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ABSTRACT 

As investigators consider more comprehensive measure- 
ment models for emission tomography, there will be more 
choices for the complete-data spaces of the associated 
expectation-maximization (EM) algorithms for maximum- 
likelihood (ML) estimation. In this paper, we show that 
EM algorithms based on smaller complete-data spaces will 
typically converge faster. We discuss two practical applica- 
tions of these concepts: (i) the ML-IA and ML-IB image re- 
construction algorithms of Politte and Snyder [l] which are 
based on measurement models that account for attenuation 
and accidental coincidences in positron-emission tomogra- 
phy (PET), and (ii) the problem of simultaneous estima- 
tion of emission and transmission parameters. Although 
the P E T  applications may often violate the necessary reg- 
ularity conditions, our analysis predicts heuristically that 
the ML-IB algorithm, which has a smaller complete-data 
space, should converge faster than ML-IA. This is corrob- 
orated by the empirical findings in [l]. 

I. INTRODUCTION 

The ML criterion for tomographic image reconstruc- 
tion has received considerable attention since Shepp and 
Vardi [2] introduced an EM algorithm for computing ML 
estimates. Although the medical imaging community often 
refers to “the” ML-EM algorithm, there are in fact a mul- 
titude of feasible EM algorithms, each based on a different 
complete-data space. A useful complete-data space supple- 
ments the observed measurements in a way that facilitates 
parameter estimation [3]. Although only one complete- 
data space has been suggested for PET under the simple 
measurement model used in the early papers [2,4], there 
will be more choices as investigators consider more com- 
prehensive measurement models, such as those account- 
ing for photon attenuation [5], accidental coincidences [l], 
deadtime, and scatter [6,7]. This paper illustrates the im- 
portance of parsimony in choosing complete-data spaces, 
and some of the tradeoffs that result. 

Accurate quantification of radiotracer activity using 
PET must include corrections for the effects of attenuation 
and accidental coincidences. Recently, Politte and Snyder 
proposed two ML-EM algorithms for PET image recon- 
struction that directly incorporate the effects of known at- 
tenuation and accidental coincidences into the statistical 
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measurement model [l]. The algorithms are based on two 
different complete-data spaces, one of which is a subset of 
the other. They observed in experiments that  the algo- 
rithm based on the smaller complete-data space converged 
faster. In this paper we corroborate their observations by 
proving that smaller complete-data spaces yield EM algo- 
rithms with faster asymptotic convergence rates. 

The measurement models used in [l] assumed exact 
knowledge of the survival probabilities, the probability 
that both photons of a positron-produced pair escape unat- 
tenuated. In practice, one must obtain these factors ex- 
perimentally, typically by a transmission scan that pre- 
cedes the radiotracer injection. As mentioned in [l], a 
more accurate approach would account for the statistical 
uncertainties in both the emission data and the transmis- 
sion measurements. An iterative method for simultane- 
ously estimating the emission intensities and the survival 
probabilities has been recently proposed by Clinthorne et  
al. [8]. In this paper, we present two algorithms for joint 
emission/transmission estimation based on generalizations 
of the two complete-data spaces in [l]. We demonstrate 
that although the smaller complete-data space may pro- 
vide a faster algorithm in theory, in practice the larger 
complete-data space leads to an EM algorithm with an eas- 
ier maximization step. Such tradeoffs have been observed 
in other EM applications [3], but they may be particularly 
important to future investigations of PET reconstruction 
methods because of the large dimensions of the parameter 
spaces. 

In Section 11, we briefly review the EM algorithm, and 
prove that smaller complete-data spaces result in faster 
convergence. This is applied to P E T  in Section 111. In 
Section IV we analyze the joint emission/transmission es- 
timation method for PET. 

11. THEORY 

A .  EM algorithm 

We observe y, a realization of a random vector Y having 
known density g(y; e ) ,  with the goal of computing the ML 
estimate of 8 .  In many problems, including emission to- 
mography, the measurements are “incomplete” in the sense 
that several components of 8 may contribute to each com- 
ponent of Y. In such problems one can often postulate a 
“complete data” random vector X that is more naturally 
related to the parameter vector 8 ,  and is related to the 
observed measurements by a many-to-one mapping Y= 
h(X). The density f ( x ; 8 )  of the complete data X must 
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be consistent with the incomplete data Y in that: 

.Let 
&(e; 6) 2 E {logf(X;  0) (Y = y; e} 

= / l o g f ( x ; e )  f ( x ( Y  = y;6) dx 

= H ( 8 ;  e) + L ( 8 ) ,  

where 

The EM algorithm for ML estimation [3], calls for iterating 
over the following steps: 
E-step: 

Compute Q(0; e'), 

6a" = argmaxQ(6;  e'), 

where 61 denotes the parameter estimate after the ith it- 
eration. Note that by Jensen's inequality [3]: 

M-st ep:  

e 

~ ( 8 ;  6 )  5 ~ ( 8 ;  e) v8, 

so the EM algorithm produces a likelihood sequence L ( @ )  
that is monotonically increasing. The basic idea is to com- 
pute Q,  the conditional expectation of the complete data 
given the most recent parameter estimate, and then to 
maximize the parameter's likelihood as if one had observed 
the complete data [3]. The EM algorithm is most useful 
when the complete-data space is chosen such that &(e; 6' )  
can be maximized analytically for the M-step, although 
other approaches are possible [9]. 

B. EM convergence rate 

Several investigators have observed empirically that larger 
complete-data spaces correspond to slower EM conver- 
gence [3, pp. 25,341. In this section we formally estab- 
lish a version of this result. For our purposes, asymptotic 
convergence rate is defined by the following well known 
result [lo,  p. 3011. 

Linear Convergence Theorem: If (i) G : V E W' -+ W 
has a fixed point 8" E D+ = int(D)l (ii) G is Frkhet  differ- 
entiable at  e*, and (iii) p(V'G(6*)) < 1, where p ( )  denotes 
spectral radius1, then the root-convergence factor [ l U ,  p. 

'The (n,m) element of the dim(8) by dim(8) matrix V'G is 
a/a8,Gn(8). In general, the dim(8) by dim(8) matrix V'JF(G;B) 
denotes the matrix of partials d'+J F(8; O) /d8 'dP .  

2881 R1 at  6* for the iterative process 6'" = G(@) is 
given by R1(G, e*) = p(V'G(O*)). 

This leads to the following definition of convergence rate 
for EM algorithms corresponding to strictly concave like- 
lihood functions [3]. 

Theorem 1: Let 0"' = G(@) define the iterations 
for an EM algorithm such that (i) G and 8* satisfy 
conditions (i) and (ii) of the Linear Convergence Theo- 
rem, (ii) G is defined by solving the system of equations 
V''Q(8; 8)(e=cce,, = 0 ,  and (iii) L = -V2L(6*) is posi- 
tive definite, then the root-convergence factor at  e* for the 
EM iteration G is 

A 

R1 = p ( 1 -  Q-lL)  < 1, (3) 

A 
where I is the n x n identity matrix and Q = 
-VZ0Q(6*; e*). 

H 2 -Vz0N(B*;6*) is nonnegative definite 
since it is a (conditional) Fisher information matrix [ll, p. 
1261. From (2), Q = H + L, so by (iii), Q is positive 
definite and therefore invertible. From (ii) we see that 
Vl0Q(G(O);6) = 0 ,  which can be differentiated again to 
yield V2OQ(G(0); e)V'G(e)  +V''Q(G(6); 6 )  = 0. There- 
fore, 

Proof: 

V'G(B*) = -(V2"Q(6*; 6*))-lV1'Q(6*; e*), 
since G(6*) = 6* by (i). But it is well known [3] that for 
O E D +  

v l l ~ ( e ;  e) = v W ( e ;  e) = - v ~ ~ H ( ~ ;  e) 
= V2L(6) - V20Q(8; e). 

The theorem then follows from combining the two equa- 
tions above and the Linear Convergence Theorem, pro- 
vided p (I - Q-lL) < 1. To prove this, we parallel an 
argument of Green [la]. If cr is an eigenvalue of I -  Q-lL1 
then 11- Q-'L - a11 = 0, hence l (1-  a )Q - LI = 0. Since 
Q = H + L ,  1(1 - cr)H - crLI = 0. Thus, by assumption 
(iii), we must have cr E [0, l),  hence p (I - Q-lL) < 1. 0 

Since Q = H + L,  where H is a conditional Fisher infor- 
mation matrix, one sees from (3) that if a larger complete- 
data space has more Fisher information, then the corre- 
sponding root-convergence factor will be larger, and the 
asymptotic convergence rate will be slower. This is the 
idea behind the next lemma and theorem, the main re- 
sults of this section. 

Lemma 1: If (i) QB = H + L, where H is symmetric 
nonnegative definite and L is symmetric positive definite, 
and (ii) QA = QB + N where N is symmetric nonneg- 
ative definite, then p~ 5 PA,  where PA = p (I - Q i l L )  
and p~ = p (I - QB'L). Furthermore, if N is symmetric 
positive definite, then p~ < PA. 

Proof: Again we borrow from Green [12]. By the argu- 
ments in Theorem 1, 0 5 PA < 1 and 0 5 p~ < 1. Since 
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pB = p ( 1 -  Q B ~ L ) ,  3~ # o s.t. (I - Q B ~ L ) ~  = ~ B u ,  

so (1  - ~ B ) Q B u  - L u  = 0. By (ii), (1 - ~ B ) Q A u  - 
Lu = (1 - p ~ ) N u ,  so (1 - ~ B ) Q ~ u  - QA’Lu = (1 - 
pB)QAiNu. Defining v = Q i u ,  it follows that (1 - 
pB)v ’v  - v r ~ ~ + ~ ~ ~ + V  = ( 1  - p B ) v ’ ~ , + ~ ~ , + v  2 0, 
if N is nonnegative definite. Hence, v’[I - Q A f L Q , t ! ~  2 
~ B V ‘ V ,  SO p(I-Q,’LQ,”) 2 p ~ .  But p(I-QATLQA”) = 
p(1- Q i l L )  = PA, so PA 2 p ~ .  The case when N is posi- 
tive definite is similar. 0 

Theorem 2: If (i) GA and GB are two EM algorithms 
that satisfy the conditions of Theorem 1 and that corre- 
spond to complete-data spaces XA and XB respectively, 
(ii) XB is a subset of XA, i.e., X A  = [XY,,Xb]’, (iii) 
~ A ( x A I Y ; ~ )  = ~A([xB,xOI IY;~)  ~ B ( x B I Y ; ~ ) ~ ~ ( x ~ I Y ; ~ ) ,  
and (iv) fo(xoly;8)  = fo (xo ;8 ) ,  i.e., Xo is extraneous 
complete-data, then algorithm B converges faster than al- 
gorithm A asymptotically at  a common fixed point 8”. 

Proof By integrating (iii) and using (iv), one sees that 
~ A ( X A ;  8) = ~ A ( [ x B ,  ~ 0 3 ;  8) = ~ B ( X B ;  @)fO(xo ;  6). Let QA 
and QB denote the Q function (1) for X A  and X B  respec- 
tively, t hen 

1 1 

1 1 1 

QA(% 6) = / logfA(XA; 6) f A ( x A I Y ;  6) dXA 

where Jo(8) is the Fisher information matrix for the extra- 
neous complete data Xo at 8. The conclusion then follows 
from Lemma 1 and Theorem 1. 0 

In summary, Theorem 2 shows that a complete-data 
space with extraneous variables will lead to an EM algo- 
rithm with slower convergence’. Our derivation of this the- 
orem relies on several assumptions, including convergence 
to an interior point, and strict concavity of the likelihood. 
The applicability of these assumptions in the PET context 
is discussed in the next section. 

2We have since shown in [14] that Theorem 2 is true under con- 
siderably less restrictive conditions than (ii)-(iv), but this version is 

111. P E T  RECONSTRUCTION 

A .  Two complete-data spaces 

In this section, we briefly review the two P E T  reconstruc- 
tion algorithms investigated in [l], and then discuss their 
convergence rates. For simplicity, we assume that the ob- 
ject is discretized into B voxels, and denote the radioac- 
tivity in the bth voxel by Ab. PET measurements are ac- 
quired using D detector pairs, with the number of counts 
recorded by the dth pair denoted Yd. The iterative algo- 
rithms attempt to estimate X = [A, ,  . . . , AB]’ (correspond- 
ing to the parameter 8 in the preceding section) from a 
realization y of Y = [Yl, . . . , Y D ] ’ .  The parameter domain 
isv = { A :  A b  2 0, b = I , . .  . , B } .  

Let pdb denote the point-spread function of the system, 
normalized so that z:=lpdb = 1.  Let q b  denote the de- 
tection probability for an unattenuated event originating 
in voxel b, and a d  denote the survival probability, as- 
sumed known here, for a photon pair emitted towards the 
dth detector pair. Then adwdb is the probability that an 
event in voxel b is detected by the dth detector pair, where 
wdb = pdbqb. Let Ndb denote the number of events from 
voxel b contributing to detector pair d; the Ndb’s have in- 
dependent Poisson distributions with means adwdbAb. Let 
Rd denote the number of accidental coincidences counted 
by detector pair d; the Rd’s have independent Poisson dis- 
tributions with mean r d ,  assumed known. The total counts 
in the dth detector pair is then 

B 

Y d = C N & + R d ,  d = l ,  . . . ,  D. (4) 
b = l  

The two EM algorithms described in [l] were called ML- 
IA and ML-IB. The complete-data space for ML-IB is 

Under the distributions given above, 

It follows from (4) that [l] 

sufficient for the purposes of this paper. b = l  
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Combining equations (5)-(7) and (1) yields B. Convergence rates 

Since the complete-data space XIA contains the attenuated 
events Nib that do not contribute to the measurements, 
conditions (ii)-(iv) of Theorem 2 are satisfied. Before in- 
voking Theorem 2 to conclude that ML-IB is faster, we 
must verify condition (i) of Theorem 2, including strict 

to an interior point. Under the assumption of strict con- 
cavity, discussed further below, one can apply the same 
arguments as in the appendix of [4] to show that ML-IA 
and ML-IB converge globally to the same estimate. (Strict 
concavity is a sufficient condition for convergence, but it 
may not be necessary.) From (4) and (8), 

Q I B ( k  A) = - r d  + Y d 7  r d  log(rd)) 
d= 1 ( Yd(X) 

. (9) concavity, convergence of the algorithms, and convergence + 5 5 (-adwdbXb - + Yd- (-udwdbXb 
d = l  b = 1  Yd(X) 

Maximizing QIB(A; Over 5 Yields the ML-IB iteration 
GIB(X’),  where A’+’ = 

G I B ( X )  0 [W’(a 0 y 0 Y(X))] 8 [W’al, 

component-wise multiplication and division respectively. d= 1 

The complete-data space XIA for ML-IA is so the Hessian of the likelihood is 

which includes not only the components of X I B ,  but also 
the attenuated counts N:b. These have independent Pois- 
son distributions with mean (1 - (Yd)WdbXb. Thus, 

l o g f I A ( X 1 A ; X )  = I o g f I B ( X 1 B ;  X) + 1og.fo(No; x ) ~  (10) 

where 
logfo(No;  A) = 

D B  

(-( 1 - ad)Wdbib + Njb log(( 1 - ad)wdbXb)) . 
d = l  b = 1  

(11) 
Since Nib makes no contribution to the measurements Y, 

Combining equations (lo)-(  12) and (1) yields 

V2L(X) = -W’diag{y 8 y2(X)  0 a 2 } W .  (14) 

For strict concavity it is sufficient to have adyd > O,Qd,  
provided W has full column rank. In the presence of acci- 
dental coincidences, all P E T  detectors record nonzero co- 
incidences with very high probability. For an appropri- 
ate sampling scheme and a well-designed PET system, W 
should have full column rank. If W is not full rank, such 
as when “too many” pixels are used, then the ML estimate 
is not unique, and the likelihood criterion is inappropriate. 
In such cases a penalized likelihood estimate is preferable, 
as we discuss in Section V. We conclude then, that if the 
W is full rank, and if the ML estimate is strictly positive, 
then the ML-IB algorithm converges faster than ML-IA. 

Unfortunately, in most cases the ML estimate in PET 
will have components that are zero [13], i.e., not in the 
interior of D. Strictly speaking] the above analysis is in- 
conclusive for such examples. How likely is it that ML- 
IB, with its smaller complete-data space, would converge 
slower than ML-IA simply because some of the compo- 
nents converge to zero? In the next section we explore this 
question by considering a one-dimensional analogue. D B  

Q I A ( k  A) = & I B ( k  A) + (-(I - ad)wdbjb 
d = l  b = l  C. Scalar example 

-!- (1 - a d ) W d b X b  log((1 - Qd)WdbXb)) . 
One can obtain some insight into the convergence behavior 
of these two algorithms by considering the following scalar 
version of the problem. Suppose the measurement model 
is: 

y N Poisson(aA + r )  

where the attenuation a E ( 0 , l )  and the accidental coinci- 
dence rate r >_ 0 are known. In this case, the ML estimate 
for emission rate X over ’D = { A  : X 2 0) is given by: 

Maximizing QJA(A; A) Over x yields the ML-IA iteration 
X i + 1  - - G I A ( X ’ ) ,  where 

G I A ( X )  2 X - X @ (W’a) 0 (W’l) 

+ A 0 [W’(a 0 y 0 Y(A))] 0 [W’l]. 

The vector 1 is the D x 1 vector of 1’s. 
Note that the fixed point(s) of GIA and GIB are identical, 

and if there were no attenuation, i.e. Q = 1, then the two 
algorithms would be identical. 
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a truncated subtraction. 
rithms are given respectively by the maps 

The ML-IA and ML-IB algo- 

GIA(X) = (1 - u)X + Y 
U X  + r 

and 

Note that in the absence of attenuation (U = l), the two 
algorithms are identical. One can also verify that both al- 
gorithms are globally convergent if Xo > 0. Differentiating: 

so in particular 

= l -kU(pB-1)  2 PB, (15) 

showing that the root-convergence factor for ML-IB is 
smaller than that of ML-IA. Does ML-IB converge faster? 
There are three cases to consider. 
Case 1: If y > T ,  then both estimates converge to i > 0, 
at  asymptotic rates governed by the Linear Convergence 
Theorem, so by (15), ML-IB converges faster. 

difficult to predict what the analogous boundary situations 
would be in higher dimensions. The fact that  there exists 
a situation where p(VG) = 1 even in the scalar case sug- 
gests that a comprehensive rigorous comparison of ML-IB 
and ML-IA will be difficult to obtain. 

Iv. JOINT ESTIMATION OF cy AND X 

Case 2: If y 5 r ,  then both estimates converge to i = 0, 
on the boundary of V ,  so at  first it seems that the Linear 
Convergence Theorem does not apply. However, if r > 
0 then we can actually make the object domain slightly 
larger, say: V- = { A  : X 2 -+./U}, since GIA and GIB are 
both differentiable on 2)- . Directly applying3 the Linear 
Convergence Theorem to GIA and GIB using (15) shows 
that if y < r ,  then ML-IB converges faster than ML-IA 
even though the ML estimate is O! 
Case 3: If y = r ,  then PA = p~ = 1, so the asymptotic 
convergence rate is not well defined by the Linear Conver- 
gence Theorem. However, since y is an integer number of 
counts, and T is a real number, the outcome y = r seems 
rather unlikely in practice. For a non-asymptotic compar- 
ison, one can verify that if X > 0, then 

IGIB(A) - AI 5 IGIA(X) - ill (16) 

so the ML-IB algorithm takes larger steps towards the 
ML estimate than the ML-IA algorithm. Therefore, even 
though the convergence is sub-linear when y = r ,  the ML- 
IB algorithm will converge faster in a sub-linear sense. 

In summary, we have shown that under this scalar 
model, ML-IB usually has faster asymptotic convergence 
rate than ML-IA, and always takes larger steps (16). It is 

3We cannot apply Theorem 1 to this larger domain since QIA and 
QIB are not differentiable at 0. 

As in [l], the above discussion assumed that the sur- 
vival probabilities (Yd were known exactly. In practice, 
one estimates these survival probabilities from transmis- 
sion measurements acquired prior to the emission scan. 
Let M d  denote the transmission measurement, with re- 
alization m d ,  for the dth detector pair. It is reasonable 
to assume that the M d ’ S  have independent Poisson distri- 
butions with mean t d c y d ,  where t d  is proportional to the 
transmission scan time4 and the efficiency of the dth de- 
tector pair. The t d  factors are determined by a “blank 
scan,” i.e. a transmission scan without the patient in the 
scanner. The conventional approach is simply to estimate 
(Yd by m d / t d ,  and to “precorrect” the emission measure- 
ments. The approach suggested in [8] is to jointly estimate 
A and a from y and m = [ml, . . . , m ~ ] ’  by maximizing the 
joint log-likelihood: 

where 
K(8) = 

[ diag{y 8 y’(8) o CI,”} 
Thus, L ( 8 )  is not necessarily strictly concave, and conver- 
gence of the two EM algorithms discussed below remains 
an open problem. 

As in Section 111, we again have the option of includ- 
ing or excluding the attenuated emissions N& from the 
complete-data space, leading to two algorithms we denote 
ML-JA and ML-JB. 

diag{l - y O r 8 y2(8)} 
diag{l - y o r  8 y (e)} diag{y 0 ?’(e) O (WA)’} 

For ML-JB, the complete data consists of 

4Here, we ignore the statistical uncertainty in the accidental coin- 
cidences measurement, the statistical uncertainty in the blank scan, 
and the contribution of accidental coincidences to the transmission 
measurements. For a more complete treatment, see [SI. 
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so thus 
D B  

D B  x ( - G d w d b i b  
d = l  b=1 

D 

+ ( - r d  + R d  log(rd)) + 
d = l  

It is easily verified that 

= m d ;  

therefore, 

+ ( I  - a d ) W d b A b  lOg((1 - a d ) w d b i b ) )  . 
Setting the derivatives of QJA(., 8) to zero yields the fol- 
lowing equations for the M-step: 

o =  

o =  

D 

+ -rd + Ydr r d  l o g ( r d )  +c ( - t d a d  + md This set of equations is uncoupled in A"' and ai+' , and 
d = l  ( Y d ( 8 )  ) d= 1 yields the ML-JA iteration: 

Setting the derivatives of Q J B ( . , ~ )  to zero yields the fol- 
lowing equations for the M-step: 

yielding the pseudo-iteration: 

Xi+1 Xi @ [W'(ai 0 y 0 y(8')))l 0 [W'a"+'], 
a*+' [ y  0 y(8') @ ai 0 (WXi) + m] 0 [WXi+' + t], 
where t = [ t l ,  . .  . , to]' .  This set of equations is coupled 
in xi+' and a'+' , and no analytical solution seems likely. 
However, they can form the basis for a GEM algorithm 

Fortunately, the equations become uncoupled when us- 
ing the less parsimonious complete-data space for ML-JA. 
Let 

= 
= 

P, 141. 

A"+' = X i  - A' @ ( W V )  0 (W'l) 

+ Ax o [w'(a' o y 0 y(8'))]0 [W'l], 

and 

t = [(WXi) 0 ai 8 y 8 y(8i) + m] 0 ai+' 
- [ (Wk)  0 (1 - a"] 0 (1 - a'fl) ,  

where the latter is an easily solved quadratic in ai+'. The 
resulting joint emission/transmission estimation algorithm 
is only slightly more computationally expensive per iter- 
ation than the ML-IA or ML-IB algorithms of [l], yet it 
accounts for the statistical uncertainty in both the emission 
measurements and the transmission measurements, unlike 
ML-IA and ML-IB. 

V. DISCUSSION 

We have shown that smaller complete-data spaces yield 
EM algorithms with faster asymptotic convergence. This 
theoretical result, combined with the empirical results 
in [l] suggests strongly that the ML-IB algorithm should 
be used in practice over the ML-IA algorithm. The heuris- 
tic explanation for this is that  the complete-data space for 
ML-IA includes the attenuated events that make no contri- 
bution to the measurements. Since EM algorithms are no- 
torious for slow convergence, this comparison has practical 
importance. Even a small decrease in the root-convergence 
factor can significantly reduce the required number of it- 
erations. 

We have also shown that the story gets more compli- 
cated if one wants to jointly estimate both the emission 
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and the transmission parameters. In this case, although 
theoretically ML-JB would converge faster than ML-JA, 
the M-step of ML-JB seems intractable. We are currently 
investigating a space-alternating approach that may cir- 
cumvent this problem [14]. Meanwhile, it appears that the 
best strategy is the following: use the smallest complete- 
data space that results in  a tractable maximizat ion s tep.  

Several investigators have shown that more appealing 
images are produced by regularizing the ML estimate by 
including a penalty term or Bayesian “prior” [12,15-183. 
In principle, our Theorems 1 and 2 directly generalize to 
the case where concave penalties such as those discussed 
in [18] are added to the likelihood, again supporting the 
conclusion that smaller complete-data spaces correspond 
to faster convergence. There is one important caveat how- 
ever: except in the trivial case of independent priors, the 
maximization steps of penalized EM algorithms become in- 
tractable due to the coupling introduced by the penalties. 
Consequently, the algorithms for the penalized case are 
usually of the generalized EM (GEM) type [3,16]. GEM 
algorithms only provide an increase in &(e, e’) at each it- 
eration, rather than truly maximizing &. Therefore, GEM 
algorithms do not usually satisfy condition (ii) of our Theo- 
rem 1. They are also usually not globally convergent unless 
line-searches are employed [18]. These factors inhibit mak- 
ing formal statements about asymptotic convergence rates 
for penalized likelihood algorithms. We have implemented 
penalized-likelihood algorithms based on Hebert’s GEM 
strategy [16] for both the ML-IA and ML-IB complete- 
data spaces. We have also implemented both ML-IA and 
ML-IB with sieve constraints [l, 19,8]. We found empiri- 
cally that the penalized ML-IB algorithm converged sub- 
stantially more rapidly, in terms of both likelihood increase 
and apparent image contrast. These empirical results are 
further motivation for using smaller complete-data spaces 
where possible. 
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