denote a “target” penalty function of the form (21) (presunb
ably shift-invariant) whose properties would be suitable if we

hadD, = I. Suppose we have estimatgs; } of {«;(¢)}, and In practice, the ternx;(¢) is unknown, since it depends on
consider themodified penalty the noiseless measurement m&g#). Fortunately, we can ma-

) nipulate the noisy data to provide a reasonable estihaiaf
R(0) = EZ > wikiir(9; — 0k)- 35) #i(0). B
kN We first compute from the measurements an estimate
the termg; (0) defined by (27):
If R() = VZ2R(0) denotes the Hessian of this modified

. Practical Implementation

penalty'®, then one can show that A 2

. _ 4= max{y;, 10} (39)
R (0) = Dy withjRip(0; — Or), j =k _ _
ik —w;rpk;kEY(0; — Ok), jAEE The “10” factor ensures that the denominator is not too close to
zero, and hopefully provides a little robustness to model mis-
so thatifD[#;] = A, and we leR*(0) = V>R*(0), then match by giving no rays an inordinate weighting. We then re-

place theg;(0) term in (30) withg; to precomputes;, which
we then use in (35). Thus, implementing the modified penalty
This approximation relies on the fact that neighboring pixe(85) simply requires one extra backprojection. (To save a little
have very similar certainties, i.e4(0) ~ «;(0) for k € N;, computation, one could probably replace (30) with an approx-
which again follows from the smoothing effect of (30). Submate backprojector.) The cost of multiplying ly#y, in (35)
stituting (36) into the expression for the local impulse responenegligible compared to the forward projections required by
(33) yields the new approximation iterative reconstruction algorithms.
) . ) Since thek;’s depend on the data, our modified penalty

P (0) ~ k;(0)A;'[G'G + BR*(0)] 'G'Ge’.  (37) (35)is data-dependent! Bayesian-minded readers may find the

idea of a data-dependent “prior” to be somewhat disconcert-

If the geometric respons& is nearly space invariant, then to. :
o o ing. We make absolutely no pretense that this approach has any
within our approximation accuracy, (37) corresponds to near, . . .
. . . ayesian interpretation. The purpose of the penalty is solely to
uniform resolution except for the following features.

control noise, and the purpose of our modification to the penalty

¢ Unlike the uniform quadratic target penalty, for whiBit  is solely to control the resolution properties. As an alternative
is constant along its diagonal, nonquadratic penalties le@md(39), one could periodically update tlag’s by substituting
to object-dependent HessiaRs (6). However, users of one’s current estimate df into (30) within an iterative algo-
nonquadratic penalties presumably desire certain nonurihm. But the extra effort is unlikely to change the final esti-
formities, i.e. more smoothing in flat regions and lessiate very much, since, as noted earlier, small changes in the
smoothing near edges. Our modified penalty (35) prg/s have minor effects on the estimate due to the “sandwich”
serves this important characteristic of nonquadratic penaffect described in footnote 5 and by (23).
ties. Our modification only corrects for the resolution Since (35) and (39) define the modified penak{) to be
nonuniformities that are induced by the interaction bexfunction that depends ay the matrixV'! R is no longer ex-
tween the nonuniform statistics and the penalty functioactly 0, so strictly speaking the steps between (14) and (16) need
Essentially we are correcting for the,"RA," term in modification. However, because of the effective smoothing in
(33). the definition (30), the partial derivatives with respecttof

e Sincer;(0)/xx(6) ~ 1for k € A, the termnj(a)Aa‘l in the modified penalty are very small, so we ignore this second-
‘ ) . ) . . order effect.
(37) effectively acts as an identity matrix for pixels ngar

so for local impulse responses that are fairly narrow we cgy Choosing3
disregard the:;(0)A," term, leading to the approximation

R(0) ~ AgR*(0)Ay. (36)

For a quadratic target penalfy* (), the local impulse re-
1 (0) = [G'G + BR*(A)| ' G'Ge’. (38) sponse (38) induced by our modified penalty (35) is indepen-
) _dent of the objecfl. Thus the process of choosing the smooth-
By “narrow” we mean relative to the scale of the spatig}y narametes is significantly simplified by the following ap-
fluctuations inr;(0). However, in regions where the cerproach. Letj be a pixel in the center of the image, for example.
tainty «;(6) is more rapidly varying as a function of spagq; 5 given system geometric respofisgorecompute the local
tial position (such as near the edge of an object), the PréSipulse response (38) for a range of valuesiofFor eachs,
ence of the term;; (¢) A" indicates that there will be sometapy jate some measure of resolution, such as the FWHNL of
100ne can easily verify that this Hessian is nonnegative definitef 0. Then, when presented with a new data set to be reconstructed
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at someuser-specified resolutiogimply interpolate the table to has highly nonuniform spatial resolution, whereas the modified
determine the appropriate value fér Finally, reconstruct the penalty yields nearly uniform spatial resolution. These results
object using the modified quadratic penalty. Section VI preseiati® typical.

results that demonstrate the effectiveness of this approach. An-

alytical results in [31] further simplify the process of buildingd. Asymmetry

this table for certain tomographs.

. . I f the | icity of the elli i
Many (but not all) nonquadratic penalties are locall n part because of the large eccentricity of the ellipse in

guadratic near 0, and it is this quadratic portion of the penaE)'(g' 3, the local impulse responses of both penalties are asym-

: . o . : . : tric. Fig. 5 displays contours at levels 25, 50, 75, and 99%
that is active within relatively flat regions in the image. For suc :
. . of the peak value for each PSF, computed usingctirgour
penalties, one could use the table approach described abov% 0

10, . .. .
. ; u S . nction of Matlab. We hope to extend the analysis in this paper
specify the QeS|red reso!u.tlon In the flat parts of the imag develop suitable modifications to the penalty that will reduce
and then adjust any remaining penalty parameters to control

& asymmetr (The corresponding contours for FBP were vir-
influence of edges etc. For penalties that are not even loc Y Y- P 9
guadratic, such as the generalized Gaussian Markov random

u¥;1lly circular.)
field prior [32], further investigation is needed. C. Choosing3

VI. EXAMPLES We now describe how we selecteti for this simulation,

This section demonstrates the improved resolution unifakhich illustrates the effectiveness of the table-based approach
mity induced by the modified penalty (35) within a penalizediescribed in Section V-D. First, we decided for illustration pur-
likelihood image reconstruction method for PET emission meROses to use a FWHM of 4 pixels. Using the analytical results
surements. Fof, we used the 28 x 64 emission image shown detailed in [31] for the system geometry described above, the
in Fig. 3, which has relative emission intensities of 1, 2, andv@lue3 = 2~**% is required for the modified penalty Did
in the cold disk (left), background ellipse, and hot disk (righijis choice of3 actually give the desired 4 pixels FWHM res-
respectively. We included the effects of nonuniform attenuati@tion? Since Fig. 5 shows that the local impulse response
in the ¢;'s by using an attenuation map qualitatively similar téS asymmetric, clearly the resolution is not exactly 4 pixels
Fig. 3, but with attenuation coefficients 0.003/mm, 0.0096/mmYWHM isotropically. In particular, for the same 3 pixels con-
and 0.013/mm for the cold disk, background ellipse, and hg¢lered above, the horizontal resolutions were 3.10, 3.38, and
disk respectively. The pixel size was 3mm. Rather than beidg?4 pixels FWHM, whereas the vertical resolutions were 5.28,
anthropomorphic, this phantom was designed to demonstr4t83, and 4.76 pixels FWHM. However, the averages of the hor-
that the modified pena|ty induces near|y uniform Spatia| reso|i@0nta| and vertical resolutions were 419, 4.10, and 4.05 piXElS
tion even for problems where the standard penalty yields highfyVHM, all of which are within 5% of the target resolution of 4
nonuniform spatial resolution. pixels FWHM. Thus, although further work is needed to correct

We simulated a PET emission scan with 128 radial bins ate asymmetry in such eccentric objects, the proposed method
110 angles uniformly spaced oves0°. Theg;; factors corre- for selecting3 appears to yield local impulse responses whose
sponded to 6mm wide strip integrals with 3mm center-to-cenfferageresolution is very close to the desired resolution. These
spacing. We set; = 0.1 Y, >, air;0;, which corresponds results are typical in our experience.

to 10% random coincidences.
VIl. WHAT HAPPENS TO THEVARIANCE?

A. Resolution Uniformity It is well known that the global smoothing paramefiecon-

We computed local impulse response functitiig) for three  trols an overall tradeoff between resolution and noise: larger
pixels j, corresponding to the center of the cold disk, the cep:s |ead to coarser resolution but less noise, and vice-versa.
ter of the image, and the center of the hot disk. We used thige analysis in preceding sections shows that for the modi-
recipe following (9) withd = 0.01 to evaluatd’(6), for both fied penalty to induce uniform spatial resolution, the “local”
the standard penalty (21) and the modified penalty (35) wigoothing parameter must effectively be larger in some areas,
Y(x) = /2. For both penalties we used a first-order neighand smaller in others. Thus, it is natural to expect that these
borhood. We used this recipe rather than any of the approxind@anges in the local resolution will also influence the noise—
tions that followed it (such as (18)) to provide a more convingyt is the influence global or local? I.e., if the modified penalty
ing demonstration; for routine work we usually just use (26jncreases the resolution (and hence the noise) at a given pixel,
(The results of (26) are not shown in Fig. 4 since they turn oyfil| that noise somehow propagate to distant pixels and lead to
to be indistinguishable from the curves shown, which suppo#g overall worse resolution/noise tradeoff?
the accuracy of the approximations leading to (26).) We maxi-To address this question, we generated 100 realizations of

mized the objective function (15) to compuien (5) using 20 pojsson distributed simulated PET measurements for the object
iterations of the PML-SAGE-3 algorithm [18].
Fig. 4 displays horizontal and vertical profiles through the "For the standard penalty, we used the above valug séaled down by
local impulse responses for the estimators corresponding to fpd®" e single; corresponding to the pixel at the center of the image, as
. . - . __suggested by (34) and described in Section IV-C. This choice matched the reso-
two penalty functions. The circles in Fig. 4 are for the unbiasggon at the image center for the two penalties, as illustrated in the center plots

estimator (6) forM = 2000 realizations. The standard penaltyf Figs. 4 and 5.
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shown in Fig. 3, and for the system properties described in Séahere v denotes spatial frequency: cycles per radial sam-
tion VI. For each realizatiop®, ..., 4% we used 20 iter- ple). This window induces a PSF indistinguishable from that
ations of PML-SAGE-3 [18] to compute penalized-likelihoodf penalized-likelihood estimates with the first-order quadratic
estimates{d(y(™))}190  for several values off for both the penalty [31]. As shown by Fig. 8, at any given resolution the
standard and the modified quadratic penalties. For each vadmepirical standard deviations for the FBP images are higher
of 8, we computed the empirical standard deviatiorépfor than for the penalized-likelihood estimates. This demonstrates
the pixels at the centers of the two disks in Fig. 3. (The resuttgat even using the oft-maligned quadratic penalty, penalized-
were similar for the pixel at the image center, so are not showlikelihood image reconstruction can outperform FBP in terms
of the tradeoff between resolution and noise. Of course non-
A. Just What You Expected quadratic prior models may give even better results for objects

Fig. 6 shows the tradeoff between resolution (measured Wt are consistent with those models, but results such as Fig. 8
the average FWHM of the local impulse response) and nogow that quadratic penalties provide a useful reduction in im-
(measured by the empirical standard deviationpas varied. 2de noise over a large range of spatial resolutions.

Fig. 6 also shows predicted standard deviations computing us-
ing the variance approximations described in [38]. (The good
agreement between empirical and predicted results in Fig. 6 idVe have analyzed the local impulse response of implicitly de-
further confirmation of the utility of the approximationsin [38].fined estimators (14) and of penalized-likelihood estimators for

In Fig. 6, the resolution/noise data points follow an esseamission tomography (18) and transmission tomography [31].
tially identical tradeoff curvéor both the standard and the mod-The analysis and empirical results show that the local impulse
ified penalty This is true both for the analytically predictedesponse is asymmetric and has nonuniform resolution for Pois-
tradeoff (the solid line and the dashed line overlap almost pspn distributed measurements. We proposed a modified regular-
fectly) as well as for the empirical results (the circle and theation penalty (35) that improved the spatial resolution unifor-
plus symbols lie on the same curve). These results suggest thay but not the asymmetry.
the effects of the modified penalty are essentially local: a givenFor the space-invariant tomographs considered here, the res-
pixel moves up or down its own resolution/noise tradeoff cunaution nonuniformity arises from the nonuniform diagonal of
to the specified resolution, and then has a variance that is the Fisher information matrix, which in turn is a consequence
same value as would be obtained if one were to use the standzrthe nonuniform variance of Poisson noise. In principle one
penalty but globally adjust to enforce that specified resolutioncould “avoid” this problem altogether by using anweighted
at the given pixel. This property probably hinges on the fatgast-squares estimator. We have shown qualitatively in [21]
that thex; factors are spatially smooth. If one were to artifithat nonuniform weighting is essential to achieve the desirable
cially create an<; map having discontinuities and then applyoise properties of statistical methods. In [31], we provide ad-
the modification (35), then it is plausible that the results woultitional analyses and quantitative results that demonstrate the
be less regular than indicated in Fig. 6. Readers who apply vanportance of weighting. Therefore we advocate retaining the
ations of (35) to induce some type of data-based non-unifomonuniform weighting that is natural for Poisson statistics, but
resolution will need to consider the resolution/noise tradeoff modifying the penalty to compensate for the undesirable spa-
more detail. tial resolution properties. Fortunately this modification does not

Fig. 7 shows central horizontal profiles through empiricalestroy the benefits of the weighting, as shown in [31] and in
standard deviation maps of the penalized likelihood estimatélg. 8, apparently because the nonuniform weighting is applied
for both the modified and the standard quadratic penalties. Aiscsinogram space, whereas the penalty acts on the image space.
shown is a calculated prediction of the variance, an approxiniais an open question as to whether the modified penalty would
tion developed in [31]. As noted in footnote 11, the penaltidse effective for problems such as restoration of quantum-limited
were chosen to have matched resolution at the image centegge measurements, where both the unknown parameters and
and in Fig. 7 the estimator variance is also matched at the imdlge data are images.
center. Note however that whereas the variance for the standarBome colleagues have argued that nonuniform resolution is
penalty is fairly uniform (at least for this object), the variancdesirable and expected. This opinion is presumably based on
for the modified penalty is nonuniform. (Of course as we hatke idea that statistical methods can make better use of the
shown itis the other way around for the spatial resolution.) Thiseasurement information and thus provide higher resolution

VIII. DISCUSSION

nonuniformity is consistent with the results of Fig. 6. in high-count regions. Ironically, our analysis shows that the
. . effect of uniform penalties is just the opposite: more smooth-
B. Quadratic Penalties Ar&seful ing occurs in high-count regions. Although we have empha-

Fig. 8 compares the resolution/noise tradeoff of penaliz&€d methods for achieving resolution uniformity, one could
likelihood with that of images reconstructed by FBP with @PPly our analysis to develop alternative modified penalties that

Hamming window and with a constrained least-squares (CL¥§!d higher resolution in high-count regions according to some
window developed in [31]: user-specified criterion. Since we now see that the statistics

of the data themselves do not automatically provide a natu-
ral resolution-noise tradeoff in penalized-likelihood estimators
(contrary to what may have been a widely held misconcep-

sinc(2u) /sinc(u)

sn@u) 1+ gor’ €03 (40)
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Figure 2: lllustration of the approximation (31). Upper left: the
matrix G'G which is approximately Toeplitz-block-Toeplitz.
Upper right: the Fisher informatioR = G’D[q;(0)] G in-
cluding Poisson noise covariance. The nonuniform diagonal
is caused by the nonuniform Poisson noise variance. Lower
right: the approximatioMG’GA; note the agreement with
the upper right matrix, i.eF ~ AG'GA. Lower left:
A7'G'Dlg;(0)] GA™L; note that this matrix is a reasonable ap-
proximation toG’'G.

Figure 1: Horizontal profiles through the local impulse re-
sponse functions of FBP with a Hanning window (top) and
of the ML-EM algorithm at 30 iterations (bottom), for three
pixels located along the horizontal midline of an elliptical ob-
ject. Solid line: computed using the linearized approximation
(10); Circles: computed using the unbiased estimator (6) frc~

M = 2000 realizations.

Figure 3: Digital phantom used to examine spatial resolution
properties.
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Figure 6: Resolution/noise tradeoff for penalized-likelihood

. ) . . ) emission image reconstruction with standard and modified
Figure 4: Horizontal and vertical profiles (concatenated I€ff,aratic penalties. The two penalties induce virtually identi-

to right) through three local impulse response functions for Q| 4 qeoff curves. (The dotted lines connect points that corre-
penalized-likelihood estimate of the image shown in Fig. 3. T@Bond to the samé value.)

standard quadratic penalty yields highly nonuniform resolution
(upper profiles), whereas the proposed modified penalty leads to
nearly uniform spatial resolution (lower profiles). Note that for
the standard penalty the resolution is poorest in the high-count

disk.
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Figure 7: Central horizontal profiles through empirical standard

Figure 5: Contours of the local impulse response functions%‘?v'at'on maps for penalized likelihood emission estimates with

25, 50, 75, and 99% of each peak. Left: center of cold disk,
middle: center of image, right: center of hot disk.

e standard and modified penalties.
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Figure 8: Resolution/noise tradeoff of FBP with Hamming win-
dow and the constrained least-squares (CLS) window (40). At
any given resolution, the variances of the penalized-likelihood
estimates are smaller than those of FBP.
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