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ABSTRACT The absence of an explicit analytical expression of the form

M : . . . = h(Y) makes it difficult to study the mean and variance
any estimators in signal processing problems are define _ - . . )

implicitly as the maximum of some objective function. Exam? the est|n_1at0i9, exce_pt through numerical S|mulat|ons.u Of.'

ples of implicitly defined estimators include maximum likeli{eN the estimators of interest depend on one or more *tuning

hood, penalized likelihood, maximua posteriori and non- parameters,” such as the regularization parameter in penalized-

linear least-squares estimation. For such estimators, exactlﬁ?‘?—“hOOd me_thods, and one .W(.)UId like to be able to easily

alytical expressions for the mean and variance are usually fludy the estimator characteristics over a range of va_Iues for
available. Therefore investigators usually resort to numeri«fD pse pgrg_meters. In _SUCh cases, _numerlcal_ S|mu|at|ons_can
simulations to examine properties of the mean and variance prohibitively expensive for complicated estimators (partic-

such estimators. This paper describes approximate express ALY whenp is Iarge).. Similar con5|derat|ons. apply if one
for the mean and variance of implicitly defined estimators ishes to compare estimator performance against the uniform

unconstrained continuous parameters. We derive the apprfﬁ‘:"mer'_Rao btougd ff?r ?[{?}sed ?stm:ator?h[Z, :”f] to e_ramlnls Lhe
mations using the implicit function theorem, the Taylor expa las-variance tradeott ot the estimator. Theretore, it would be

sion, and the chain rule. The expressions are defined solel>5‘ﬁ$fUI to have approximate expressions for the mean and vari-

terms of the partial derivatives of whatever objective functio '“€ of implicitly defined estimators, particularly if those ap-

one uses for estimation. As illustrations, we demonstrate ﬂpépxim:?\tions require less computation than multiple numerical

the approximations work well in two tomographic imaging aps_lmulatlon_s [4]. ) o o

plications with Poisson statistics. We also describe a “plug-in” For unbiased maximum-likelihood estimation, the Cramer-

approximation that provides a remarkably accurate estimateftt0 bound can serve as an approximation to the estimator vari-
variability even from a single noisy Poisson sinogram measufice. Our focus is on regularized methods for which bias is

ment. The approximations should be useful in a wide range$tavoidable, so the unbiased Cramer-Rao bound is inappli-
estimation problems. cable. Approximate covariances for penalized-likelihood es-

timates have been computed for specific iterative algorithms
[5], but most analyses of penalized-likelihood methods have

I. INTRODUCTION focussed on the asymptotic properties of mean squared error
. e.g. [6,7]. For practical signal-to-noise ratios, bias and variance
Let 6 = [01,...,0, € R” be a unknown real parame-may have unequal importance, in contrast to their equal weight-
ter vector that IS to be eStImated from a measurement Veqm in the mean Squared error performance measure.
Y = [V,...,YN] € RY, where’ denotes vector or matrix

In this paper we apply the implicit function theorem, the Tay-
Eﬂeexpansion, and the chain rule to (1) to derive approximate
eexpressions for the mean and variance of implicitly defined es-
R timatorsé. Evaluating these expressions numerically typically

0 = arg max ©(0,Y). (1) requires a similar amount of computation as one or two realiza-

tions in a numerical simulation. Therefore these expressions al-

Examples of such methods include maximum-likelihood esfi one to quickly determine “interesting” values for the tuning
mation, maximum a posteriori or penalized-likelihood methyarameters etc. for further investigation using numerical simu-
ods, and linear or nonlinear least-squares methods. Excepflibns. In addition, one can use the variance approximation to
very simple cases such as linear least-squares estimation, tigi@rmine how many realizations are needed to achieve a de-
is usually no analytical form that explicitly expresgkisi terms  sjred accuracy in subsequent numerical simulations.
of Y. In other words, the objective function (1) onilyplic- 5 eypressions are similar to the asymptotic moments given
itly de_fmesa as a function ofy". Statisticians refer to (1) as a”by Serfling [1] for scalar M-estimates. Our focus here is on pre-
M-estimate{1]. senting a simple derivation of useful approximations for multi-

This work was supported in part by DOE grant DE-FG02-87ER60561 amfamet_ef imaging p_rOblemSa rat_her than on asymptotics. The
NIH grants CA-60711 and CA-54362. Appendix compares in more detail the two approaches.

transpose. In many areas of signal and image processing,
specifies an estimat@rto be the maximum of some objectiv
function:




2 I APPROXIMATIONS

Because of the partial derivatives used in the derivation, our 1. APPROXIMATIONS

approximations are restricted to problems whgie a contin- We assumé(-, ) has a unique global maximuéhe © for
)

uous parameter. Thus the approach is inapplicable to discrete A ) .
classification problems such as image segmentation. (Mean Qﬂérﬁ ;Ttee ?\?i% rr?rtrcl)esﬁlfj} tzct;lth?ew :Jslav;lilL'deecftIir\]/gdf.ux\(lﬁic?;ssofcrnerzsvtvrgi:::h
variance are poor performance measures for segmentation pPoLb- : Dy reguk I . .

i e ane can find the required maximum in (1) by zeroing the partial
lems anyway; analyses of classification errors are more appé(()e—r ivatives of(-, Y'):
priate [8].) Furthermore, strictly speaking we must also ex- I

clude problems where inequality constraints are imposegi on )
since when the maximization in (1) is subject to inequality con- 0= ﬁfb(a, Y) LJi=1...,p 2
straints, one must replace (2) below with appropriate Karush- J 0=0

Kuhn-Tucker conditions. Our focus is on imaging problemg, is this assumption that restricts our approximations to contin-

where often the only inequality constraint is nonnegativity Qfo,s parameters and that precludes inequality constraints and
#. Although this constraint is often important impenalized stopping rules.

estimation methods, our primary interest is in objective func- For suitably

i hat includ larizati regular ®, the assumption of unique-
tions ®(6,Y") that include a regularization term. In our €XP€hass and the implicit function theorem [16, p. 266] en-

rience, the nonnegativity constraints are active relatively infrgare that the relationship (2) implicitly defines a function

qguently with regularized estimates, so the variances of the Y= h(Y) = [h(Y) h,(Y)] that maps the measuremant
constrained and constrained estimators are approximately eqH{%l an estimatd Fro.n.1 (’é) the functiorh(¥") must satisfy:
for most pixels (cf [9]). We demonstrate this property empiri- ' y:

cally in Section IV, where the mean and variance approximation )
for the unconstrained estimator agree closely with the empirical 0= %Q(O, Y) ,ji=1,...,p. 3)
performance of an estimator implemented with nonnegativity J 0=h(Y)

constramt;. ) . ) With perhaps a slight abuse of notation, we will rewrite (3) as:
Our derivation assumes the estimate is computed by “com-

pletely” maximizing an objective function, i.e., the approxima- 0 .

tions are not applicable to unregularized objective functions for 0= 3_gjq)(h(y)’ Y),j=1....p, 4)
which one uses a “stopping rule” to terminate the iterations long

before the maximum is reached. In particular, our results ag@ere we will always us%‘g—j to denote partial derivatives with

inapplicable to unregularized methods such as iterative ﬁlterlee%pect to the first argument of the functi®d, Y'), and -2
i ’ ! Y,

backprojection [10], the ordered subsets expectation maXim'%g'denote partial derivatives with respect to the second argu-

t|<_3n algorithm [11],_or \_/velght_ed least squares po_n]ugate grﬁfent, regardless of what values are used to evaluate the result-
dient [12]. Except in simple linear cases [13], it is generall%g derivatives
difficult to analyze the performance of methods based on StOP3 e implicitly defined functior(Y") can rarely be found an-

plnrgitrlilg[?,naghﬁu\glr rBafr([(re]ttt rilillri inS]Iil?al\i/r? agal;)/(zed ttr:ie erxllytically, and one usually implements an iterative method for
ber-iteration benhavior of the maximum-likelinood expecta 0maximizing<I>(-,Y) to find 6. Even if one did have an analyt-
maximization algorithm for emission tomography. The approx-

o ‘ X . ical expression foh(Y"), it would still be difficult to compute
imations we derive are somewhat easier to use since they

are . . : .
: . : . nce ey Al nean or variance exactly since the estimatdr) is usually
independent of number of iterations (provided sufficient Iter?ﬁ'onlinear. Although exact analytical expresstgons for the mean
tions are used to maximize the objective function).

and variance of(Y) are unavailable, if we knew(Y) we

Section Il develops the mean and variance approximatioggy|q approximate its mean and variance using standard meth-
We expect these approximations to be useful in many typesRfs pased on the second-order Taylor expansidr{Bi. If ¥,,
signal processing problems. However, the particular tradeoffsnotes the mean af,, then
between the cost of the computing the approximations and the
cost of performing numerical simulations will likely differ be- - 0 | 5
tween applications. Therefore, we devote most of the paper (Y) ~ h(Y)+ Z 3—ynh(y)(yn —Ya)
concrete illustrations of the utility and accuracy of the approx- "
imations on two tomographic imaging applications. Section Il + = Z Z -
describes the (linear) regularized least-squares estimator. Sec- 24 9
tion IV illustrates that the approximations are accurate even for
a highly nonlinear penalized-likelihood estimator in a transmi¥Ve use this expansion in the following to derive approximations
sion tomographic imaging application. Section V illustrate®r the covariance and meanf= h(Y).
how one can use the variance approximation to obtain remark- )
ably accurate estimates of variance even from a single nofsy Covariance
measurement (e.g. real data) using a simple plug-in approaclror the covariance approximation we use the first-order Tay-
Section VI describes an emission tomographic imaging apfbr expansion in matrix form:
cation, where we show that a penalized least-squares estimator
has a systematic bias at low count rates. h(Y)~h(Y)+ VR(Y)Y -Y), (6)
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whereV = [6%1 %] denotes the (row) gradient operatonmethods such as Gauss-Siedel wipds large [19]. From (11)

Taking the covarianceof both sides yields the following well- it follows that
known approximation [17, p. 426]: JU . R
Cov{0;,0;} = (/) Cov{f}e"
A ~ % \1/
COV{Q} COV{h(Y)} ~ Vh(Y) COV{Y} [Vh(y)] . (7) ~ (uj)/ vllq)(é7Y) COV{Y} [VIICD(é,Y)]/uk, (12)
If we knewh(Y") then we could directly apply (7) to approx-for ; & = 1,....p. One can compute any portion of the covari-
imate the covariance &f = h(Y"). But sinceh(Y") is unknown, ance matrix of) by using (12) repeatedly for approprigtend
(7) is not immediately useful. However, the dependence @n In general, computing/ar{6;} using this formula requires
@(Y) in (7) is only through its partial derivativeat the point O(p? + np + n?) operations. In many problems, such as the
Y. From the calculus of vector functions [18, p. 302], one caBmographic examples in Sections IV and VI, the covariance of
determine the partial derivatives of an implicitly defined funcy” is diagonal and the partial derivatives have a sparse structure,
tion by applying the chain rule. Differentiating (4) with respecio the actual computation is much less.
to Y,, by applying the chain rufeyields: To summarize, (11) and (12) are the main results of this sub-
2 5 o2 shecti(()jn: apzroxigate ehxpressiorz for thg estirr}atr?r (cg)var.iance
_ S(h(Y). V) - ho (v &(h(Y).Yy). that depend onfyon the partial derivatives of the objective
! zk: 90;001 (), )aYnhk( )+39j3Yn (), ¥), function®(6,Y"), and do not require an expression for the im-
(8) plicit functionh(Y).
j=1,...,p, n = 1,...,N. This equality gives\V sets of
p equations inp unknowns, and it holds for any. However, B. Mean
since (7) only depends dvh(Y'), we only need the special case To approximate the mean 6f= h(Y") one has two choices.

of (8) whereY” = Y. Writing that case in matrix form: The simplest approach is to take the expectation of the Oth-order
o _ _ Taylor expansion, yielding the approximation:
0=VX®(h(Y),Y) VA(Y)+ VHe(W(Y),Y), (9)
. E{0} = E{n(Y)} =~ h(Y) = 0. (13)
where the(j,k)th element of thep x p operator V20 is
—69f;9k, and the(j, n)th element of they x N operatorV!! is  This approximation is simply the value produced by applying
3057 a;Y . To proceed, we now assume that the symmetric matm<e estimator (.1) tooise-free dataTh|§ gpproach requires min-
% 0" M . . Imal computation, and works surprisingly well for penalized-
—V78(h(Y),Y) |s_a|s'o positive definite so we can solve for jixelihood objectives. It has been used extensively by inves-
Vh(Y') by rearranging: tigators in emission tomography [14, 15, 20]. Apparently, the
principal source of bias in penalized-likelihood estimators is the
regularizing penalty that one includesdn so (13) allows one
to examine the effects of the penalty separately from the ef-
fects of noise. However, the approximation (13) is certainly
not always adequate, as the example in Section VI illustrates.
A o 1 o20a (5 -1 Dlla(d o . Therefore, we next derive a mean approximation based on the
Cov{f} ~ [-VT@(0,Y)]"" VI @(0,Y) CoviY'} second-order Taylor expansion, which is more accurate, but has
U 7V -0 (4. 7). 11 the d|§advantage ofgreater compgtaﬂon.
V720, Y)]' [-VTe(0,Y)] (1) Taking the expectation of both sides of the second-order Tay-
Whenp is large, storing the full covariance matrix is inconvelor expansion (5) yields the following well-known approxima-
nient, and often one is interested primarily in the variance of céien for the mean of(Y'):
tain parameters in a region of interest. k&be thejth unit vec- 52
tor of lengthp, and definai? = [-V2°®(0,Y)]~'e/. Notethat g4y ~ 1(y i 1 WY Cov{Y..Y
one does not need to perform ap matrix inversion to compute 0y ) 2 En:%: 0Y,0Y,, ) X, Yon,
u’; one simply solves the equatidrV2°®(0,Y)u/ = e/, (14)
which can be done directly whenis small, or via fast iterative where Cov{Y,,,Y,;,} = E{(Y,, — Y.)(Y;m — Yn)} is the
2All expectations and covariances are taken with respect to the probabi I’QI’ m)th element.Of the covariance ”.‘atr'x b’f The approx-
density of the random measuremant Typically one assumes this density is ofation (14) requires the second partial derivatives(@f). To
the form £(Y'; 9t71¢), wheregtrue is the unknown parameter to be estimateddbtain those partial derivatives, we use the chain rule to differ-

using (1). However, our approximations do metjuire a parametric form for antjate (8) again with respect 19, obtaining:
the measurement distribution; we need only that the covariance of the measure-

ments be known (or can be estimated—see Section V).

Vh(Y) = [-V*3(h(Y), V)] VIS(h(Y),Y). (10)

If we defined = h(Y), then combining (10) with (7) yields the
following approximation for the covariance éf

3
3We restrict attention to objective functiods(6,Y") for which the partial _ 9 9
derivatives we use exist. o 0= Z Z 00,;00,,00, 2(h(Y),Y) Yo, ha(Y)
4The assumption that V20®(h(Y),Y) is positive definite is much less k !

restrictive than the usual assumption tgt, Y') is globally strictly concave SNote that (11) and (12) do depend én= h(Y). By the definition (3) of
for any measurement vectaf. We only require tha®(h(Y),Y) be locally  h(Y), we see thab = arg maxy ®(0,Y"), so we computd by applying the
strictly concave (nea#) for noise-free dat&”. estimation algorithm to the noise free data



4 Il EXAMPLE: REGULARIZED LEAST SQUARES
93 9]
+80-80 > B(h(Y),Y) th(y) D. Scalar Parameter
JEVRCEm n If p=1,i.e.0is ascalar, then (15) simplifies to
02 9? BE B
—®(n(Y),Y) ==Y = | = —
+§k:89j89k (h(Y),Y) 55— hn(Y) 0 [893<I>(h(Y),Y)8Ymh(Y)
3 (), V)L h(Y) g H V)] )
. 56,00, ) gy 9620Y,, Y,
9? o
—®(h(Y),Y) ==——=—hY
+m (h(Y),Y), (15) 58 5
+aggy. LMY ), Y) 55— h(Y)
foryj =1,...,p, n = 1,...,N, m = 1,...,N. One n m
can substitute id = h(Y) andY = Y in the above ex- i B B
pression to obtainV? sets ofp equations in the» unknowns 898Yn8Ym¢(h(Y)’Y)’ n=L..,Nm=1..N

{%hk@’)}ﬁzl. Solving each of those systems of equa-

7

tions and then substituting back into (14) yields an approxim%y rearranging we can solve explicitly for the second partials of
tion to E{0} that is independent of the unknown implicit funch(Y):

tion h(Y). If p andn are large in a given problem, then one & h(Y) A @,7) -

must weigh the relative computational expense of solving the 0Y,0Yn, 062 "’

above equations versus performing numerical simulations. The 39 - 5 o 5 -

tradeoff will depend on the structure of the objective function | | == ®(0,Y)—h(Y) + 0,Y)| ==h(Y)
. . 063 oY 0029Y,, oY,

®. Note that (15) depends on the first partlg%hk(Y), SO

one must first apply (10) to compute those partials. 0° < . 0 - 0° -

Unlike expression (8), which we were able to write in the +86’28}’,L(I)(9’Y) Y., Y) + 898Yn8qu)(9’Y) '

matrix form (9), there does not appear to be a simple form fef, it ting this expression into (14) yields the approximate

rewriting (15), except by introducing tensor products (whichr

$hean for a scalar parameter estimator.

ally do not offer much simplification). However, the equations

in (15) do simplify for some special cases fbrdescribed next.

C. Independent Measurements

I1l. EXAMPLE: REGULARIZED LEAST SQUARES

The approximations for mean and covariance derived above
are exact in the special case where the estimator is linear, since

Ifthe measurements, .. ., Yy are statistically independent,in that case the first-order Taylor expansion (6) is exact. In this

then (14) simplifies to

. _ 1 0?
E{0} = B{h(YV)} = h(Y)+3 ) =

h(Y)Var{Y,}. (16)

section we verify this property by computing (11) and (15) for

a regularized least-squares problem. The expressions are useful

for making comparisons with the corresponding approximation

for nonlinear estimators derived in the subsequent sections.
Suppose the measurements obey the standard linear model

This expression depends only on the diagonal elements of Y additive noise:
covariance ofY” and on the diagonal of the matrix of second

partial derivatives of,(Y'). Therefore one needs only the cases Y = Af +noise

wherem = n in (15), i.e. one needs to solvé sets ofp equa-
tions inp unknowns of the form:

03 0

+2873<I>(h(Y) v)| 22
90,;00,0Y,, ’

82

83
90,072

+ 3(h(Y),Y), j=1,...

where A is a knownN x p matrix. For such problems, the
following regularized weighted least-squares objective function
is often used for estimation:

1

(0,Y) = —5(¥ — A6)IL(Y — A6) - BR(0),

wherell is a nonnegative definite weighting matrix aR@0) is
a roughness penalty of the form

R(O) =) % > wirg(6; — 61),
P

J

(18)

wherew;;, = 1 for horizontal and vertical neighbors;;;, =
1/+/2 for diagonal neighbors, and is 0 otherwise. Note that

VHR@G) =0



and define IV. EXAMPLE: TRANSMISSION TOMOGRAPHY

2
R(0) = V'R(9) (19) To illustrate the accuracy of the approximation for estimator
to be the matrix of second partials Bf6). The(j, k)th element covariance given by (11), in this section we consider the prob-

of R(0) is: lem of tomographic reconstruction from Poisson distributed
PET transmission data. Our description of the problem is brief,

S wjk,ég(gj —0y), j=k for more details see [21-23]. Since PET transmission scans are

{ —w;rp(0; — Ok), itk essentially measurements of nuisance parameters, one would

like to use very short transmission scans. Since short scans
whereg denotes the second derivativeqof have fewer counts (lower SNR), the conventional linear filtered
Consider the quadratic case wheie) = 22/2, soR(¢) = Pbackprojection (FBP) reconstruction method performs poorly.

%O’RH. AssumeR is a symmetric nonnegative definite regu|a,StatisticaI methods have the potential to significantly reduce the
ization matrix whose null space is disjoint from the null spacTor variance, but since they are nonlinear, only empirical stud-
of IIA. In this case one can derive an explicit expression &S Of estimator performance have been previously performed

the estimator: to our knowledge. Analytical expressions for the variance will
help us determine (without exhaustive simulations) conditions
6 =h(Y)=(A'TIA + SR)"'A'TIY, (20) under which statistical methods will outperform FBP.

In transmission tomography the paramétgdenotes the at-
from which one can derive exact expressions for the mean aeduation coefficient in thgh pixel. The transmission measure-
covariance. However, for didactic purposes, we instead derivents have independent Poisson distributions, and we assume
the mean and covariance using the “approximations” (11) atitce mean ot/,, is:

(15). _
The partial derivatives ob(6, Y') are: Yu(0) = Tpa(0)
— ) anjb;
_v20¢ — AIHA + BR pn(e) = bne ZJ + T‘TL) (23)
vie = —A'll where thea,,; factors denote the intersection length of itk
V0 — V2lp — V2 — 0 1) ray passing though thgh pixel, {b,,} denote the rates of emis-

sions from the transmission sourde,, } denote additive back-
so substituting into (15), one finds tH&h(Y") = 0. Thus from 9ground events such as random coincidences, Ardenotes
(14): the scan duration. These nonnegative factors are all assumed
known. The log-likelihood is:

E{0} =h(Y) = (A'TIA + GR)'A'TIY, LO,Y) = ZY” log Y, (6) — Y, (6), (24)

which of course is exactly what one would get from (20). Sub-

stituting (21) into (11) yields the estimator covariance: neglecting constants independentéof Since tomography is
. ill-conditioned, rather than performing ordinary ML estima-
Cov{f} = tion, many investigators have used penalized-likelihood objec-

ive functi f the forrh
[A'TIA + GR]"A'TICov{YIIA[A'TIA + SR] ., tive functions of the for

which again agrees with (20). If the measurement covariance ©(0,Y) = 5 L(0,Y) — BR(9), (25)
is known, then usually one choosBls ' = Cov{Y}, in which i ,
case where the roughness penalywas defined in (18).

N -1 -1 Due to the nonlinearity of (23) and the non-quadratic likeli-

Cov{f} = (F + BR)"F(F + SR)™, (22) hood function (24) for Poisson statistics, the estintatermed
whereF = A’Cov{Y}!A is the Fisher information for esti- by maximizing (25) is presumably a very nonlinear function of
matingd fromY", when the noise has a normal distribution. Th& . Furthermore, since attenuation coefficients are nonnegative,
covariance approximations derived in the following sections asee usually enforces the inequality constraint 0. There-
similar to (22). fore this problem provides a stringent test of the accuracy of the

Since our approximations for the mean and covariance anean and variance approximations.

exact for quadratic objective functions, one might expect the ap- ) o
proximation accuracy for a non-quadratic objective will deperfty Covariance Approximation
on how far the objective deviates from being quadratic. Many Since the number of measurements (or rays)nd the num-
objective functions are locally quadratic, so we expect that ther of parameters (pixelg)are both large, we would like to ap-

approximation accuracy will depend on the signal to noise ragoximate the variance of certain pixels of interest using (12),
(SNR) of the measurements. Indeed, from (5) it is clear that TS0 e to thel

. . . — =+ term in (25), one can show that for a fixgdasT — oo, the
ave T
the noise variance goes to zero, we will h — Y, sothe maximum penalized-likelihood estimaflewill converge in probability tod, a

Tayl(_)r _apprOXimation_e_rror V‘_/i” vanish. ThiS_ asymptotic ProPpiased estimate [1]. For asymptotically unbiased estimates, one mdst4ed
erty is illustrated empirically in the next section. at an appropriate rate &% — oo [6].




6 IV EXAMPLE: TRANSMISSION TOMOGRAPHY

which requires the following partial derivatives: e Computes (u?) A'diag {p, (0™"°)} Au’ by first forward
projectingu’ to computey = Av?, and then summing:

] Y,
WL(O Y) = TZ Qnj ( - Y, (9)> (Pn(0) —10) Var{éj} ~ %Zvipn(etrue).

2
e L0Y) = T anjanan(0)
Tk n The overall computational requirements for this recipe are
_ < TnYn/T> ~ 3 ans6; roughly equivalent to two maximizations @ Thus, if one only
gn(0) = -— bpe i . . . ; o
p2(0) needs the approximate variance for a few pixels of interest, it is
92 - more efficient to use the above technique than to perform nu-
WL(O’ Y) Qnj (1 - pn(9)> merical simulations that require dozens of maximization®.of
Combining the above expressions in matrix form with the e>l<3—' Empirical Results
pressions for the partials @& given in Section Il To assess the accuracy of approximation (26), we per-
formed numerical simulations using the synthetic attenuation
-V290,Y) = A'diag{g.(0)} A+ BR(0) map shown in Fig. 1 ag*™°. This image represents a hu-
1 r man thorax cross-section with linear attenuation coefficients
VHe0Y) = - A'diag {1 - pn?G) } : 0.0165mnT?, 0.0096mnT*, and 0.0025mm!, for bone, soft

tissue, and lungs respectively. The image was a 128 by 64 ar-
whereA = {a,;} is a large sparse matrix, amﬂag {vn} de- TaY of 4.5mm pigels. We simulated a PET transmission scan
notes aV x N diagonal matrix with elements, . .., vy along With 192 radial bins and 96 angles uniformly spaced awer.

the diagonal. For simplicity we focus on the case Wh%r& 0, Thea,; factors corresponded to 6mm wide strip integrals with
in which caseg,(6) = p.(#) and the above expressions sim3mm center-to-center spacing. (This is an approximation to the

plify to ideal line integral that accounts for finite detector width.) We
generated the, factors using pseudo-random log-normal vari-
—V23(0,Y) = A'diag{p.(0)} A + SR(H) ates with a standard deviation of 0.3 to account for detector ef-
1 ficiency variations. We performed four studies with the scale
VHe0,Y) = —fA’. factor T set so thab" ¥, (9""¢) was 0.25, 1, 4, and 16 mil-

lion counts. We set,, = 0 for simplicity. For each study,
It follows from the assumption that the measurewe generated 100 realizations of pseudo-random Poisson trans-
ments have independent Poisson distributions thaission measurements according to (23) and then reconstructed
Cov{Y} = diag {¥,(6"°)}.  Substituting into (11) and using the penalized-likelihood estimator described by (25) us-
simplifying yields the following approximation to the estimatoing a coordinate-ascent algorithm [23]. This algorithm enforced
covariance: the nonnegativity constrait> 0. For simplicity, we used the
functiong(z) = x2/2 for the penalty in (18). We also recon-
Cov{é} ~ l[F(g) + 53(9‘)]71]_:*(9“116)[5‘(@) + 53(9‘)]*17 structed attenuation maps using the conventional FBP algorithm
T (26) at a matched resolution. The FBP images served as the initial
estimate for the iterative algorithm.
/s We computed the sample standard deviations of the estimates
F(0) = A'diag {pn(0)} A 27) for the center pixel from these simulations, as well as the ap-

is 1/T times the Fisher information for estimatiigirom v, Proximate predicted variance given by (26). Fig. 2 shows the
Note the similarity to (22). results, as well as the (much inferior) performance of the con-

We compute the approximate variancépby using the fol- ventional FBP method. The predicted variance agrees very
lowing recipe. well with the actual estimator performance, even for measured
counts lower than are clinically relevant (20% error standard de-

° Compute@ = arg maxy D (0, Y) by applying to noise-free viations would be clinically unacceptable). Therefore, for clin-
dataY a maximization algorithm such as the fast corically relevant SNRs, the variance approximation given by (26)
verging coordinate-ascent algorithm of Bouman and Sau&&n be used to predict estimator performance reliably. For the
[24, 25]. simulation with 250K counts, the approximation agreed within

7% of the empirical results. For the simulations with more

e Forward projec# to computepn(é) = Zj anjéj + r,. than 1M counts, the difference was smaller than 1%. Note the
Likewise forp,, (9tru°). asymptotic property: better agreement between simulations and

predictions for higher SNR.

e Pick a pixel j of interest and solve the equation Many authors have reported that the Oth-order mean approx-
[A’diag {pn(0)} A + BR(0)]u? = ¢’ for v’ using a fast imation (13) is reasonably accurate for maximum-likelinood
iterative method such as preconditioned conjugate gradstimators [14, 15, 20]; we have found similar results for
ents [26] or Gauss-Siedel [19]. penalized-likelihood estimators such as (25). (This is fortuitous

where



since the 2nd-order expressions for mean are considerably nmirés:

expensive to compute singe= 128 - 64 and N = 192 - 96 - (m) Py 1/2

are very large in this example.) Figure 3 displays a represen- 6; " = {(ej) COV{@]’@J}

tative cross-section through the mean predicted by (13) and the

empirical sample mean computed from the 1M count simula- |, ;\, 1 A N—11 /4 5 AN—1 5
tions. The predicted mean agrees very closely with the sample (<) T[F(G) +AROF(O)F(@) + FRO)] e
mean. These results demonstrate that the mean and variance ap- (28)

proximations (13) and (11) are useful for predicting penalized- Histograms of the standard deviation estimaﬁé&”}wo
i i i i issi m=1
likelihood estimator performance in transmission tomograph)éire shown in Figs. 4 and 5 for the 250K and 1M count simula-

tions respectively. The actual sample standard deviations for the
V. POST-ESTIMATION PLUG-IN VARIANCE two cases weré.74- 1073 and9.30 - 10~ respectively. For the
APPROXIMATION 250K count simulations, each of the 100 estimates was within
8% of the actual sample standard deviation. For the 1M count

The approximation (11) for th_e est_lmatqr covariance depgng?nulations, each of the 100 estimates was within 0.5% of the
on bothd andCov{Y}, so as written its primary use will be in

. ; 5 actual sample standard deviation. These are remarkably accu-
computer simulations whegeandCov{Y} are known. Some- . I !
rate estimates of variability, and clearly demonstrate the feasi-

times one WOUld like t_o t?? able to ob_taln an gpproxmate eskt)'ﬂity of estimating the variability of penalized-likelihood esti-
mate of estimator variability from a single noisy measurement

(such as real data), for whidhi™™ is unknown, andCov{Y’} matqrs even from single noisy meas_urgments. One |_mportant
arﬁaé)hcatlon of such measures of variability would be in com-
[

may also be unknown. In some problems this can be done sl ng weighted estimates of kinetic parameters from dynamic
a “plug-in” estimate in which we substitute the estim@ia for puting weig P y

6 in (11). The effectiveness of this approach will undoubtabﬁ/ET scans [27].
be application dependent, so in this section we focus on the spe- VI. EXAMPLE: EMISSION TOMOGRAPHY
cific problem of transmission tomography.

Using the transmission tomography model given in the Pren
vious section, assume we have a single noisy measuremen%
alizationY” and a penalized-likelihood estimateomputed by d
maximizing the objective function (_25)' If we kneﬂ/\gndefr“e, In emission tomography the parametgrdenotes the ra-
then we could use (26) to approximate the covarianog df dionuclide concentration in thgh pixel. The emission mea-

we o_nly haveQ, thenin light of the form of the covariance ap~, .o ments have independent Poisson distributions, and we as-
proximation given by (26), a natural approach to estimating ﬂiﬁme the mean df. is:
T IS!

covariance would be to simply plug-éhfor § andgt*u< in (26): }
Y.(0) = Tp,(9)
1

Cov{f} = [F(6) + FR(6)] ' FOIF(G) + FRE) ", Pu(6) = D an0;+ra, (29)

1/2

In this section we examine the accuracy of both the mean
d the variance approximations for the problem of emission
Fﬁography. Our description of the problem is brief, for more
etails see [21, 28].

from which one can compute estimates of the variance of inslhere thea,,; are proportional to the probability that an emis-

vidual pixels or region-of-interest values using the same tection in voxelj is detected by theth detector pair{r,,} denotes

nigue as in (12). additive background events such as random coincidence$; and
At first it may seem unlikely that such a simplistic approada\enotes the scan duration. These nonnegative factors are all as-

would yield reliable estimates of variability. However, notéumed known. The log-likelihood for emission tomography has

that in the definition (27) oF (6), the only dependence of the same form as (24), but with definition (29) f5x(6). We

is through itsprojectionsp,, (6). In tomography, the projection again focus on penalized-likelihood objective functions of the

operation is amoothingoperation, i.e., high spatial-frequencyorm (25).

details are attenuated (hence the need for a ramp filter in lin2ue to the nonnegativity constraints, the nonquadratic

ear reconstruction methods). Therefore, if the low and middd€nalty (see below), and the nonquadratic form of the log-

Spatia| frequencies Gﬁ’agree reasonab|y well Wiﬂ]andgtrue, likelihood, this prOblem also prOVideS a Stringent test of the ac-

then the projections,, (), p.(6), andp, (9™¢) will be very curacy of our moment approximations.

similar. Furthermore, the dependence on gheerms in (26)

is through a diagonal matrix that is sandwiched betweerthe

and A matrices—which induce further smoothing. Approximating the variance of certain pixels of interest us-
To evaluate the reliability of this post-reconstruction plugPd (12) requires the following partial derivatives:

in estimate of variance, we used each of the 100 realizations b Y,

described in the previous section to obtain a post-reconstruction WL(Q Y) = T an (Y—w) - 1)

estimate of the variance of estimate of the center pixel of the ) ! " "

object shown in Fig.1. 16(™) _denotes thenth reallzatlor(_m_: 9 L(8,Y) TZ anjankY”—/T

1,...,100), then themth estimate of the standard deviation of 00,00, — p2(0)

A. Covariance Approximation
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9? - , with 6 = 1. This nonquadratic penalty blurs edges less than the
aejaYnL(e’ Y) = ani/pa(0). quadratic penalty.

o ) ) ) ] We computed the sample standard deviations of the esti-
Combining the above expressions in matrix form with the efyates, as well as the approximate predicted variance given
pressions for the partials ¢t given in Section Il by (26) for two pixels: one at the center and one at the right

Y, /T edge of the left thalamus (oval shaped region near image cen-
- 7 } A + BR(0) ter).
pa(0) The results for the quadratic penalty are shown in Figs. 7 and
Ve, y) = —iA'diag {L} ) 8. The trends are similar to those reported for. t.ransmission to-
T n(0) mography: good agreement between the empirical standard de-

-V®%(,Y) = A’diag{

viations and the analytical predictions, with improving accuracy

Thus with increasing counts. Note that for the quadratic penalty, pix-
0 A o L P (077°) 5 els at the center and edge of the thalamus have similar variances.
-V7e(0,Y) = Aldiag {W} A + BR(0) The results for the nonquadratic penalty are shown in Figs.
Pn 9 and 10. For the pixel at the edge of the thalamus, the pre-
vlqu(gjz) - —iA/diag {L} ) dicted and empirical variances agree well. But for the pixel
T pn(0) at the center of the thalamus, the empirical variance was sig-

. nificantly higher than the predicted value for the 0.8M count
It follows from the assumption that the measure: : .

. . o case. Further work is therefore needed for nonquadratic penal-
ments have independent Poisson distributions tha

L - (ptrue N ; ies. Note that the edge pixel had higher variance than the cen-
O oving s i, (1) 1 sl i ot ey, The mpcrance o
covariance- nonuniformity also needs investigation. Overall though, as in

' the transmission case we conclude that the variance approxima-
tion (11),(30) gives reasonably accurate predictions of estimator
performance, with better agreement at higher SNR.

We also investigated the post-estimation plug-in approach de-
P (6172) scribed in Section V for the 0.8M count emission case. The
F = A'diag { ”27} (31) plug-in estimates of standard deviation for the two pixels con-
p(9) sidered were all within 1% of theredictedvalues for the stan-

We compute the approximate variancdptising a recipe sim- dard deviation. Thus, plugging i to (30) yields essentially

Cov{d} ~ %[F + BR(O)"'F[F + RO,  (30)

where

ilar to that given in Section IV. the same value as one gets by ugirandé®™°. Thus it appears
that the intrinsic error in the approximation (30) is more signif-
B. Empirical Results icant than the differences betweganddt™°. Practically, this

To assess the accuracy of approximation (30), we perforn%’cgges’ts tha't if one can establish by simuilation that the appro>_<i—
numerical simulations using the synthetic brain image shown'fﬁat'on error is small for me;asurements with more than a certain
Fig. 6 asf'™, with radioisotope concentrations 4 and 1 (arbpumperof cour_1ts fr_om agiven tomograph, then one can use the
trary units) in gray and white matter respectively. The imads ug-in approximation with such measurements and have con-

was a 112 by 128 array of 2mm pixels. We simulated a P Lflence in the accuracy of the results even thodgtf is un-
emission scan with 80 radial bins and 110 angles unifor jrown. ) )
spaced ovel80°. Thea,; factors correspond to 6mm wide _ AS illustrated by Fig. 11, the Oth-order mean approxima-
strip integrals on 3mm center-to-center spacing, modified #9n (13) again compares closely with the empirical sample
pseudo-random log-normal variates with a standard deviatiggan for this likelihood-based estimator. However, the next
of 0.3 to account for detector efficiency variations, and by heSHPSection demonstrates that this accuracy does not apply to the
attenuation factors. Four studies were performed, with the sc4f8Y nonlinear data-weighted least squares estimator for emis-
factor T’ set so thay”, ¥, (6"¢) was 0.2, 0.8, 3.2, and 12.85'0n tomography.
million counts. Ther,, factors were set to a uniform value cor- )
responding to 10% random coincidences. For each study, 1%0Mean. 2nd Order
realizations of pseudo-random Poisson transmission measureFhis subsection illustrates an application of the second-order
ments were generated according to (29) and then reconstru@egroximation for estimator mean given by (16). In the rou-
using a space-alternating generalized EM algorithm [28], whitie practice of PET and SPECT, images are reconstructed us-
enforces the nonnegativity constrant 0. FBP images served ing non-statistical Fourier methods [30]. Often one can obtain
as the initial estimate for the iterative algorithm. more accurate images using likelihood-based methods. Since
For the penalty functiow we studied two cases: the simpléhere is no closed form expression for Poisson likelihood-based
quadratic case(z) = x2/2, as well as a nonquadratic penaltyestimates, one must resort to iterative algorithms, many of
the third entry in Table Il of [29]: which converge very slowly. Therefore, some investigators have
replaced the log-likelihood objective with a weighted least-
d(x) = 82 [|z|/6 —log(1 + |z]/6)], squares oguadraticobjective for which there are iterative algo-



rithms that converge faster (e.g. [24, 25, 31, 32]). Unfortunatetire quadratic approximation is significant, one can apply a hy-

in the context oftransmissiontomography, quadratic objec-brid Poisson/polynomial objective function similar to that pro-

tives lead to estimatiohiasfor low-count measurements [23].posed for transmission tomography [23]. In this approach, one

To determine whether a similar undesirable bias exists for thees the quadratic approximation for the high-count detectors,

guadratic approximation in themissioncase, we now use thebut the original log-likelihood for the low-count measurements,

analytical expression (16) for estimator mean. thereby retaining most of the computational advantage of the
The log-likelihood is non-quadratic, and the idea of usinguadratic objective function without introducing bias [23].

guadratic approximations to the log-likelihood has been studied

extensively. Bouman and Sauer have nicely analyzed the ap- VIl. DISCUSSION

proximations using a second-order Taylor expansion. Follow-

ing [24, 25], the quadratic approximation to the log-likelihood We have derived approximations for the mean and covari-

®(0,Y)=L(0,Y)is ance of estimators that are defined as the maximum of some
. ) objective function. In the context of imaging applications with
®o(0,Y) = —3 Z — (Y, — Y (0))2. large numbers of unknown parameters, the variance approxima-
2 S0 Y, tion and the Oth-order mean approximation should be useful for

predicting the performance of penalized-likelihood estimators.
The objective function®;, and &, each implicitly define For applications with fewer parameters, one can also use the
a nonlinear estimator. Even when= 1, there is no closed second-order mean approximation for improved accuracy.
form solution for the maximum-likelihood estimate, exceptin |5 some applications one would like to perform estimation
the special case when /ay, is a constantindependentef by maximizing an objective function subject to certain equality
For large images, the computation required for solving (1gpnstraints. One can use methods similar to the derivation of
appears prohibitive. Therefore, we consider a highly simplifigfe constrained Cramer-Rao lower bound [33, 34] to generalize
version of emission tomography, where the unknown is a scajgé covariance approximation (11) to include the reduction in

parametery = 1). This simplified problem nevertheless proygriance that results from including constraints.
vides insight into the estimator bias without the undue notation . empirical results indicate that the accuracy of the pro-

of t_he _multl-parameter case. In _Table 1 we derive '_[he _part sed approximations improve with increasing SNR, which is
derivatives necessary for evaIuatmg_(lG) for each 0 bjective ((%nsistent with the asymptotics discussed in the Appendix. If
p = 1). In this tableF, denotes the Fisher information for estl—the SNR is 00 low, the approximation accuracy may be poor,

matingé from {Y,, }: but “how low is too low” will obviously be application depen-
- a2 dent. The approximations are also likely to overestimate the
Fy = —E{Vilog f(Y,0)} = Z a /Y, (0) = Z m. variance of pixels that are near zero when one enforces nonneg-
n n " " ativity constraints. Thus these approximations do not eliminate

HF need for careful numerical simulations.

The second and final two rows of Table 1 show three importat o
In our own work, thus far we have primarily used the ap-

oints:
P ~ 3 proximations to determine useful values of the regularization
e For each objectiveV'°®(6,Y(f)) = 0, so thatd = parameter prior to performing simulations comparing various
h(Y(9)) = 0, i.e. the estimators work perfectly withapproaches (as in Section IV). In the future, we expect to eval-

noiseless data. Therefore the Oth-order approximation (18jte the post-reconstruction estimate of region variability (Sec-
yieldsE{#} = 0, which is inaccurate for th&, estimator. tion V) for performing weighted estimates of kinetic parame-

) ) ) ters from dynamic PET emission scans [27]. Many PET scan
* The variances of the estimators are approximately equagcis are indeed dynamic scans acquired for the purpose

e The maximum-likelihood estimate is unbiased to secorti €xtracting kinetic parameters; therefore, the ability to esti-
order, whereas the quadratic estimate is biased. mate region variability is essential. Since FBP is a linear recon-

struction algorithm, it is straightforward to compute estimates

Figure 12 compares the bias predicted analytically using tbevariability for Poisson emission measurements [27, 35]. If
approximation (16) with an empirically computed bias peronlinear penalized-likelihood methods are ever to replace FBP
formed by numerical simulations. In these simulations we usgtthe routine practice of PET, reliable estimates of variability
o' = 1,7, = 0,a, = 1, andN = 10, and variedI’ so (such as the plug-in method we have proposed) will be needed
that & >°,, ¥,, (") (average number of counts per detectofpr a variety of purposes.
ranged from 2 to 100. The predicted and empirical results again
agree very closely except when there are fewer than 4 aver- VIII. A PPENDIX
age counts per detector. These results show that if the aver-
age counts per detector is below 10, then using the quadratidhis appendix synopsizes the asymptotic variance of M-
approximation to the Poisson log-likelihood can lead to bestimates given by Serfling [1]. The results in Serfling are
ases exceeding 10%. In practice, the importance of this bfas a scalar parameteét, so we consider the scalar case be-
should be considered relative to other inaccuracies such asltve (See [36] for the multiparameter case.) As in Section I,
approximations used in specifying,. When the bias due to let ®(0,Y") be the objective function that is to be maximized to
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find §, and define

0

—¢(60,Y).

AssumeY” has a probability distributiod(y; 6**u¢), and letd
be the value ofl that satisfies:

¥(0,Y) =

/ $(0,y) dF (4,6") = 0. (32)

Serfling [1] shows thad is asymptotically normal with meah
and variance

f¢2(7,y) dF(y;etrue) .
[& S 42(60,y) dF(y;6')],_g]"

(33)

[1]

(2]

[3]

[4]

This asymptotic variance is somewhat inconvenient to use in

imaging problems for the following reasons.

e The termd plays a role similar to oué, but solving the

integral equation (32) fof is in general more work than

calculatingd by maximizing®(-,Y).

[5]

¢ Both 6 and the expression for the asymptotic variance def6]

pend on the entire measurement distributiogy; 6'7¢),

whereas our approximation depends only on the mean and

covariance of the measurements.

With some additional work, one can show that/ifd,Y") is

[7]

affine in Y, thend andé are equal, and (33) is equivalent to

(11). Both Gaussian and Poisson measurements yietuat
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Objective
Term Likelihood Quadratic
3(60,Y) S, Yo log Vi, (6) — Yo (6) 1 (Y, = Y,(0)%)Y,,
52(0,Y) > (Yo /Ya(0) = 1) > an (1= Yo (0)/ )
~ 2:3(0,Y) >0 anYn /Y (0)? > an/Ya
5 0(0,Y) 20200 Y /Yo (0)° 0
v 2(0,Y) an/Yn () a, Y, (0)/Y?
g2 ®(0,Y) 0 —2a,Y,(0)/Y3
957~ 2(0,Y) —a;, /Y (0) a /Y
~- 2.9(0,Y) Fy Fy
2 0(6,) 2%, a3 /V? 0
s, 2(0,Y) an /Y, an /Y,
g2 2(0,Y) 0 —2a,,/V;?2
o= 2(6,Y) —a2 /¥ 2/Y?
5 h(Y) an/(YnFp) an/(YnFp)
Fah(V) || 255 & S, ab /T2~ an/Tn 2o g -1
Var{0} ~ 1/Fy 1/Fy
E{f} -6~ 0 AT -ET.e
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Table 1: Objective functions and partial derivatives for scalar emission tomography probleii,wijh= a,,6.
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Figure 1. Simulated thorax attenuation map used to evaluate 101

the mean and variance approximations for penalized-likelihood
estimators in transmission tomography.

Estimator Variance in Transmission Tomography
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40r X Filtered Backprojection Estimator Figure 4: Histogram of 100 post-reconstruction plug-in esti-
é mates of variabilityVar{6,} described by (28), wherg cor-
B30} responds to the center pixel of the attenuation map shown in
B Fig. 1, for 250K count measurements. The empirical standard
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Figure 2: Variance for center pixel of attenuation map as pre- ;5| _ ]

dicted by (26) compared with simulation results from penalized-
likelihood estimator (25). Also shown is the variance of conven-
tional FBP.
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the estimator, the prediction agrees closely with the empirical
performance.

Figure 6: Simulated brain radioisotope emission distribution.
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Estimator Variance in Emission Tomography
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Figure 7: Comparison of predicted variance from (30) with em- E:;ieoff:;:;yus
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Estimator Variance in Emission Tomography

Figure 10: As in Fig. 8 but for nonquadratic penalty (see text).
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Figure 8: As in Fig. 7 but for pixel at edge of thalamus.
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Figure 9: As in Fig. 7 but for nonquadratic penalty (see text).
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Figure 12: Bias for scalar emission estimation problem for
the maximum-likelihood estimator and for the weighted least-
squares estimator based on a quadratic approximation to the
log-likelihood. Solid lines are the analytical formulas in the
last row of Table I; the other points are empirical results.
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