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Abstract
This paper describes rapidly converging algorithms for computing attenuation maps from Poisson transmission measurements

using penalized-likelihood objective functions. We demonstrate that an under-relaxed cyclic coordinate-ascent algorithm converges
faster than the convex algorithm of Lange [1], which in turn converges faster than the expectation-maximization (EM) algorithm
for transmission tomography [1]. To further reduce computation, one could replace the log-likelihood objective with a quadratic
approximation. However, we show with simulations and analysis that the quadratic objective function leads to biased estimates
for low-count measurements. Therefore we introduce hybrid Poisson/polynomial objective functions that use the exact Poisson
log-likelihood for detector measurements with low counts, but use computationally efficient quadratic or cubic approximations
for the high-count detector measurements. We demonstrate that the hybrid objective functions reduce computation time without
increasing estimation bias.
Keywords: penalized maximum likelihood, transmission tomography, iterative reconstruction

I. I NTRODUCTION

Many important medical problems occur in the human thorax, such as breast cancer, heart disease, and lung cancer. To produce
quantitatively accurate images of physiology within the thorax using emission computed tomography, one must correct for the
effects of photon absorption orattenuation[2]. Conventionalcalculatedmethods for attenuation correction [2] are inappropriate
in the thorax, due to the nonuniform attenuation properties of bone, lungs, and soft tissue. Thus, most positron emission tomog-
raphy (PET) centers have adopted themeasuredattenuation correction method, in which one precedes the emission scan with a
transmission scan that measures the unique attenuation characteristics of each patient over the slices of interest [3]. Many SPECT
centers are now using measured transmission scans for cardiac studies as well [4–7]. In PET and SPECT the primary medical
interest is in physiology rather than anatomy. Thus the transmission scan is somewhat a measurement of “nuisance parameters,”
so it is desirable to minimize its duration. Short scans yield noisy measurements, leading to noisy attenuation correction factors
that propagate unwanted errors into the reconstructed emission image. This paper describes statistical methods for reconstructing
images of attenuation coefficient distributions (orattenuation maps) from noisy Poisson transmission scans.

The conventional method for attenuation correction in PET using measured transmission scans consists of two steps: first
compute attenuation correction factors by smoothing the ratio of theblank scan2 to the transmission scanmeasurements; then
multiply the emission measurements by the attenuation correction factors in sinogram space. Therefore often no attenuation map
is needed. However, in some cases it is desirable to reconstruct attenuation maps: for anatomical localization [8], for fully 3D
PET studies [9], for improved noise performance [10], and for quantitative SPECT [11]. In this paper we compare reconstruction
methods in terms of the statistical accuracy of the reconstructed attenuation maps. These attenuation maps will often be reprojected
to form attenuation correction factors, in which cases a more appropriate figure of merit would be the statistical accuracy of these
correction factors, or of the final reconstructed emission images. Future studies should evaluate the overall emission/transmission
process.

The conventional method for reconstructing attenuation maps from transmission measurements is a two-step process. First
compute the logarithm of the ratio of the blank scan to the transmission scan, which gives a (noisy) estimate of the line integral
of the attenuation distribution along each measurement ray. Then reconstruct the attenuation map by applying the conventional
filtered backprojection (FBP) reconstruction method to the logarithmic data. As we describe in Appendix I, for Poisson data this
logarithm of a ratio leads to biased estimates when the transmission counts are small (see Fig. 1). To avoid this bias problem,
one must use a method that incorporates the measurement statistics [12], so we estimate the attenuation map using a penalized-
likelihood approach. We compare several algorithms for maximizing the objective function: a cyclic-coordinate ascent algorithm

This work was supported in part by NIH grant CA-60711 and DOE grant DE-FG02-87ER60561.
2A blank scan is a transmission scan without the patient in the scanner that is acquired for the purpose of calibrating the measurements.
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based on the work of Sauer and Bouman [13–15], a convex algorithm and a gradient algorithm described by Lange [1,16,17], and
the transmission EM algorithm [18,19]. We demonstrate that the coordinate-ascent method converges significantly faster than the
alternatives when implemented on a serial computer. The first part of this paper focuses on this comparison.

For routine clinical use, we would like still faster convergence, or less computation per iteration, even for the coordinate ascent
algorithm. Therefore, in the second part of this paper we propose hybrid Poisson/polynomial objective functions. The basis
for these hybrids is very simple: since the transmission measurements are independent, the Poisson log-likelihood separates
into a sum of terms corresponding to the marginal log-likelihood for each measurement. For measurements with only a few
counts, we retain the corresponding marginal log-likelihood term. However, for measurements with a large number of counts, we
replace the corresponding marginal log-likelihood term with a quadratic or cubic approximation closely related to the expansion
of Sauer and Bouman [13–15]. These polynomial approximations significantly reduce the computation per iteration relative to the
transcendental form of the log-likelihood for Poisson transmission measurements.

To summarize, the contributions of this paper are the following. We analyze the bias properties of transmission estimators
(Appendix I). We show empirically that coordinate ascent converges faster than alternative algorithms, and that under-relaxation
accelerates convergence (Sections II and III). We introduce the hybrid objective functions which lead to faster computation. Unlike
the weighted least-squares objective, the hybrid approach properly treats non-positive measurements (Section IV). We show that
the resolution/noise tradeoff of penalized likelihood estimates outperforms the FBP method, and that the hybrid method has similar
accuracy as penalized-likelihood but with much less computation (Section V).

PART 1: PENALIZED MAXIMUM LIKELIHOOD

II. OBJECTIVE AND ALGORITHMS

A. The Problem

Let µ = [µ1, . . . , µp]′ denote the vector of unknown linear attenuation coefficients (having units of inverse length). Let
y = [y1, . . . , yN ]

′ denote the vector of measured transmission counts. We assume that theyn’s are realizations of statistically
independent random variables{Yn}Nn=1 having Poisson distributions with expectations{ȳn(µ)}:

ȳn(µ) = bne
−ln(µ) + rn, (1)

where

ln(µ) =

p∑
j=1

anjµj .

Thebn > 0 factors denote the blank scan mean counts. Thern ≥ 0 factors represent additive background events such as random
coincidences (PET) [19], scatter (SPECT, PET, X-ray CT) [19, 20], or energy channel cross-talk (SPECT) [21]. Theanj ≥ 0
factors have units of length, and describe the tomographic system geometry. Thusln(µ) is (approximately) the line integral of the
attenuation distribution along thenth ray. We assume that{anj}, {bn}, and{rn} are known constants, so our goal is to estimate
the unknown attenuation mapµ from the measurementsy. This problem is relatively challenging due to the nonlinear relationship
in (1).

Under the Poisson model, the log-likelihood forµ is:

L(µ) = log p(Y = y;µ) =
∑
n

yn log ȳn(µ)− ȳn(µ). (2)

(We ignore constants independent ofµ throughout.) Since image reconstruction is ill-conditioned, rather than estimatingµ by
maximizingL(µ), we include a roughness penalty of the form:

P (µ) =

p∑
j=1

1

2

∑
k∈Nj

wjkφ(µj − µk), (3)

whereNj is a neighborhood of thejth pixel, φ is a symmetric, twice-differentiable scalar function, andwjk = wkj ≥ 0. In
Appendix II we specify thewjk factors using a method that leads to uniform image resolution whenφ is the quadratic function
φ(x) = x2/2. If one adopts the conventional choice forwjk, then the reconstructed image resolution will be nonuniform [22].

Combining the penalty (3) and the log-likelihood (2) yields the penalized-likelihood objective function:

Φ(µ) = L(µ)− βP (µ). (4)

We describe methods for choosingβ > 0 to achieve a desired resolution in [22]. Our goal is to estimateµ by maximizingΦ(µ)
subject to the nonnegativity constraint:

µ̂ = argmax
µ≥0
Φ(µ). (5)

In the remainder of this section we discuss iterative algorithms for performing this maximization.
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B. Concavity and Convergence

The second partials of the log-likelihood (2) are:

−
∂2

∂µjµk
L(µ) =

∑
n

anjank

(
1−

ynrn

ȳn(µ)2

)
bne

−ln(µ). (6)

Therefore,L(µ) is concave ifrn = 0 for all n [18]. However, ifrn 6= 0 thenL(µ) is not globally concave, so it is difficult
to establish global convergence for any algorithms. Previous global convergence proofs for transmission algorithms have relied
heavily on the use of concavity [1,17,18,23]. From (6) one sees thatL(µ) is locally concave over the set{µ : ȳ2n(µ) ≥ ynrn ∀n}.
Fortunately, in PET and SPECT thern factors are fairly small, and sinceyn ≈ ȳn(µ̂) andȳn(µ) > rn, we will usually operate
in or near the concave region ofL(µ). All of the algorithms given below should have local convergence, which may be adequate
since in practice one can initialize the iteration with a FBP image which is usually fairly close to the maximum. Nevertheless,
further investigation of the convergence properties is needed for the casern 6= 0.

C. Cyclic Coordinate Ascent Algorithm

Cyclic coordinate-ascent is a particularly simple approach to maximizing an objective function: simply update the parameters
one by one while holding the others fixed, always using the most recent value for each parameter. This method is inherently
sequential, and is more suited to conventional serial workstations than to fine-grain or mesh parallel computers. Although this ap-
proach may have poor repute in the optimization literature (e.g. [24, p. 310]), Sauer and Bouman have shown that it is remarkably
effective for tomography [13–15]. Advantages of coordinate-ascent methods include: fast convergence for high spatial frequen-
cies, easily enforced nonnegativity constraints, and decoupled parameter updates even when using smoothing penalties. In [25]
we extended the analysis of [13] to show thatunder-relaxationcan further improve the convergence rates of coordinate-ascent
methods, so here we present the under-relaxed version.

Unfortunately, for transmission tomography there is no analytical closed form for the exact maximizer ofΦ overµj even when
holding the other parameters fixed, so one must resort to approximate methods. If the penalty is quadratic, we apply one iteration of
a 1-D Newton’s method with an under-relaxation parameter, i.e., we cyclically update the parameters using the following iteration:

µnewj =


µoldj + ω

∂
∂µj
Φ(µold)

− ∂2

∂µ2
j

Φ(µold)



+

, (7)

whereω ∈ (0, 1] is a relaxation parameter, and[x]+ = x if x > 0 and is 0 otherwise. One iteration of this algorithm updates all
parameters in some order; we alternate between four raster scan orders to improve the convergence rate [13]. The updates are done
“in place,” always using the most recent estimate ofµj . For non-quadratic penalties, we use the efficient 1-D line-search method
of Bouman and Sauer [14,15].

SinceΦ is not quadratic, (7) does not guarantee monotonic increases inΦ. If µ? satisfies the Karush-Kuhn-Tucker conditions
for (5), i.e. {

∂
∂µj
Φ(µ?) = 0, µ?j > 0

∂
∂µj
Φ(µ?) ≤ 0, µ?j = 0

,

and if Φ is strictly concave in a neighborhood ofµ?, thenµ? is a fixed point of (7), and using continuity one can prove local
convergence of the iteration (7) toµ?. For reasons of convergence rate [25–27], we usually useω = 0.6. This under-relaxation
improves the odds that (7) will yield an increase inΦ. With ω = 0.6 we have never observed a decrease inΦ over a full iteration,
although we have observed small decreases withω = 1. Fortuitously, usingω < 1 not only improves the convergence rate, it
appears to improve the monotonicity as well.

For the objective function (4), one can show that

∂

∂µj
Φ(µ) = L̇j(µ)− βṖj(µ)

−
∂2

∂µ2j
Φ(µ) = −L̈j(µ) + βP̈j(µ),

where

L̇j(µ) =
∑
n

anj

(
1−

yn

ȳn(µ)

)
bne

−ln(µ) (8)

−L̈j(µ) =
∑
n

a2nj

(
1−

ynrn

ȳn(µ)2

)
bne

−ln(µ) (9)
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Ṗj(µ) =
∑
k∈Nj

wjk φ̇(µj − µk)

P̈j(µ) =
∑
k∈Nj

wjk φ̈(µj − µk),

and whereφ̇(x) = d
dx
φ(x) andφ̈(x) = d2

dx2
φ(x). Substituting these formulae into (7) yields the cyclic coordinate-ascent algo-

rithm. To minimize the computation in calculating (8) and (9) we maintain the current state [13] of the line-integrals during the
iterations, i.e., after updating pixelj:

ln(µ
new) := ln(µ

old) + anj(µ
new
j − µoldj ), ∀n : anj 6= 0.

D. Convex Algorithm

De Pierro [28,29] has analyzed the emission EM algorithm using convexity, and Lange [1,16] has adapted De Pierro’s method
to the transmission problem. Here we extend [1] slightly to include nonzero background events(rn > 0).

Since the measurements are independent, the log-likelihood separates into a sum ofN terms:

L(µ) =
∑
n

hn(ln(µ)), (10)

where from (1) and (2)
hn(l) = yn log(bne

−l + rn)− (bne
−l + rn).

If we define

lmaxn =

{
∞, rn ≥

√
ynrn

log
(

bn√
ynrn−rn

)
, otherwise

,

thenhn(·) is strictly concave on the interval(−∞, lmaxn ). Following [1], if µij > 0 then the inequality

L(µ) =
∑
n

hn


 p∑
j=1

anjµ
i
j

ln(µi)

µj

µij
ln(µ

i)




≥
∑
n

p∑
j=1

anjµ
i
j

ln(µi)
hn

(
µj

µij
ln(µ

i)

)

4
= Q?(µ;µi)

holds for anyµ in the set3:

Lµi = {µ ≥ 0 :
µj

µij
ln(µ

i) ≤ lmaxn , ∀j, n}.

As shown by De Pierro [28,29], a similar decomposition applies toP (µ). If φ is convex, then

P (µ) =

∑
j

∑
k∈Nj

wjk

2
φ

(
2µj − µij − µ

i
k

2
+
−2µk + µij + µ

i
k

2

)

≤
∑
j

∑
k∈Nj

wjk

4

(
φ(2µj − µ

i
j − µ

i
k) + φ(−2µk + µ

i
j + µ

i
k)
)

4
= P ?(µ;µi)

holds for anyµ. Thus if we define
Φ?(µ;µi) = Q?(µ;µi)− βP ?(µ;µi), (11)

then one can show [1,28,29] that forµ ∈ Lµi :

Φ(µ)− Φ(µi) ≥ Φ?(µ;µi)− Φ?(µi;µi). (12)
3Note that in the simple case wherern = 0, thenlmaxn =∞ andLµi is the entire nonnegative orthant.
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Therefore, if we chooseµi+1 to maximizeΦ?(·;µi), then ifµi+1 ∈ Lµi we ensure monotonic increases inΦ. If rn 6= 0, then the
inequality in (12) does not necessarily hold globally, and monotonicity is not guaranteed intrinsically. Our implementation always
checks (12) to ensure monotonicity, and even with as much as 10% background events we have never observed a violation of (12)
when the algorithm is initialized with a FBP image. As discussed in Section I.B above, apparently one usually operates in the
concave partLµi of Q?(µ;µi).

UnlikeΦ(µ), the functionΦ?(µ;µi) is separable inµj , so we can find theµi+1 that maximizesΦ?(·;µi) easily usingp separate
1-D maximizations, which is ideal for parallel processors. Again there is no analytical form for this maximization, so as in [1] we
apply one step of Newton’s method to each parameter. The partials ofQ? andP ? are

∂

∂µj
Q?(µ;µi)

∣∣∣∣
µ=µi

= L̇j(µ
i)

−
∂2

∂µ2j
Q?(µ;µi)

∣∣∣∣∣
µ=µi

=
1

µij

∑
n

anjqn(µ
i) (13)

∂

∂µj
P ?(µ;µi)

∣∣∣∣
µ=µi

= Ṗj(µ
i)

∂2

∂µ2j
P ?(µ;µi)

∣∣∣∣∣
µ=µi

= 2P̈j(µ
i)

(see (8)), where we precompute the terms

qn(µ
i) = ln(µ

i)

(
1−

ynrn

ȳ2n(µ
i)

)
bne

−ln(µ
i)

prior to computing the sums in (13). Combine the above partials with (11) to yield the iteration:

µi+1j = max


µij + ωi

∂
∂µj
Φ?(µi;µi)

− ∂2

∂µ2
j

Φ?(µi;µi)
, εi


 , j = 1, . . . , p, (14)

whereεi → 0 asi→∞, and whereωi is chosen to assure monotonicity by starting withωi = 1 and then if necessary repeatedly
halving it untilΦ(µi+1) > Φ(µi). The key difference between (7) and (14) is that the latter uses asimultaneousupdate, and as
such it is more amenable to parallel implementations (although the step of choosingωi to ensure monotonicity may not parallelize
easily).

E. Other Algorithms

The EM algorithm [1, 18, 19, 30] and the gradient algorithm of Lange [1, 17, 23] are two alternative algorithms for penalized
maximum likelihood. The straightforward extensions of these algorithms to include nonzero background events are described
in [31].

III. C ONVERGENCERATE SIMULATIONS

This section describes some representative simulations that demonstrate that the coordinate ascent algorithm converges faster
than the convex algorithm, as well as the alternative algorithms described in [1]. Forµ we used the synthetic attenuation map
shown in Fig. 2, which represents a human thorax with linear attenuation coefficients 0.0165/mm, 0.0096/mm, and 0.0025/mm,
for bone, soft tissue, and lungs respectively. The image was a 128 by 64 array of 4.5mm pixels. We simulated a PET transmission
scan with 192 radial bins and 256 angles uniformly spaced over180◦. Theanj factors correspond to 6mm wide strip integrals
on 3mm center-to-center spacing. (This is an approximation to the ideal line integral that accounts for finite detector width.)
Thebn factors were generated using pseudo-random log-normal variates with a standard deviation of 0.3 to account for detector
efficiency variations, and scaled so that

∑
n ȳn was one million counts. Thern factors corresponded to a uniform field of 10%

random coincidences. Pseudo-random Poisson transmission measurements were generated according to (1). The image shown
in Fig. 2 was reconstructed using FBP with a second order Butterworth filter at a resolution of 2.5 pixels or 1.125cm full-width
half-maximum (FWHM). This FBP image was used to initialize the iterative algorithms, after setting all negative pixels to zero.
For the iterative methods, we used the functionφ(x) = x2/2 for the penalty in (3).

Figure 3 compares the rates of convergence for the coordinate ascent algorithm with and without under-relaxation. These typical
results confirm that under-relaxation accelerates convergence for the transmission problem just as it does in the emission case.

Figure 4 shows a plot of the objective increaseΦ(µi) − Φ(µ0) versus iterationi for the penalized maximum likelihood algo-
rithms. The computation time per iteration varies between algorithms, so a more objective comparison is shown in Fig. 5, in which
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the abscissa is CPU time as measured on a DEC 3000/800. The coordinate ascent algorithm effectively converges (i.e.Φ(µi)
reaches 99.9% of its peak value) in less than 10 iterations, whereas the other algorithms require many more iterations. From Fig. 5
one sees that it may be advantageous to run 2 or 3 iterations of the convex algorithm and then switch to coordinate ascent.

PART 2: HYBRID OBJECTIVES

IV. POLYNOMIAL APPROXIMATIONS

The results given above demonstrate that the under-relaxed coordinate-ascent method for transmission tomography converges
faster than the alternative algorithms, in terms of both number of iterations and CPU time. Since the coordinate-ascent algorithm
usually converges in seven to ten iterations, it will be challenging to further reduce the number of iterations. However, it would be
desirable to further reduce the computationper iteration, in light of the complexity of (8)-(9). One could reduce computation by
replacing the log-likelihood with its quadratic approximation [13–15], which simplifies the calculations corresponding to (8)-(9).
As shown in Appendix I, the quadratic approximation leads to systematic negative bias. However, the bias decreases as the number
of counts increase. Therefore, in this section we propose a hybrid Poisson/polynomial objective function in which we replace only
the marginal log-likelihood terms for the high-count measurements with polynomial approximations, whereas for the low-count
measurements we retain the exact log-likelihood. As we show in Section V, this approximation significantly reduces computation
with negligible bias.

The quadratic approximation of Sauer and Bouman [13–15] disregarded the effects of nonzero background events, so we begin
by extending their expansion slightly to accommodatern > 0. Since the Poisson measurements are independent, the log-likelihood
separates into a sum ofN terms:

L(µ) =
∑
n

hn(ln(µ)), (15)

where

hn(l) = yn log gn(l)− gn(l)

gn(l) = bne
−l + rn.

Applying Taylor’s expansion tohn(l) about some valuêln:

hn(l) ≈ hn(l̂n) + h
(1)
n (l̂n)(ln − l̂n)

+
h
(2)
n (l̂n)

2
(ln − l̂n)

2 +
h
(3)
n (l̂n)

6
(ln − l̂n)

3, (16)

whereh(i)n (l) = ∂i

∂li
hn(l) and

h(1)n (l) =

(
1−

yn

gn(l)

)
bne

−l (17)

−h(2)n (l) =

(
1−
ynrn

g2n(l)

)
bne

−l

h(3)n (l) =

(
1 + rnyn

bne
−l − rn
g3n(l)

)
bne

−l. (18)

Now consider a measurement for whichyn > rn and define the following method-of-moments estimate of the line integral of
attenuationln:

l̂n = log

(
bn

yn − rn

)
. (19)

This estimate satisfies the equalitygn(l̂n) = yn. Substituting into (17)-(18) yields:

h(1)n (l̂n) = 0

−h(2)n (l̂n) =
(yn − rn)2

yn

4
= un (20)

h(3)n (l̂n) = yn +
r2n
y2n
(2rn − 3yn)

4
= tn.

Substituting into (16) thus shows that thenth term in (15) is approximately:

hn(l) ≈ (yn log yn − yn)−
un

2
(l − l̂n)

2 +
tn

6
(l − l̂n)

3. (21)
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A. Purely Quadratic Approximation

Since the first term in (21) is independent ofl, we can disregard it, and then substituting into (15) and dropping the cubic term
yields the following objective function, which is based on a purely quadratic approximation to the log-likelihood:

Φq(µ) =
∑

n: yn>rn

−
un

2
(ln(µ)− l̂n)

2 − βP (µ). (22)

We refer to the attenuation map obtained by maximizingΦq(µ) overµ ≥ 0 as thepenalized weighted least-squares (PWLS)
estimate. As shown in Appendix I, this type of estimator is biased.

B. Polynomial Approximation

To remedy this bias problem, consider the following hybrid objective function. First pick two count thresholdsγb ≥ γa ≥ 0
and split the measurements into three groups:

NL = {n : yn − rn ≤ γa}

NM = {n : γa < yn − rn < γb}

NH = {n : yn − rn ≥ γb}.

Note thatNL
⋃
NM

⋃
NH = {1, 2, . . . , N}. Forn ∈ NH (high count measurements) we use the quadratic approximation tohn(l).

Forn ∈ NM (medium count measurements) we use the cubic approximation tohn(l). Forn ∈ NL (low count measurements) we
retain the original log-likelihood termhn(l). This leads to the followinghybrid Poisson/polynomial objective function:

Φh(µ) = LL(µ) + LM(µ) + LH(µ)− βP (µ), (23)

where

LL(µ) =
∑
n∈NL

yn log ȳn(µ)− ȳn(µ)

LM(µ) =
∑
n∈NM

−
un

2
(ln(µ)− l̂n)

2 +
tn

6
(ln(µ)− l̂n)

3

LH(µ) =
∑
n∈NH

−
un

2
(ln(µ)− l̂n)

2.

This hybrid objective function includes the penalized likelihood objective as a special case by choosingγa = γb = ∞. If
one choosesγa = γb = 0, then one obtains the penalized weighted least-squares objective (22), unless there are anyn such that
yn ≤ rn. In that case, unlike the purely quadratic approximation given by (22), which disregards any measurements such that
yn ≤ rn, the hybrid objective function retains the log-likelihood corresponding to those terms, sinceγa ≥ 0. By varyingγa and
γb, one can compromise between computation time and strict faithfulness to the log-likelihood.

One could imagine a variety of algorithms for maximizingΦh(µ) subject to the constraintµ ≥ 0. Based on the results above
and in [13, 25], we again use the under-relaxed cyclic coordinate-ascent algorithm given by (7), except here applied toΦh(µ).
From (7) one sees that we need expressions for the partial derivatives ofΦh(µ). The first and second partials ofLL(µ) are given
by the corresponding terms of the sums in (8)-(9). The partials ofLM(µ) are:

∂

∂µj
LM(µ) =

∑
n∈NM

anj

(
un(l̂n − ln(µ))

+
tn

2
(l̂n − ln(µ))

2

)

−
∂2

∂µ2j
LM(µ) =

∑
n∈NM

a2nj(un + tn(l̂n − ln(µ))), (24)

and the partials ofLH(µ) are:

∂

∂µj
LH(µ) =

∑
n∈NH

anjun(l̂n − ln(µ))

−
∂2

∂µ2j
LH(µ) =

∑
n∈NH

a2njun. (25)
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Prior to iterating we precompute theun and tn terms, as well as the
∑
a2njun terms, all of which are independent ofµ.

The computational savings result both from this precomputation as well as from the fact that the above derivatives require no
exponentials.

Combining (23) with the above expressions for the partial derivatives yields all of the terms necessary to perform the coordinate
ascent update given by (7). The complete mathematical expression is more daunting than the actual software implementation,
which is fairly straightforward if one has already implemented coordinate ascent iterations for either the pure penalized likelihood
or penalized least-squares objectives.

Convergence of the coordinate ascent algorithm has the same caveats described in Section II. However, ifγa = γb = 0 and the
potential functionφ is quadratic, then the entire objective function is quadratic ifyn > rn∀n. In this special case the coordinate
ascent algorithm is guaranteed to converge monotonically to the unique global maximum [25].

C. Denominator Approximation

The denominator of the coordinate ascent algorithm (7) using Newton’s method is usually taken to be the second partial deriva-
tive of the objective function∂

2

∂µ2
j

Φ(µi). There is no guarantee that Newton’s method will ensure monotone increases inΦ, but

again under-relaxation seems to help both convergence rate and monotonicity. Therefore it is natural to ask: is it really worth
computing the second partials given by (9) and (24), or would the quadratic approximation (25) (summed over alln) suffice?

We have implemented a modified hybrid coordinate ascent algorithm in which we use the proper first partial derivatives in the
numerator of (7), but we replace the denominator with the quadratic approximation (25). The resulting estimates after 10 iterations
differed by less than 0.1%, which is negligible relative to the noise.

The CPU times for 10 iterations of the various algorithms are given in Table 1. Using the precomputed quadratic approximation
in the denominator of (7) reduces CPU time by 5-15% for the case described in Section III.

V. PERFORMANCESIMULATIONS

To study the bias properties of the estimators described above, we performed additional simulations using the thorax phantom
and PET system described in Section III. In this case we generated 50 independent realizations of the transmission measurements.
For each measurement realization, we reconstructed an estimate of the attenuation map using 10 iterations of the coordinate ascent
algorithms applied to the following objective functions: penalized likelihood (4), penalized weighted least squares (22), and the
hybrid objective (23) withγa = 5 andγb = 50. (We chose these values based on the results in Fig. 1, which suggest that the
cubic approximation is reasonable above 5 counts, and the quadratic approximation is reasonable above 50 counts.) We also
reconstructed each realization using the FBP method with the filter described in Section III, and we used those FBP reconstructed
images to initialize the iterative algorithms in all cases.

Fig. 6 displays the sample mean and sample standard deviation images of the 4 methods. The sample means are visually very
similar, since we have chosenβ to match resolution [22]. The standard deviation of the FBP images is fairly uniform, whereas
those of the iterative methods look like a blurred version of the object in Fig. 2, i.e., the noise is spatially variant.

The gray scale in Fig. 6 does not reveal the bias properties, so Fig. 7 shows part of a horizontal profile through the sample mean
images. This profile shows that FBP is positively biased and PWLS is negatively biasedeven in a large uniform region. Table 1
shows average percent bias in several rectangular regions. The bias of penalized likelihood and the hybrid method are negligible,
whereas the bias of FBP and PWLS are significant.

In addition to reduced bias, the other benefit of statistical methods is an improved tradeoff between resolution and noise. To
measure resolution, we created another object by adding several small point sources to the object in Fig. 2. We repeated the
process described above for generating Poisson measurements, and reconstructed 50 realizations of this new object for each of the
algorithms. Subtracting the sample means of the two cases (with and without the point sources) yields an image consisting only of
the blurred point sources. We averaged those point sources together to further reduce noise, and then computed the FWHM spread
of the point sources using linear interpolation. This process was repeated for four values ofβ for the iterative methods and for
four cutoff frequencies for the FBP method. Fig. 8 shows a plot of resolution versus noise standard deviation for the four methods.
At any resolution over the range studied, the statistical methods show significantly smaller error standard deviations than the FBP
method. Furthermore, the penalized likelihood method and the hybrid method were again indistinguishable, whereas the PWLS
method showed a slightly higher noise variance for finer resolution images.

As shown in Table 1 we also reconstructed images using the hybrid algorithm with smaller values forγa andγb. These choices
yielded quantitative differences between the hybrid reconstructed images and the penalized likelihood images, with the former
having either slightly higher variances or higher biases. Therefore for this data we prefer the higher valueγb = 50 since the
additional computation (overγb = 20) is small. Of course one will want to adjust this tradeoff between computation and bias and
variance for different types of transmission studies (based on total counts, etc.).
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VI. D ISCUSSION

In Part 1 of this paper, we compared several algorithms for maximizing penalized-likelihood objective functions for transmis-
sion tomography. The coordinate ascent algorithm converged faster than three alternatives, which is consistent with previous work
in emission tomography. Another alternative algorithm is the preconditioned conjugate gradient method developed by Mumcuoglu
et al. [32, 33]. We have not implemented this method because it is more complicated due to the barrier functions that are needed
to enforce the nonnegativity constraint. Sauer and Bouman found coordinate ascent to converge faster than conjugate gradient
for emission tomography [13], although without using preconditioning. Except for the inconvenience of the nonnegativity con-
straint, conjugate gradients should be a natural algorithm to apply to the hybrid objective function since part of that objective is
quadratic. For a meaningful comparison of coordinate ascent and preconditioned conjugate gradient for transmission tomography,
the methods should be compared on the same data with the same convergence criteria.

In the second part of the paper we abandonded the pure log-likelihood in favor of partial approximations to it that reduce
computation. We demonstrated that the purely quadratic approximation leads to systematic negative bias for low count PET
transmission scans. By using a hybrid Poisson/polynomial objective we obtained reconstruction accuracy indistinguishable from
penalized maximum likelihood, but with a factor of two less computing time. A statistical comparison of the resolution/noise
tradeoffs demonstrated that all of the statistical methods improve signal to noise ratio relative to FBP.

Based on our experience, for serial workstations we recommend using the coordinate ascent algorithm for transmission to-
mography with the hybrid objective function. For parallel processors the convex algorithm or conjugate gradients are probably
preferable, and could easily be generalized to apply to the hybrid objective function.

APPENDIX I. BIAS

In this appendix we analyze the bias and variance of several nonlinear estimators in the context of a scalar simplification of the
transmission tomography measurement model. This analysis gives insight into the origin of the negative bias of the weighted
least-squares estimator, the positive bias of the FBP method, and the near-unbiasedness of maximum likelihood or its cubic
approximation.

Assume we have independent Poisson measurementsY = [Y1, . . . , YN ]:

Yn ∼ Poisson{bne
−θ}, (26)

whereθ is an unknown parameter andbn are known constants. We would like to estimateθ from {Yn}Ni=1. Since there is only one
unknown parameterθ, this represents a scalar simplification of the transmission tomography problem. Nevertheless, this problem
retains the nonlinearity associated with the exponential operation.

The log-likelihood for this problem is:
L(θ) =

∑
n

Yn log(bne
−θ)− bne

−θ.

By zeroing the derivative ofL(·) one can easily show that the maximum likelihood estimate ofθ is:

θ̂ML = gML(Y ) = log

(∑
n bn∑
n Yn

)
. (27)

The quadratic approximation toL(·) (cf (22)) is:

∑
{n: Yn>0}

−
Yn

2
· (θ − log(bn/Yn))

2.

By zeroing the derivative of this approximation, one obtains the weighted least squares (LS) estimate ofθ:

θ̂LS = gLS(Y ) =

∑
{n: Yn>0}

Yn log(bn/Yn)∑
{n: Yn>0}

Yn
. (28)

The cubic approximation toL(·) (cf (21)) is:

∑
{n: Yn>0}

−
Yn

2
· (θ − log(bn/Yn))

2 +
Yn

6
(θ − log(bn/Yn))

3.

By zeroing the derivative of this approximation, one finds that the weighted cubic (WC) estimate ofθ satisfies the following
quadratic expression:

θ̂2WC


 ∑
{n: Yn>0}

Yn

2


− θ̂WC ∑

{n: Yn>0}

Yn(1 + log(bn/Yn))
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+
∑

{n: Yn>0}

Yn log(bn/Yn)(1 +
1

2
log(bn/Yn)) = 0, (29)

from which one can find an expression of the formθ̂WC = gWC(Y ) by using the quadratic formula.
For comparison purposes, we also analyze the followingunweighted averageestimator:

θ̂UA = gUA(Y ) =

∑
{n: Yn>0}

log(bn/Yn)∑
{n: Yn>0}

1
. (30)

This estimator is analogous to FBP since all nonzero measurements are treated equally (no weighting).
Since the above estimators are nonlinear, it would be difficult to exactly compute their bias or variance. Therefore we use a

second-order Taylor expansion. Ifg(Y ) = g(Y1, . . . , YN ) is an arbitrary functional, and̄Yn = bne−θ denotes the mean ofYn,
then

g(Y ) ≈ g(Ȳ ) +
∑
n

∂

∂Yn
g(Ȳ )(Yn − Ȳn)

+
1

2

∑
n

∑
m

∂2

∂YnYm
g(Ȳ )(Yn − Ȳn)(Ym − Ȳm).

Under the assumption thatY1, . . . , YN are independent, one can use the Taylor expansion to show:

E{g(Y )} ≈ g(Ȳ ) +
1

2

∑
n

∂2

∂Y 2n
g(Ȳ )Var{Yn} (31)

Var{g(Y )} ≈
∑
n

(
∂

∂Yn
g(Ȳ )

)2
Var{Yn}. (32)

LetC = 1
N

∑
n Ȳn =

1
N

∑
n bne

−θ denote the mean number of counts per measurement.
For the ML estimate, from (27)gML(Ȳ ) = θ and

∂

∂Yn
gML(Ȳ ) = −1/(NC)

∂2

∂Y 2n
gML(Ȳ ) = 1/(NC)2.

Substituting into (31) and (32), we obtain:

E{θ̂ML} ≈ θ +
1

2NC
(33)

Var{θ̂ML} ≈
1

NC
(34)

For the LS estimator, from (28)gLS(Ȳ ) = θ and

∂

∂Yn
gLS(Ȳ ) = −1/(NC)

∂2

∂Y 2n
gLS(Ȳ ) = (2−NC/(bne

−θ))/(NC)2.

Substituting into (31) and (32), we obtain:

E{θ̂LS} ≈ θ −
1

2C
+
1

NC
(35)

Var{θ̂LS} ≈
1

NC
. (36)

For the WC estimator, from (29)gWC(Ȳ ) = θ and

∂

∂Yn
gWC(Ȳ ) = −1/(NC)

∂2

∂Y 2n
gWC(Ȳ ) = 1/(NC)2.
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Substituting into (31) and (32), we obtain:

E{θ̂WC} ≈ θ +
1

2NC
(37)

Var{θ̂WC} ≈
1

NC
. (38)

Note that these two approximations are identical to the expressions (33) and (34) for the ML estimate!
For the UA estimator, from (30)gUA(Ȳ ) = θ and

∂

∂Yn
gUA(Ȳ ) = −

1

Nbne−θ

∂2

∂Y 2n
gUA(Ȳ ) =

1

N(bne−θ)2
.

Substituting into (31) and (32), we obtain:

E{θ̂UA} ≈ θ +
1

2Ne−θ

∑
n

1

bn
(39)

Var{θ̂UA} ≈
1

N2e−θ

∑
n

1

bn
. (40)

Since the function1/x is convex, 1N
∑
n
1
bn
≥ ( 1N

∑
n bn)

−1, with equality if and only if thebn are all equal. Thus we have the

following lower bounds for the bias and variance ofθ̂UA:

E{θ̂UA} ≥ θ +
1

2C
(41)

Var{θ̂UA} ≥
1

NC
. (42)

For PET systems, thebn terms are never equal, and in fact can be quite disparate. Thus the lower bound in (42) will not be
achieved. This partially explains why FBP images are noisier than images reconstructed by the statistical methods (cf. Fig. 6).

Figure 1 shows plots of the bias terms (33), (35), (37), and (41) versus mean countsC, for a system withN = 20. From these
equations and the figure, we see that the maximum likelihood estimator and the weighted cubic estimator are nearly unbiased, the
weighted least squares estimator has a systematic negative bias, and the unweighted average estimator has a systematic positive
bias. The solid lines in the figures are the formulae, whereas the symbols denote empirical results from 500 realizations of (26)
and (27)-(30). These results demonstrate that the systematic biases of PWLS and FBP shown in Fig. 7 are not simply artifacts of
that simulation, but are intrinsic to those methods.

The source of the significant negative bias forθ̂LS can be seen in (28). That expression is a weighted sum, weighted by the
noisy measurementYn. If Yn is larger thanȲn, thenlog(bn/Yn) is will be smaller thanθ, but the corresponding weight in the
summation is larger. Thusthe sum gives more weight to the under-estimated terms, leading to the negative bias in (35). In contrast,
the ML estimate first averages the counts before taking the logarithm (27), which leads to negligible bias, as seen in Fig. 1.

Although this problem is a scalar simplification of transmission tomography, the basic conclusion, that the under-estimated log
ratios are weighted disproportionately, applies to the general problem as well.

APPENDIX II. SMOOTHNESSPENALTIES

This appendix synopsizes our method [22,34] for specifying thewjk factors in (3). Withun defined as in (20), define

gj =

∑
n anjun∑
n anj

, j = 1, . . . , p.

One can show thatun is an estimate of the inverse the variance ofl̂n defined in (19), and if these variancesun were all equal, then
gj would be a constant independent ofj. In general however,gj will depend onj. Define

w′jk =



1, if j andk are horizontal neighbors
1√
2
, if j andk are diagonal neighbors

0, otherwise

and
wjk = w

′
jk

√
gjgk.

This modified choice forwjk provides approximately spatially-invariant image resolution and also allows one to relate the smooth-
ing parameterβ directly to image resolution [22,34].
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FBP PML Hybrid (γa, γb) PWLS
(5, 50) (5, 20) (5, 5)

% Std. Dev. 12.0 6.85 6.87 7.14 7.32
% Soft Tissue Bias 4.5 -0.2 0.2 -0.3 -3.2 -5.8
% Lung Tissue Bias 3.0 0.5 0.7 0.9 0.3 -4.0
% Bone Tissue Bias 2.6 -0.7 0.0 -0.3 -4.6 -8.3
CPU-1 Seconds 1.6 136 50 47 23
CPU-2 Seconds 119 46 44 38
%NL 100 5 5 5 0
%NM 0 50 25 0
%NH 0 45 70 95 100

Table 1: Percent bias and percent error standard deviation for rectangular regions of interest taken from the phantom shown in
Fig. 2. The CPU times are in seconds for 10 iterations (for the iterative methods) on a DEC 3000/800. The CPU-2 times are for
using the quadratic approximation in the denominator of (7), whereas the CPU-1 times are for using the second partials of the
objective (see Section IV.C).
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Figure 1: Plots of estimator bias for the scalar transmission problem discussed in Appendix I. The unweighted average (i.e. FBP)
estimator is positively biased, the weighted least-squares estimator is negatively biased, whereas the maximum likelihood estimator
is nearly unbiased. The weighted cubic estimator is also nearly unbiased, except for very low count measurements.
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Figure 2: From top to bottom: digital thorax phantom, typical filtered backprojection reconstructed image, result of 10 coordinate
ascent iterations for the penalized likelihood objective, result of 10 coordinate ascent iterations for the hybrid objective withγa = 5
andγb = 50. The bottom two images are visually indistinguishable because the hybrid objective is an accurate approximation to
the log-likelihood.



REFERENCES 18

Coordinate Ascent (0.6)
Coordinate Ascent (1.0)

0 2 4 6 8 10 12
0

500

1000

1500

2000

2500

Iteration

O
bj

ec
tiv

e 
In

cr
ea

se

Acceleration by Under−relaxation

Initialized with FBP Image, 10% randoms

Figure 3: Plots of the objectiveΦ(µi) − Φ(µ0) versus iteration for the coordinate ascent algorithm withω = 0.6 andω = 1.0.
Under-relaxation accelerates the convergence rate of coordinate ascent.
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Figure 4: Plots of the objectiveΦ(µi) − Φ(µ0) versus iteration for the penalized likelihood algorithms described in the text. The
coordinate ascent algorithm converges fastest.
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Figure 5: Plots of the objectiveΦ(µi) − Φ(µ0) versus CPU seconds (DEC 3000/800) for the penalized likelihood algorithms
described in the text. The coordinate ascent algorithm converges fastest despite using more CPU time per iteration.
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Figure 6: Mean (left) and standard deviation (right) images from reconstructions computed from 50 realizations. From top to
bottom: FBP method, penalized likelihood, penalized weighted least squares, and hybrid objective withγa = 5 andγb = 50.
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Figure 7: Horizontal profile through the sample mean images shown in Fig. 6. The FBP method has a systematic positive bias and
the penalized weighted least squares (PWLS) objective has a systematic negative bias. The penalized maximum likelihood (PML)
and hybrid estimators perform comparably with negligible bias.
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Figure 8: Resolution versus noise for the various reconstruction algorithms. The FBP method has significantly greater noise than
the statistical methods. For finer resolutions the PWLS estimates are slightly noisier than the PML estimates. The performance of
the hybrid objective withγa = 5 andγb = 50 is indistinguishable from penalized likelihood.


