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ABSTRACT

Many estimators in signal processing problems are defined
implicitly as the maximum of some objective function. Exam-
ples of implicitly defined estimators include maximum likeli-
hood, penalized likelihood, maximuma posteriori, and non-
linear least-squares estimation. For such estimators, exact an-
alytical expressions for the mean and variance are usually un-
available. Therefore investigators usually resort to numerical
simulations to examine properties of the mean and variance of
such estimators. This paper describes approximate expressions
for the mean and variance of implicitly defined estimators of
unconstrained continuous parameters. We derive the approxi-
mations using the implicit function theorem, the Taylor expan-
sion, and the chain rule. The expressions are defined solely in
terms of the partial derivatives of whatever objective function
one uses for estimation. As illustrations, we demonstrate that
the approximations work well in two tomographic imaging ap-
plications with Poisson statistics. We also describe a “plug-in”
approximation that provides a remarkably accurate estimate of
variability even from a single noisy Poisson sinogram measure-
ment. The approximations should be useful in a wide range of
estimation problems.

I. I NTRODUCTION

Let θ = [θ1, . . . , θp]′ ∈ IR
p be a unknown real parame-

ter vector that is to be estimated from a measurement vector
Y = [Y1, . . . , YN ]

′ ∈ IRN , where′ denotes vector or matrix
transpose. In many areas of signal and image processing, one
specifies an estimator̂θ to be the maximum of some objective
function:

θ̂ = argmax
θ
Φ(θ, Y ). (1)

Examples of such methods include maximum-likelihood esti-
mation, maximum a posteriori or penalized-likelihood meth-
ods, and linear or nonlinear least-squares methods. Except in
very simple cases such as linear least-squares estimation, there
is usually no analytical form that explicitly expressesθ̂ in terms
of Y . In other words, the objective function (1) onlyimplic-
itly definesθ̂ as a function ofY . Statisticians refer to (1) as an
M-estimate[1].
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The absence of an explicit analytical expression of the form
θ̂ = h(Y ) makes it difficult to study the mean and variance
of the estimator̂θ, except through numerical simulations. Of-
ten the estimators of interest depend on one or more “tuning
parameters,” such as the regularization parameter in penalized-
likelihood methods, and one would like to be able to easily
study the estimator characteristics over a range of values for
those parameters. In such cases, numerical simulations can
be prohibitively expensive for complicated estimators (partic-
ularly whenp is large). Similar considerations apply if one
wishes to compare estimator performance against the uniform
Cramer-Rao bound for biased estimators [2, 3] to examine the
bias-variance tradeoff of the estimator. Therefore, it would be
useful to have approximate expressions for the mean and vari-
ance of implicitly defined estimators, particularly if those ap-
proximations require less computation than multiple numerical
simulations [4].

For unbiased maximum-likelihood estimation, the Cramer-
Rao bound can serve as an approximation to the estimator vari-
ance. Our focus is on regularized methods for which bias is
unavoidable, so the unbiased Cramer-Rao bound is inappli-
cable. Approximate covariances for penalized-likelihood es-
timates have been computed for specific iterative algorithms
[5], but most analyses of penalized-likelihood methods have
focussed on the asymptotic properties of mean squared error
e.g. [6,7]. For practical signal-to-noise ratios, bias and variance
may have unequal importance, in contrast to their equal weight-
ing in the mean squared error performance measure.

In this paper we apply the implicit function theorem, the Tay-
lor expansion, and the chain rule to (1) to derive approximate
expressions for the mean and variance of implicitly defined es-
timatorsθ̂. Evaluating these expressions numerically typically
requires a similar amount of computation as one or two realiza-
tions in a numerical simulation. Therefore these expressions al-
low one to quickly determine “interesting” values for the tuning
parameters etc. for further investigation using numerical simu-
lations. In addition, one can use the variance approximation to
determine how many realizations are needed to achieve a de-
sired accuracy in subsequent numerical simulations.

Our expressions are similar to the asymptotic moments given
by Serfling [1] for scalar M-estimates. Our focus here is on pre-
senting a simple derivation of useful approximations for multi-
parameter imaging problems, rather than on asymptotics. The
Appendix compares in more detail the two approaches.
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2 II APPROXIMATIONS

Because of the partial derivatives used in the derivation, our
approximations are restricted to problems whereθ is a contin-
uous parameter. Thus the approach is inapplicable to discrete
classification problems such as image segmentation. (Mean and
variance are poor performance measures for segmentation prob-
lems anyway; analyses of classification errors are more appro-
priate [8].) Furthermore, strictly speaking we must also ex-
clude problems where inequality constraints are imposed onθ̂,
since when the maximization in (1) is subject to inequality con-
straints, one must replace (2) below with appropriate Karush-
Kuhn-Tucker conditions. Our focus is on imaging problems,
where often the only inequality constraint is nonnegativity of
θ̂. Although this constraint is often important inunpenalized
estimation methods, our primary interest is in objective func-
tionsΦ(θ, Y ) that include a regularization term. In our expe-
rience, the nonnegativity constraints are active relatively infre-
quently with regularized estimates, so the variances of the un-
constrained and constrained estimators are approximately equal
for most pixels (cf [9]). We demonstrate this property empiri-
cally in Section IV, where the mean and variance approximation
for the unconstrained estimator agree closely with the empirical
performance of an estimator implemented with nonnegativity
constraints.

Our derivation assumes the estimate is computed by “com-
pletely” maximizing an objective function, i.e., the approxima-
tions are not applicable to unregularized objective functions for
which one uses a “stopping rule” to terminate the iterations long
before the maximum is reached. In particular, our results are
inapplicable to unregularized methods such as iterative filtered
backprojection [10], the ordered subsets expectation maximiza-
tion algorithm [11], or weighted least squares conjugate gra-
dient [12]. Except in simple linear cases [13], it is generally
difficult to analyze the performance of methods based on stop-
ping rules, although Barrettet al. [14, 15] have analyzed the
per-iteration behavior of the maximum-likelihood expectation
maximization algorithm for emission tomography. The approx-
imations we derive are somewhat easier to use since they are
independent of number of iterations (provided sufficient itera-
tions are used to maximize the objective function).

Section II develops the mean and variance approximations.
We expect these approximations to be useful in many types of
signal processing problems. However, the particular tradeoffs
between the cost of the computing the approximations and the
cost of performing numerical simulations will likely differ be-
tween applications. Therefore, we devote most of the paper to
concrete illustrations of the utility and accuracy of the approx-
imations on two tomographic imaging applications. Section III
describes the (linear) regularized least-squares estimator. Sec-
tion IV illustrates that the approximations are accurate even for
a highly nonlinear penalized-likelihood estimator in a transmis-
sion tomographic imaging application. Section V illustrates
how one can use the variance approximation to obtain remark-
ably accurate estimates of variance even from a single noisy
measurement (e.g. real data) using a simple plug-in approach.
Section VI describes an emission tomographic imaging appli-
cation, where we show that a penalized least-squares estimator
has a systematic bias at low count rates.

II. A PPROXIMATIONS

We assumeΦ(·, Y ) has a unique global maximum̂θ ∈ Θ for
any measurementY , so thatθ̂ is well defined. We also restrict
our attention to suitably regular objective functions for which
one can find the required maximum in (1) by zeroing the partial
derivatives ofΦ(·, Y ):

0 =
∂

∂θj
Φ(θ, Y )

∣∣∣∣
θ=θ̂

, j = 1, . . . , p. (2)

It is this assumption that restricts our approximations to contin-
uous parameters and that precludes inequality constraints and
stopping rules.

For suitably regular Φ, the assumption of unique-
ness and the implicit function theorem [16, p. 266] en-
sure that the relationship (2) implicitly defines a function
θ̂ = h(Y ) = [h1(Y ) . . . hp(Y )] that maps the measurementY

into an estimatêθ. From (2) the functionh(Y )must satisfy:

0 =
∂

∂θj
Φ(θ, Y )

∣∣∣∣
θ=h(Y )

, j = 1, . . . , p. (3)

With perhaps a slight abuse of notation, we will rewrite (3) as:

0 =
∂

∂θj
Φ(h(Y ), Y ), j = 1, . . . , p, (4)

where we will always use∂∂θj to denote partial derivatives with

respect to the first argument of the functionΦ(θ, Y ), and ∂
∂Yn

to denote partial derivatives with respect to the second argu-
ment, regardless of what values are used to evaluate the result-
ing derivatives.

The implicitly defined functionh(Y ) can rarely be found an-
alytically, and one usually implements an iterative method for
maximizingΦ(·, Y ) to find θ̂. Even if one did have an analyt-
ical expression forh(Y ), it would still be difficult to compute
its mean or variance exactly since the estimatorh(Y ) is usually
nonlinear. Although exact analytical expressions for the mean
and variance ofh(Y ) are unavailable, if we knewh(Y ) we
could approximate its mean and variance using standard meth-
ods based on the second-order Taylor expansion ofh(Y ). If Ȳn
denotes the mean ofYn, then

h(Y ) ≈ h(Ȳ ) +
∑
n

∂

∂Yn
h(Ȳ )(Yn − Ȳn)

+
1

2

∑
n

∑
m

∂2

∂Yn∂Ym
h(Ȳ )(Yn − Ȳn)(Ym − Ȳm).(5)

We use this expansion in the following to derive approximations
for the covariance and mean ofθ̂ = h(Y ).

A. Covariance

For the covariance approximation we use the first-order Tay-
lor expansion in matrix form:

h(Y ) ≈ h(Ȳ ) +∇h(Ȳ )(Y − Ȳ ), (6)
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where∇ = [ ∂∂Y1 . . .
∂
∂YN
] denotes the (row) gradient operator.

Taking the covariance2 of both sides yields the following well-
known approximation [17, p. 426]:

Cov{θ̂} = Cov{h(Y )} ≈ ∇h(Ȳ ) Cov{Y } [∇h(Ȳ )]′. (7)

If we knewh(Y ) then we could directly apply (7) to approx-
imate the covariance of̂θ = h(Y ). But sinceh(Y ) is unknown,
(7) is not immediately useful. However, the dependence on
h(Y ) in (7) is only through its partial derivativesat the point
Ȳ . From the calculus of vector functions [18, p. 302], one can
determine the partial derivatives of an implicitly defined func-
tion by applying the chain rule. Differentiating (4) with respect
to Yn by applying the chain rule3 yields:

0 =
∑
k

∂2

∂θj∂θk
Φ(h(Y ), Y )

∂

∂Yn
hk(Y )+

∂2

∂θj∂Yn
Φ(h(Y ), Y ),

(8)
j = 1, . . . , p, n = 1, . . . , N . This equality givesN sets of
p equations inp unknowns, and it holds for anyY . However,
since (7) only depends on∇h(Ȳ ), we only need the special case
of (8) whereY = Ȳ . Writing that case in matrix form:

0 = ∇20Φ(h(Ȳ ), Ȳ )∇h(Ȳ ) +∇11Φ(h(Ȳ ), Ȳ ), (9)

where the(j, k)th element of thep × p operator∇20 is
∂2

∂θj∂θk
, and the(j, n)th element of thep × N operator∇11 is

∂2

∂θj∂Yn
. To proceed, we now assume that the symmetric matrix

−∇20Φ(h(Ȳ ), Ȳ ) is also positive definite4, so we can solve for
∇h(Ȳ ) by rearranging:

∇h(Ȳ ) = [−∇20Φ(h(Ȳ ), Ȳ )]−1 ∇11Φ(h(Ȳ ), Ȳ ). (10)

If we defineθ̌ = h(Ȳ ), then combining (10) with (7) yields the
following approximation for the covariance ofθ̂:

Cov{θ̂} ≈ [−∇20Φ(θ̌, Ȳ )]−1 ∇11Φ(θ̌, Ȳ ) Cov{Y } ·

[∇11Φ(θ̌, Ȳ )]′ [−∇20Φ(θ̌, Ȳ )]−1. (11)

Whenp is large, storing the full covariance matrix is inconve-
nient, and often one is interested primarily in the variance of cer-
tain parameters in a region of interest. Letej be thejth unit vec-
tor of lengthp, and defineuj = [−∇20Φ(θ̌, Ȳ )]−1ej . Note that
one does not need to perform ap×pmatrix inversion to compute
uj ; one simply solves the equation[−∇20Φ(θ̌, Ȳ )]uj = ej ,
which can be done directly whenp is small, or via fast iterative

2All expectations and covariances are taken with respect to the probability
density of the random measurementY . Typically one assumes this density is of
the formf(Y ; θtrue), whereθtrue is the unknown parameter to be estimated
using (1). However, our approximations do notrequire a parametric form for
the measurement distribution; we need only that the covariance of the measure-
ments be known (or can be estimated—see Section V).

3We restrict attention to objective functionsΦ(θ, Y ) for which the partial
derivatives we use exist.

4The assumption that−∇20Φ(h(Ȳ ), Ȳ ) is positive definite is much less
restrictive than the usual assumption thatΦ(·, Y ) is globally strictly concave
for any measurement vectorY . We only require thatΦ(h(Ȳ ), Ȳ ) be locally
strictly concave (neařθ) for noise-free datāY .

methods such as Gauss-Siedel whenp is large [19]. From (11)
it follows that

Cov{θ̂j , θ̂k} = (e
j)′Cov{θ̂}ek

≈ (uj)′ ∇11Φ(θ̌, Ȳ ) Cov{Y } [∇11Φ(θ̌, Ȳ )]′uk, (12)

for j, k = 1, . . . , p. One can compute any portion of the covari-
ance matrix of̂θ by using (12) repeatedly for appropriatej and
k. In general, computingVar{θ̂j} using this formula requires
O(p2 + np + n2) operations. In many problems, such as the
tomographic examples in Sections IV and VI, the covariance of
Y is diagonal and the partial derivatives have a sparse structure,
so the actual computation is much less.

To summarize, (11) and (12) are the main results of this sub-
section: approximate expressions for the estimator (co)variance
that depend only5 on the partial derivatives of the objective
functionΦ(θ, Y ), and do not require an expression for the im-
plicit functionh(Y ).

B. Mean

To approximate the mean of̂θ = h(Y ) one has two choices.
The simplest approach is to take the expectation of the 0th-order
Taylor expansion, yielding the approximation:

E{θ̂} = E{h(Y )} ≈ h(Ȳ ) = θ̌. (13)

This approximation is simply the value produced by applying
the estimator (1) tonoise-free data. This approach requires min-
imal computation, and works surprisingly well for penalized-
likelihood objectives. It has been used extensively by inves-
tigators in emission tomography [14, 15, 20]. Apparently, the
principal source of bias in penalized-likelihood estimators is the
regularizing penalty that one includes inΦ, so (13) allows one
to examine the effects of the penalty separately from the ef-
fects of noise. However, the approximation (13) is certainly
not always adequate, as the example in Section VI illustrates.
Therefore, we next derive a mean approximation based on the
second-order Taylor expansion, which is more accurate, but has
the disadvantage of greater computation.

Taking the expectation of both sides of the second-order Tay-
lor expansion (5) yields the following well-known approxima-
tion for the mean ofh(Y ):

E{θ̂} ≈ h(Ȳ ) +
1

2

∑
n

∑
m

∂2

∂Yn∂Ym
h(Ȳ )Cov{Yn, Ym},

(14)
where Cov{Yn, Ym} = E{(Yn − Ȳn)(Ym − Ȳm)} is the
(n,m)th element of the covariance matrix ofY . The approx-
imation (14) requires the second partial derivatives ofh(Y ). To
obtain those partial derivatives, we use the chain rule to differ-
entiate (8) again with respect toYm, obtaining:

0 =
∑
k

[∑
l

∂3

∂θj∂θk∂θl
Φ(h(Y ), Y )

∂

∂Ym
hl(Y )

5Note that (11) and (12) do depend onθ̌ = h(Ȳ ). By the definition (3) of
h(Y ), we see thaťθ = argmaxθ Φ(θ, Ȳ ), so we computěθ by applying the
estimation algorithm to the noise free dataȲ .
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+
∂3

∂θj∂θk∂Ym
Φ(h(Y ), Y )

]
∂

∂Yn
hk(Y )

+
∑
k

∂2

∂θj∂θk
Φ(h(Y ), Y )

∂2

∂Yn∂Ym
hk(Y )

+
∑
k

∂3

∂θj∂θk∂Yn
Φ(h(Y ), Y )

∂

∂Ym
hk(Y )

+
∂3

∂θj∂Yn∂Ym
Φ(h(Y ), Y ), (15)

for j = 1, . . . , p, n = 1, . . . , N, m = 1, . . . , N . One
can substitute iňθ = h(Ȳ ) and Y = Ȳ in the above ex-
pression to obtainN2 sets ofp equations in thep unknowns
{ ∂2

∂Yn∂Ym
hk(Ȳ )}

p
k=1. Solving each of those systems of equa-

tions and then substituting back into (14) yields an approxima-
tion toE{θ̂} that is independent of the unknown implicit func-
tion h(Y ). If p andn are large in a given problem, then one
must weigh the relative computational expense of solving the
above equations versus performing numerical simulations. The
tradeoff will depend on the structure of the objective function
Φ. Note that (15) depends on the first partials∂∂Yn hk(Y ), so
one must first apply (10) to compute those partials.

Unlike expression (8), which we were able to write in the
matrix form (9), there does not appear to be a simple form for
rewriting (15), except by introducing tensor products (which re-
ally do not offer much simplification). However, the equations
in (15) do simplify for some special cases forΦ, described next.

C. Independent Measurements

If the measurementsY1, . . . , YN are statistically independent,
then (14) simplifies to

E{θ̂} = E{h(Y )} ≈ h(Ȳ )+
1

2

∑
n

∂2

∂Y 2n
h(Ȳ )Var{Yn}. (16)

This expression depends only on the diagonal elements of the
covariance ofY and on the diagonal of the matrix of second
partial derivatives ofh(Y ). Therefore one needs only the cases
wherem = n in (15), i.e. one needs to solveN sets ofp equa-
tions inp unknowns of the form:

0 =
∑
k

[∑
l

∂3

∂θj∂θk∂θl
Φ(h(Y ), Y )

∂

∂Yn
hl(Y )

+2
∂3

∂θj∂θk∂Yn
Φ(h(Y ), Y )

]
∂

∂Yn
hk(Y )

+
∑
k

∂2

∂θj∂θk
Φ(h(Y ), Y )

∂2

∂Y 2n
hk(Y )

+
∂3

∂θj∂Y 2n
Φ(h(Y ), Y ), j = 1, . . . , p, n = 1, . . . , N.

D. Scalar Parameter

If p = 1, i.e.θ is a scalar, then (15) simplifies to

0 =

[
∂3

∂θ3
Φ(h(Y ), Y )

∂

∂Ym
h(Y )

+
∂3

∂θ2∂Ym
Φ(h(Y ), Y )

]
∂

∂Yn
h(Y )

+
∂2

∂θ2
Φ(h(Y ), Y )

∂2

∂Yn∂Ym
h(Y )

+
∂3

∂θ2∂Yn
Φ(h(Y ), Y )

∂

∂Ym
h(Y )

+
∂3

∂θ∂Yn∂Ym
Φ(h(Y ), Y ), n = 1, . . . , N, m = 1, . . . , N.

(17)
By rearranging we can solve explicitly for the second partials of
h(Y ):

∂2

∂Yn∂Ym
h(Ȳ ) =

[
−
∂2

∂θ2
Φ(θ̌, Ȳ )

]−1
([

∂3

∂θ3
Φ(θ̌, Ȳ )

∂

∂Ym
h(Ȳ ) +

∂3

∂θ2∂Ym
Φ(θ̌, Ȳ )

]
∂

∂Yn
h(Ȳ )

+
∂3

∂θ2∂Yn
Φ(θ̌, Ȳ )

∂

∂Ym
h(Ȳ ) +

∂3

∂θ∂Yn∂Ym
Φ(θ̌, Ȳ )

)
.

Substituting this expression into (14) yields the approximate
mean for a scalar parameter estimator.

III. E XAMPLE: REGULARIZED LEAST SQUARES

The approximations for mean and covariance derived above
are exact in the special case where the estimator is linear, since
in that case the first-order Taylor expansion (6) is exact. In this
section we verify this property by computing (11) and (15) for
a regularized least-squares problem. The expressions are useful
for making comparisons with the corresponding approximation
for nonlinear estimators derived in the subsequent sections.

Suppose the measurements obey the standard linear model
with additive noise:

Y = Aθ + noise,

whereA is a knownN × p matrix. For such problems, the
following regularized weighted least-squares objective function
is often used for estimation:

Φ(θ, Y ) = −
1

2
(Y −Aθ)′Π(Y −Aθ)− βR(θ),

whereΠ is a nonnegative definite weighting matrix andR(θ) is
a roughness penalty of the form

R(θ) =
∑
j

1

2

∑
k

wjkφ(θj − θk), (18)

wherewjk = 1 for horizontal and vertical neighbors,wjk =
1/
√
2 for diagonal neighbors, and is 0 otherwise. Note that

∇11R(θ) = 0
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and define
R(θ) = ∇2R(θ) (19)

to be the matrix of second partials ofR(θ). The(j, k)th element
ofR(θ) is: { ∑

k′ wjk′ φ̈(θj − θk′ ), j = k

−wjkφ̈(θj − θk), j 6= k
,

whereφ̈ denotes the second derivative ofφ.
Consider the quadratic case whereφ(x) = x2/2, soR(θ) =

1
2θ
′Rθ. AssumeR is a symmetric nonnegative definite regular-

ization matrix whose null space is disjoint from the null space
of ΠA. In this case one can derive an explicit expression for
the estimator:

θ̂ = h(Y ) = (A′ΠA+ βR)−1A′ΠY, (20)

from which one can derive exact expressions for the mean and
covariance. However, for didactic purposes, we instead derive
the mean and covariance using the “approximations” (11) and
(15).

The partial derivatives ofΦ(θ, Y ) are:

−∇20Φ = A′ΠA+ βR

∇11Φ = −A′Π

∇30Φ = ∇21Φ = ∇12Φ = 0, (21)

so substituting into (15), one finds that∇2h(Y ) = 0. Thus from
(14):

E{θ̂} = h(Ȳ ) = (A′ΠA+ βR)−1A′ΠȲ ,

which of course is exactly what one would get from (20). Sub-
stituting (21) into (11) yields the estimator covariance:

Cov{θ̂} =

[A′ΠA+ βR]−1A′ΠCov{Y }ΠA[A′ΠA+ βR]−1,

which again agrees with (20). If the measurement covariance
is known, then usually one choosesΠ−1 = Cov{Y }, in which
case

Cov{θ̂} = (F+ βR)−1F(F+ βR)−1, (22)

whereF = A′Cov{Y }−1A is the Fisher information for esti-
matingθ fromY , when the noise has a normal distribution. The
covariance approximations derived in the following sections are
similar to (22).

Since our approximations for the mean and covariance are
exact for quadratic objective functions, one might expect the ap-
proximation accuracy for a non-quadratic objective will depend
on how far the objective deviates from being quadratic. Many
objective functions are locally quadratic, so we expect that the
approximation accuracy will depend on the signal to noise ratio
(SNR) of the measurements. Indeed, from (5) it is clear that as
the noise variance goes to zero, we will haveYn → Ȳn, so the
Taylor approximation error will vanish. This asymptotic prop-
erty is illustrated empirically in the next section.

IV. EXAMPLE: TRANSMISSION TOMOGRAPHY

To illustrate the accuracy of the approximation for estimator
covariance given by (11), in this section we consider the prob-
lem of tomographic reconstruction from Poisson distributed
PET transmission data. Our description of the problem is brief,
for more details see [21–23]. Since PET transmission scans are
essentially measurements of nuisance parameters, one would
like to use very short transmission scans. Since short scans
have fewer counts (lower SNR), the conventional linear filtered
backprojection (FBP) reconstruction method performs poorly.
Statistical methods have the potential to significantly reduce the
error variance, but since they are nonlinear, only empirical stud-
ies of estimator performance have been previously performed
to our knowledge. Analytical expressions for the variance will
help us determine (without exhaustive simulations) conditions
under which statistical methods will outperform FBP.

In transmission tomography the parameterθj denotes the at-
tenuation coefficient in thejth pixel. The transmission measure-
ments have independent Poisson distributions, and we assume
the mean ofYn is:

Ȳn(θ) = Tpn(θ)

pn(θ) = bne
−
∑

j
anjθj + rn, (23)

where theanj factors denote the intersection length of thenth
ray passing though thejth pixel,{bn} denote the rates of emis-
sions from the transmission source,{rn} denote additive back-
ground events such as random coincidences, andT denotes
the scan duration. These nonnegative factors are all assumed
known. The log-likelihood is:

L(θ, Y ) =
∑
n

Yn log Ȳn(θ) − Ȳn(θ), (24)

neglecting constants independent ofθ. Since tomography is
ill-conditioned, rather than performing ordinary ML estima-
tion, many investigators have used penalized-likelihood objec-
tive functions of the form6

Φ(θ, Y ) =
1

T
L(θ, Y )− βR(θ), (25)

where the roughness penaltyR was defined in (18).
Due to the nonlinearity of (23) and the non-quadratic likeli-

hood function (24) for Poisson statistics, the estimateθ̂ formed
by maximizing (25) is presumably a very nonlinear function of
Y . Furthermore, since attenuation coefficients are nonnegative,
one usually enforces the inequality constraintθ̂ ≥ 0. There-
fore this problem provides a stringent test of the accuracy of the
mean and variance approximations.

A. Covariance Approximation

Since the number of measurements (or rays)N and the num-
ber of parameters (pixels)p are both large, we would like to ap-
proximate the variance of certain pixels of interest using (12),

6Due to the1
T

term in (25), one can show that for a fixedβ, asT →∞, the

maximum penalized-likelihood estimatêθ will converge in probability tǒθ, a
biased estimate [1]. For asymptotically unbiased estimates, one must letβ → 0
at an appropriate rate asT →∞ [6].
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which requires the following partial derivatives:

∂

∂θj
L(θ, Y ) = T

∑
n

anj

(
1−

Yn

Ȳn(θ)

)
(pn(θ) − rn)

−
∂2

∂θj∂θk
L(θ, Y ) = T

∑
n

anjankqn(θ)

qn(θ) =

(
1−

rnYn/T

p2n(θ)

)
bne

−
∑

j
anjθj

∂2

∂θj∂Yn
L(θ, Y ) = −anj

(
1−

rn

pn(θ)

)
.

Combining the above expressions in matrix form with the ex-
pressions for the partials ofR given in Section III:

−∇20Φ(θ, Y ) = A′diag {qn(θ)}A+ βR(θ)

∇11Φ(θ, Y ) = −
1

T
A′diag

{
1−

rn

pn(θ)

}
,

whereA = {anj} is a large sparse matrix, anddiag {vn} de-
notes aN ×N diagonal matrix with elementsv1, . . . , vN along
the diagonal. For simplicity we focus on the case wherern = 0,
in which caseqn(θ) = pn(θ) and the above expressions sim-
plify to

−∇20Φ(θ, Y ) = A′diag {pn(θ)}A+ βR(θ)

∇11Φ(θ, Y ) = −
1

T
A′.

It follows from the assumption that the measure-
ments have independent Poisson distributions that
Cov{Y } = diag

{
Ȳn(θ

true)
}

. Substituting into (11) and
simplifying yields the following approximation to the estimator
covariance:

Cov{θ̂} ≈
1

T
[F(θ̌) + βR(θ̌)]−1F(θtrue)[F(θ̌) + βR(θ̌)]−1,

(26)
where

F(θ) = A′diag {pn(θ)}A (27)

is 1/T times the Fisher information for estimatingθ from Y .
Note the similarity to (22).

We compute the approximate variance ofθ̂j by using the fol-
lowing recipe.

• Computeθ̌ = argmaxθ Φ(θ, Ȳ ) by applying to noise-free
data Ȳ a maximization algorithm such as the fast con-
verging coordinate-ascent algorithm of Bouman and Sauer
[24,25].

• Forward projecťθ to computepn(θ̌) =
∑
j anj θ̌j + rn.

Likewise forpn(θtrue).

• Pick a pixel j of interest and solve the equation
[A′diag

{
pn(θ̌)

}
A + βR(θ̌)]uj = ej for uj using a fast

iterative method such as preconditioned conjugate gradi-
ents [26] or Gauss-Siedel [19].

• Compute1
T (u

j)′A′diag {pn(θtrue)}Auj by first forward
projectinguj to computev = Auj , and then summing:

Var{θ̂j} ≈
1

T

∑
n

v2npn(θ
true).

The overall computational requirements for this recipe are
roughly equivalent to two maximizations ofΦ. Thus, if one only
needs the approximate variance for a few pixels of interest, it is
more efficient to use the above technique than to perform nu-
merical simulations that require dozens of maximizations ofΦ.

B. Empirical Results

To assess the accuracy of approximation (26), we per-
formed numerical simulations using the synthetic attenuation
map shown in Fig. 1 asθtrue. This image represents a hu-
man thorax cross-section with linear attenuation coefficients
0.0165mm−1, 0.0096mm−1, and 0.0025mm−1, for bone, soft
tissue, and lungs respectively. The image was a 128 by 64 ar-
ray of 4.5mm pixels. We simulated a PET transmission scan
with 192 radial bins and 96 angles uniformly spaced over180◦.
Theanj factors corresponded to 6mm wide strip integrals with
3mm center-to-center spacing. (This is an approximation to the
ideal line integral that accounts for finite detector width.) We
generated thebn factors using pseudo-random log-normal vari-
ates with a standard deviation of 0.3 to account for detector ef-
ficiency variations. We performed four studies with the scale
factorT set so that

∑
n Ȳn(θ

true) was 0.25, 1, 4, and 16 mil-
lion counts. We setrn = 0 for simplicity. For each study,
we generated 100 realizations of pseudo-random Poisson trans-
mission measurements according to (23) and then reconstructed
using the penalized-likelihood estimator described by (25) us-
ing a coordinate-ascent algorithm [23]. This algorithm enforced
the nonnegativity constraint̂θ ≥ 0. For simplicity, we used the
functionφ(x) = x2/2 for the penalty in (18). We also recon-
structed attenuation maps using the conventional FBP algorithm
at a matched resolution. The FBP images served as the initial
estimate for the iterative algorithm.

We computed the sample standard deviations of the estimates
for the center pixel from these simulations, as well as the ap-
proximate predicted variance given by (26). Fig. 2 shows the
results, as well as the (much inferior) performance of the con-
ventional FBP method. The predicted variance agrees very
well with the actual estimator performance, even for measured
counts lower than are clinically relevant (20% error standard de-
viations would be clinically unacceptable). Therefore, for clin-
ically relevant SNRs, the variance approximation given by (26)
can be used to predict estimator performance reliably. For the
simulation with 250K counts, the approximation agreed within
7% of the empirical results. For the simulations with more
than 1M counts, the difference was smaller than 1%. Note the
asymptotic property: better agreement between simulations and
predictions for higher SNR.

Many authors have reported that the 0th-order mean approx-
imation (13) is reasonably accurate for maximum-likelihood
estimators [14, 15, 20]; we have found similar results for
penalized-likelihood estimators such as (25). (This is fortuitous
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since the 2nd-order expressions for mean are considerably more
expensive to compute sincep = 128 · 64 andN = 192 · 96
are very large in this example.) Figure 3 displays a represen-
tative cross-section through the mean predicted by (13) and the
empirical sample mean computed from the 1M count simula-
tions. The predicted mean agrees very closely with the sample
mean. These results demonstrate that the mean and variance ap-
proximations (13) and (11) are useful for predicting penalized-
likelihood estimator performance in transmission tomography.

V. POST-ESTIMATION PLUG-IN VARIANCE

APPROXIMATION

The approximation (11) for the estimator covariance depends
on bothθ̌ andCov{Y }, so as written its primary use will be in
computer simulations wherěθ andCov{Y } are known. Some-
times one would like to be able to obtain an approximate esti-
mate of estimator variability from a single noisy measurement
(such as real data), for whichθtrue is unknown, andCov{Y }
may also be unknown. In some problems this can be done using
a “plug-in” estimate in which we substitute the estimateθ̂ in for
θ̌ in (11). The effectiveness of this approach will undoubtably
be application dependent, so in this section we focus on the spe-
cific problem of transmission tomography.

Using the transmission tomography model given in the pre-
vious section, assume we have a single noisy measurement re-
alizationY and a penalized-likelihood estimateθ̂ computed by
maximizing the objective function (25). If we knew̌θ andθtrue,
then we could use (26) to approximate the covariance ofθ̂. If
we only havêθ, then in light of the form of the covariance ap-
proximation given by (26), a natural approach to estimating the
covariance would be to simply plug-in̂θ for θ̌ andθtrue in (26):

̂
Cov{θ̂} =

1

T
[F(θ̂) + βR(θ̂)]−1F(θ̂)[F(θ̂) + βR(θ̂)]−1,

from which one can compute estimates of the variance of indi-
vidual pixels or region-of-interest values using the same tech-
nique as in (12).

At first it may seem unlikely that such a simplistic approach
would yield reliable estimates of variability. However, note
that in the definition (27) ofF(θ), the only dependence onθ
is through itsprojectionspn(θ). In tomography, the projection
operation is asmoothingoperation, i.e., high spatial-frequency
details are attenuated (hence the need for a ramp filter in lin-
ear reconstruction methods). Therefore, if the low and middle
spatial frequencies of̂θ agree reasonably well witȟθ andθtrue,
then the projectionspn(θ̂), pn(θ̌), andpn(θtrue) will be very
similar. Furthermore, the dependence on thepn terms in (26)
is through a diagonal matrix that is sandwiched between theA′

andA matrices—which induce further smoothing.
To evaluate the reliability of this post-reconstruction plug-

in estimate of variance, we used each of the 100 realizations
described in the previous section to obtain a post-reconstruction
estimate of the variance of estimate of the center pixel of the
object shown in Fig.1. If̂θ(m) denotes themth realization(m =
1, . . . , 100), then themth estimate of the standard deviation of

θ̂j is:

σ̂
(m)
j =

[
(ej)′

̂
Cov{θ̂}ej

]1/2
=

[
(ej)′

1

T
[F(θ̂) + βR(θ̂)]−1F(θ̂)[F(θ̂) + βR(θ̂)]−1ej

]1/2
.

(28)

Histograms of the standard deviation estimates
{
σ̂
(m)
j

}100
m=1

are shown in Figs. 4 and 5 for the 250K and 1M count simula-
tions respectively. The actual sample standard deviations for the
two cases were1.74 ·10−3 and9.30 ·10−4 respectively. For the
250K count simulations, each of the 100 estimates was within
8% of the actual sample standard deviation. For the 1M count
simulations, each of the 100 estimates was within 0.5% of the
actual sample standard deviation. These are remarkably accu-
rate estimates of variability, and clearly demonstrate the feasi-
bility of estimating the variability of penalized-likelihood esti-
mators even from single noisy measurements. One important
application of such measures of variability would be in com-
puting weighted estimates of kinetic parameters from dynamic
PET scans [27].

VI. EXAMPLE: EMISSION TOMOGRAPHY

In this section we examine the accuracy of both the mean
and the variance approximations for the problem of emission
tomography. Our description of the problem is brief, for more
details see [21,28].

In emission tomography the parameterθj denotes the ra-
dionuclide concentration in thejth pixel. The emission mea-
surements have independent Poisson distributions, and we as-
sume the mean ofYn is:

Ȳn(θ) = Tpn(θ)

pn(θ) =
∑
j

anjθj + rn, (29)

where theanj are proportional to the probability that an emis-
sion in voxelj is detected by thenth detector pair,{rn} denotes
additive background events such as random coincidences, andT
denotes the scan duration. These nonnegative factors are all as-
sumed known. The log-likelihood for emission tomography has
the same form as (24), but with definition (29) forȲn(θ). We
again focus on penalized-likelihood objective functions of the
form (25).

Due to the nonnegativity constraints, the nonquadratic
penalty (see below), and the nonquadratic form of the log-
likelihood, this problem also provides a stringent test of the ac-
curacy of our moment approximations.

A. Covariance Approximation

Approximating the variance of certain pixels of interest us-
ing (12) requires the following partial derivatives:

∂

∂θj
L(θ, Y ) = T

∑
n

anj

(
Yn

Ȳn(θ)
− 1

)
−

∂2

∂θj∂θk
L(θ, Y ) = T

∑
n

anjank
Yn/T

p2n(θ)
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∂2

∂θj∂Yn
L(θ, Y ) = anj/pn(θ).

Combining the above expressions in matrix form with the ex-
pressions for the partials ofR given in Section III:

−∇20Φ(θ, Y ) = A′diag

{
Yn/T

p2n(θ)

}
A+ βR(θ)

∇11Φ(θ, Y ) = −
1

T
A′diag

{
1

pn(θ)

}
.

Thus

−∇20Φ(θ̌, Ȳ ) = A′diag

{
pn(θ

true)

p2n(θ̌)

}
A+ βR(θ̌)

∇11Φ(θ̌, Ȳ ) = −
1

T
A′diag

{
1

pn(θ̌)

}
.

It follows from the assumption that the measure-
ments have independent Poisson distributions that
Cov{Y } = diag

{
Ȳn(θ

true)
}

. Substituting into (11) and
simplifying yields the following approximation to the estimator
covariance:

Cov{θ̂} ≈
1

T
[F+ βR(θ̌)]−1F[F+ βR(θ̌)]−1, (30)

where

F = A′diag

{
pn(θ

true)

p2n(θ̌)

}
A. (31)

We compute the approximate variance ofθ̂j using a recipe sim-
ilar to that given in Section IV.

B. Empirical Results

To assess the accuracy of approximation (30), we performed
numerical simulations using the synthetic brain image shown in
Fig. 6 asθtrue, with radioisotope concentrations 4 and 1 (arbi-
trary units) in gray and white matter respectively. The image
was a 112 by 128 array of 2mm pixels. We simulated a PET
emission scan with 80 radial bins and 110 angles uniformly
spaced over180◦. The anj factors correspond to 6mm wide
strip integrals on 3mm center-to-center spacing, modified by
pseudo-random log-normal variates with a standard deviation
of 0.3 to account for detector efficiency variations, and by head
attenuation factors. Four studies were performed, with the scale
factorT set so that

∑
n Ȳn(θ

true) was 0.2, 0.8, 3.2, and 12.8
million counts. Thern factors were set to a uniform value cor-
responding to 10% random coincidences. For each study, 100
realizations of pseudo-random Poisson transmission measure-
ments were generated according to (29) and then reconstructed
using a space-alternating generalized EM algorithm [28], which
enforces the nonnegativity constraintθ̂ ≥ 0. FBP images served
as the initial estimate for the iterative algorithm.

For the penalty functionφ we studied two cases: the simple
quadratic caseφ(x) = x2/2, as well as a nonquadratic penalty:
the third entry in Table III of [29]:

φ(x) = δ2 [|x|/δ − log(1 + |x|/δ)] ,

with δ = 1. This nonquadratic penalty blurs edges less than the
quadratic penalty.

We computed the sample standard deviations of the esti-
mates, as well as the approximate predicted variance given
by (26) for two pixels: one at the center and one at the right
edge of the left thalamus (oval shaped region near image cen-
ter).

The results for the quadratic penalty are shown in Figs. 7 and
8. The trends are similar to those reported for transmission to-
mography: good agreement between the empirical standard de-
viations and the analytical predictions, with improving accuracy
with increasing counts. Note that for the quadratic penalty, pix-
els at the center and edge of the thalamus have similar variances.

The results for the nonquadratic penalty are shown in Figs.
9 and 10. For the pixel at the edge of the thalamus, the pre-
dicted and empirical variances agree well. But for the pixel
at the center of the thalamus, the empirical variance was sig-
nificantly higher than the predicted value for the 0.8M count
case. Further work is therefore needed for nonquadratic penal-
ties. Note that the edge pixel had higher variance than the cen-
ter pixel with the nonquadratic penalty. The importance of this
nonuniformity also needs investigation. Overall though, as in
the transmission case we conclude that the variance approxima-
tion (11),(30) gives reasonably accurate predictions of estimator
performance, with better agreement at higher SNR.

We also investigated the post-estimation plug-in approach de-
scribed in Section V for the 0.8M count emission case. The
plug-in estimates of standard deviation for the two pixels con-
sidered were all within 1% of thepredictedvalues for the stan-
dard deviation. Thus, plugging in̂θ to (30) yields essentially
the same value as one gets by usingθ̌ andθtrue. Thus it appears
that the intrinsic error in the approximation (30) is more signif-
icant than the differences betweenθ̂ andθtrue. Practically, this
suggests that if one can establish by simulation that the approxi-
mation error is small for measurements with more than a certain
number of counts from a given tomograph, then one can use the
plug-in approximation with such measurements and have con-
fidence in the accuracy of the results even thoughθtrue is un-
known.

As illustrated by Fig. 11, the 0th-order mean approxima-
tion (13) again compares closely with the empirical sample
mean for this likelihood-based estimator. However, the next
subsection demonstrates that this accuracy does not apply to the
very nonlinear data-weighted least squares estimator for emis-
sion tomography.

C. Mean: 2nd Order

This subsection illustrates an application of the second-order
approximation for estimator mean given by (16). In the rou-
tine practice of PET and SPECT, images are reconstructed us-
ing non-statistical Fourier methods [30]. Often one can obtain
more accurate images using likelihood-based methods. Since
there is no closed form expression for Poisson likelihood-based
estimates, one must resort to iterative algorithms, many of
which converge very slowly. Therefore, some investigators have
replaced the log-likelihood objective with a weighted least-
squares orquadraticobjective for which there are iterative algo-
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rithms that converge faster (e.g. [24,25,31,32]). Unfortunately,
in the context oftransmissiontomography, quadratic objec-
tives lead to estimationbias for low-count measurements [23].
To determine whether a similar undesirable bias exists for the
quadratic approximation in theemissioncase, we now use the
analytical expression (16) for estimator mean.

The log-likelihood is non-quadratic, and the idea of using
quadratic approximations to the log-likelihood has been studied
extensively. Bouman and Sauer have nicely analyzed the ap-
proximations using a second-order Taylor expansion. Follow-
ing [24, 25], the quadratic approximation to the log-likelihood
ΦL(θ, Y ) = L(θ, Y ) is

ΦQ(θ, Y ) = −
1

2

∑
n : Yn>0

1

Yn
(Yn − Ȳn(θ))

2.

The objective functionsΦL andΦQ each implicitly define
a nonlinear estimator. Even whenp = 1, there is no closed
form solution for the maximum-likelihood estimate, except in
the special case whenrn/an is a constant independent ofn.

For large images, the computation required for solving (16)
appears prohibitive. Therefore, we consider a highly simplified
version of emission tomography, where the unknown is a scalar
parameter (p = 1). This simplified problem nevertheless pro-
vides insight into the estimator bias without the undue notation
of the multi-parameter case. In Table 1 we derive the partial
derivatives necessary for evaluating (16) for each objective (for
p = 1). In this tableFθ denotes the Fisher information for esti-
matingθ from {Yn}:

Fθ = −E{∇
2
θ log f(Y, θ)} =

∑
n

a2n/Ȳn(θ) =
∑
n

a2n
anθ + rn

.

The second and final two rows of Table 1 show three important
points:

• For each objective,∇10Φ(θ, Ȳ (θ)) = 0, so that θ̌ =
h(Ȳ (θ)) = θ, i.e. the estimators work perfectly with
noiseless data. Therefore the 0th-order approximation (13)
yieldsE{θ̂} = θ, which is inaccurate for theΦQ estimator.

• The variances of the estimators are approximately equal.

• The maximum-likelihood estimate is unbiased to second
order, whereas the quadratic estimate is biased.

Figure 12 compares the bias predicted analytically using the
approximation (16) with an empirically computed bias per-
formed by numerical simulations. In these simulations we used
θtrue = 1, rn = 0, an = 1, andN = 10, and variedT so
that 1

N

∑
n Ȳn(θ

true) (average number of counts per detector)
ranged from 2 to 100. The predicted and empirical results again
agree very closely except when there are fewer than 4 aver-
age counts per detector. These results show that if the aver-
age counts per detector is below 10, then using the quadratic
approximation to the Poisson log-likelihood can lead to bi-
ases exceeding 10%. In practice, the importance of this bias
should be considered relative to other inaccuracies such as the
approximations used in specifyingan. When the bias due to

the quadratic approximation is significant, one can apply a hy-
brid Poisson/polynomial objective function similar to that pro-
posed for transmission tomography [23]. In this approach, one
uses the quadratic approximation for the high-count detectors,
but the original log-likelihood for the low-count measurements,
thereby retaining most of the computational advantage of the
quadratic objective function without introducing bias [23].

VII. D ISCUSSION

We have derived approximations for the mean and covari-
ance of estimators that are defined as the maximum of some
objective function. In the context of imaging applications with
large numbers of unknown parameters, the variance approxima-
tion and the 0th-order mean approximation should be useful for
predicting the performance of penalized-likelihood estimators.
For applications with fewer parameters, one can also use the
second-order mean approximation for improved accuracy.

In some applications one would like to perform estimation
by maximizing an objective function subject to certain equality
constraints. One can use methods similar to the derivation of
the constrained Cramer-Rao lower bound [33, 34] to generalize
the covariance approximation (11) to include the reduction in
variance that results from including constraints.

Our empirical results indicate that the accuracy of the pro-
posed approximations improve with increasing SNR, which is
consistent with the asymptotics discussed in the Appendix. If
the SNR is too low, the approximation accuracy may be poor,
but “how low is too low” will obviously be application depen-
dent. The approximations are also likely to overestimate the
variance of pixels that are near zero when one enforces nonneg-
ativity constraints. Thus these approximations do not eliminate
the need for careful numerical simulations.

In our own work, thus far we have primarily used the ap-
proximations to determine useful values of the regularization
parameter prior to performing simulations comparing various
approaches (as in Section IV). In the future, we expect to eval-
uate the post-reconstruction estimate of region variability (Sec-
tion V) for performing weighted estimates of kinetic parame-
ters from dynamic PET emission scans [27]. Many PET scan
protocols are indeed dynamic scans acquired for the purpose
of extracting kinetic parameters; therefore, the ability to esti-
mate region variability is essential. Since FBP is a linear recon-
struction algorithm, it is straightforward to compute estimates
of variability for Poisson emission measurements [27, 35]. If
nonlinear penalized-likelihood methods are ever to replace FBP
in the routine practice of PET, reliable estimates of variability
(such as the plug-in method we have proposed) will be needed
for a variety of purposes.

VIII. A PPENDIX

This appendix synopsizes the asymptotic variance of M-
estimates given by Serfling [1]. The results in Serfling are
for a scalar parameterθ, so we consider the scalar case be-
low. (See [36] for the multiparameter case.) As in Section I,
letΦ(θ, Y ) be the objective function that is to be maximized to
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find θ̂, and define

ψ(θ, Y ) =
∂

∂θ
Φ(θ, Y ).

AssumeY has a probability distributionF (y; θtrue), and letθ̄
be the value ofθ that satisfies:∫

ψ(θ, y) dF (y; θtrue) = 0. (32)

Serfling [1] shows that̂θ is asymptotically normal with mean̄θ
and variance ∫

ψ2(θ̄, y) dF (y; θtrue)[
∂
∂θ

∫
ψ2(θ, y) dF (y; θtrue)

∣∣
θ=θ̄

]2 . (33)

This asymptotic variance is somewhat inconvenient to use in
imaging problems for the following reasons.

• The termθ̄ plays a role similar to ouřθ, but solving the
integral equation (32) for̄θ is in general more work than
calculatingθ̌ by maximizingΦ(·, Ȳ ).

• Both θ̄ and the expression for the asymptotic variance de-
pend on the entire measurement distributionF (y; θtrue),
whereas our approximation depends only on the mean and
covariance of the measurements.

With some additional work, one can show that ifψ(θ, Y ) is
affine in Y , then θ̄ and θ̌ are equal, and (33) is equivalent to
(11). Both Gaussian and Poisson measurements yieldψ that
are affine inY (cf (24)), so (11) is the asymptotic covariance in
those cases, provided the penalty is data-independent. For data-
dependent penalties [37] or for more complicated noise distribu-
tions, such as the Poisson/Gaussian model for CCD arrays [38],
the covariance approximation given by (11) will probably be
easier to implement than (33).
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Objective
Term Likelihood Quadratic

Φ(θ, Y )
∑
n Yn log Ȳn(θ)− Ȳn(θ) − 12

∑
n(Yn − Ȳn(θ))

2/Yn

∂
∂θΦ(θ, Y )

∑
n an(Yn/Ȳn(θ)− 1)

∑
n an(1− Ȳn(θ)/Yn)

− ∂2

∂θ2
Φ(θ, Y )

∑
n a
2
nYn/Ȳn(θ)

2
∑
n a
2
n/Yn

∂3

∂θ3Φ(θ, Y )
∑
n 2a

3
nYn/Ȳn(θ)

3 0

∂2

∂θ∂Yn
Φ(θ, Y ) an/Ȳn(θ) anȲn(θ)/Y

2
n

∂3

∂θ∂Y 2n
Φ(θ, Y ) 0 −2anȲn(θ)/Y 3n

∂3

∂θ2∂Yn
Φ(θ, Y ) −a2n/Ȳn(θ)

2 a2n/Y
2
n

− ∂2

∂θ2
Φ(θ, Ȳ ) Fθ Fθ

∂3

∂θ3
Φ(θ, Ȳ ) 2

∑
n a
3
n/Ȳ

2
n 0

∂2

∂θ∂Yn
Φ(θ, Ȳ ) an/Ȳn an/Ȳn

∂3

∂θ∂Y 2n
Φ(θ, Ȳ ) 0 −2an/Ȳ 2n

∂3

∂θ2∂Yn
Φ(θ, Ȳ ) −a2n/Ȳ

2
n a2n/Ȳ

2
n

∂
∂Yn

h(Ȳ ) an/(ȲnFθ) an/(ȲnFθ)

∂2

∂Y 2n
h(Ȳ ) 2

F 2
θ

a2n
Ȳ 2n

[
1
Fθ

∑
n a
3
n/Ȳ

2
n − an/Ȳn

]
2
Fθ

an
Ȳ 2n

[
a2n
ȲnFθ

− 1
]

Var{θ̂} ≈ 1/Fθ 1/Fθ

E{θ̂} − θ ≈ 0 1
F 2
θ

∑
n
a3n
Ȳ 2n
− 1
Fθ

∑
n
an
Ȳn

Table 1: Objective functions and partial derivatives for scalar emission tomography problem withȲn(θ) = anθ.
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Figure 1: Simulated thorax attenuation map used to evaluate
the mean and variance approximations for penalized-likelihood
estimators in transmission tomography.
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Figure 2: Variance for center pixel of attenuation map as pre-
dicted by (26) compared with simulation results from penalized-
likelihood estimator (25). Also shown is the variance of conven-
tional FBP.
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Figure 3: Horizontal cross-section through predicted estimator
mean and empirical sample mean. Despite the nonlinearity of
the estimator, the prediction agrees closely with the empirical
performance.
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Figure 4: Histogram of 100 post-reconstruction plug-in esti-
mates of variabilityVar{θj} described by (28), wherej cor-
responds to the center pixel of the attenuation map shown in
Fig. 1, for 250K count measurements. The empirical standard
deviation from 100 realizations was1.74 · 10−3mm−1.
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Figure 5: As in previous figure, but for 1M count measure-
ments. The empirical standard deviation from 100 realizations
was9.30 · 10−4mm−1.
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Figure 6: Simulated brain radioisotope emission distribution.
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Figure 7: Comparison of predicted variance from (30) with em-
pirical performance of penalized-likelihood emission image re-
construction with quadratic penalty for pixel at center of thala-
mus.

Proposed analytical approximation
Penalized likelihood estimator   

10
5

10
6

10
7

10
8

0

0.2

0.4

0.6

0.8

1

Total Measured Counts [Millions]

S
ta

nd
ar

d 
D

ev
ia

tio
n

Estimator Variance in Emission Tomography

Quadratic penalty

Edge of thalamus

Figure 8: As in Fig. 7 but for pixel at edge of thalamus.
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Figure 9: As in Fig. 7 but for nonquadratic penalty (see text).
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Figure 10: As in Fig. 8 but for nonquadratic penalty (see text).
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Figure 11: Horizontal profile through emission phantom, 0th-
order predicted mean, and empirical mean from penalized-
likelihood estimator using nonquadratic penalty for 0.8M count
case.
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Maximum Likelihood     
Quadratic Approximation
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Figure 12: Bias for scalar emission estimation problem for
the maximum-likelihood estimator and for the weighted least-
squares estimator based on a quadratic approximation to the
log-likelihood. Solid lines are the analytical formulas in the
last row of Table I; the other points are empirical results.
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