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Object-Based 3-D Reconstruction of Arterial Trees 
from Magnetic Resonance Angiograms 

Jeffrey A. Fessler, Member, IEEE, and Albert Macovski, Fellow, IEEE 

Abstract-This paper describes an object-based approach to the 
problem of reconstructing three-dimensional descriptions of arterial 
trees from a few angiographic projections. The method incorporates a 
priori knowledge of the structure of branching arteries into a natural 
optimaiity criterion that encompasses the entire arterial tree. This 
global approach enables reconstruction from a few noisy projection 
images. We present an efficient optimization algorithm for object es- 
timation, and demonstrate its performance on simulated, phantom, and 
in vivo magnetic resonance angiograms. 

I. INTRODUCTION 
HE inaccuracy of visual interpretation of angiograms has T been well documented, and has motivated the development 

of automated methods for quantifying arterial morphology. Ac- 
curate descriptions of arterial trees would be useful for quanti- 
tative diagnosis of atherosclerosis, for surgical or treatment 
planning, for monitoring disease progress or remission, and for 
comparing efficacies of treatments [ l ] .  This paper describes a 
new method for computing 3-D descriptions of arterial trees 
from a few projection images. 

A summary of recent studies [2] discussed “a fascinating but 
disturbing fact * * asymptomatic subjects with normal results 
on stress tests had a much lower mortality rate than asympto- 
matic subjects with abnormal results. However, the very large 
low-risk group with normal responses to exercise testing . . . 
contained, in absolute terms, the large majority of subjects who 
subsequently died suddenly. ” This observation highlights the 
importance of noninvasive quantitative angiography, since 
asymptomatic patients do not qualify for invasive examinations 
such as intra-arterial angiography. To identify individuals at 
possible risk due to mild plaque build-up, a noninvasive pro- 
cedure is needed that can accurately quantify lumen size. Mag- 
netic resonance angiography (MRA), in conjunction with 
computed reconstruction of arterial trees, has potential to serve 
this need. The 3-D arterial reconstruction algorithm presented 
in this paper is particularly suited to MR data, though the ap- 
proach is also applicable to digital X-ray angiograms. 

The projection model analyzed in this paper is based on the 
selective inversion-recovery (SIR) method [3] for MRA. “SIR 
bears some similarities to X-ray digital subtraction angiography 
(DSA). While DSA involves the subtraction of two images, one 
with and the other without contrast agent, SIR involves the sub- 
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traction of two images, one with and the other without inversion 
excitation of blood prior to its entering the region of interest.” 
[4] By using a multiple-readout selective inversion-recovery 
(MRSIR) sequence [5], we can acquire arterial views at a few 
projection angles without using invasive contrast agents or ion- 
izing radiation. A typical MRSIR sequence with 256 cardiac- 
gated phase-encode pairs lasts about 4 min. During each cardiac 
cycle, several spatial-frequency space readouts occur-each 
corresponding to a difficult projection angle. For a multiple- 
readout sequence, if the number of readouts is increased, then 
the tip-angles must be decreased. Thus, the signal-to-noise ratio 
per view is inversely related to the number of projection angles, 
which necessitates optimal use of the projection data. (Flow- 
sensitive MR techniques can acquire a 3-D data set directly [6], 
[7], but the large number of required excitations makes cardiac 
gating impractical. Ungated sequences often suffer from sensi- 
tivity to non-uniform flow and vessel motion.) 

Projection-reconstruction from only a few views in an ill- 
conditioned problem in general, but as observed by Rossi [8], 
“the ultimate goal of processing the projection measurements 
is typically far more modest than obtaining high resolution 
cross-sectional imagery.” In fact, the goal is typically to obtain 
quantitative descriptions of arterial shape (perhaps as an inter- 
mediate step towards the goal of evaluating hemodynamic prop- 
erties). Therefore, rather than attempting to compute 3-D 
voxels, we use an elliptical model to approximate arterial cross- 
sections. This parametric approach exploits our a priori knowl- 
edge of the structure of arteries, and translates the reconstruc- 
tion problem into an object estimation problem. However, a 
single ellipse is inadequate for representing bifurcations where 
stenoses frequently occur. This paper describes a new extension 
of the generalized-cylinder object model to overcome this lim- 
itation, allowing the first application of our method to projec- 
tion data acquired in vivo. 

The novel aspects of the method we present are as follows. 
It is based on a global criterion-to maintain accuracy at the 
low SNR typical of noninvasive methods; bifurcating arteries 
are explicitly modeled; there are no empirically determined 
thresholds; overlapping vessel projections are accommodated; 
and the time-dependence of contrast density is modeled. The 
theory we present has the potential of providing a fully auto- 
matic reconstruction algorithm. However, like many methods, 
the current implementation of our algorithm requires some man- 
ual initialization. Automating this will be a necessary step to- 
wards making the algorithm clinically useful. 

The paper is organized as follows. In Section 11, we briefly 
review other 3-D reconstruction methods. In Section 111, we 
present a statistical model relating the projection images to the 
unknown arterial tree. In Section IV, we describe a new object 
model, tailored for representing arterial trees. In Section V, we 
propose a new optimality criterion for the problem of estimating 
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an arterial tree from noisy projections. This criterion is opti- 
mized using the estimation algorithm presented in Section VI. 
In Section VII, we show the results of applying this algorithm 
to simulated angiogram, to MR phantom data, and to MRA 
projections of carotid arteries. We discuss the results and the 
future directions of this research in Section VIII. 

11. BACKGROUND 
Quantitative angiography has been studied for over two de- 

cades, and improvements in imaging technology and computer 
speed continue to spur the development of various reconstruc- 
tion approaches for the many different applications. In this sec- 
tion, we review some of these methods; see also [9], [ lo] for 
more comprehensive reviews. To our knowledge, all previous 
methods have been applied only to X-ray angiograms and have 
not addressed the unique aspects of MRA. 

An arterial tree can be described with the most generality by 
a three-dimensional density function p ( x ,  y ,  z ;  t ) .  In general, 
p is also a function of time due to the motion of blood and of 
the arteries. In X-ray imaging, p represents the linear attenua- 
tion coefficient of iodinated blood, and p is a real, positive 
quantity. In magnetic resonance angiography (MRA), p repre- 
sents the density of inverted spins that have flowed into the 
readout region [3], [ 5 ] ,  and in general is a complex quantity 
due to spin dephasing. This aspect is discussed further in the 
next section. We use “contrast” or “density” throughout to 
refer to p,  although no contrast agent is used in MRA. Though 
specialized X-ray equipment [ 111, [ 121 can acquire enough pro- 
jection data to reconstruct a discretized estimate of p, the time- 
variation of arteries limits acquisition to only a few (almost) 
simultaneous projection images with practical equipment. For 
some applications, estimates of arterial position and area may 
be sufficient, and algorithms have been published for obtaining 
those features from just two views [9], 1131, [14]. However, 
computations of hemodynamic significance depend on stenosis 
geometry, including entrance and exit angle [ 151, for which area 
alone is insufficient. To circumvent the ill-conditioned nature 
of limited-view reconstruction, virtually all methods attempt to 
reduce the dimensionality by considering some special class of 
densities. 

Perhaps the most flexible approach is to consider p to be a 
discretized 3-D voxel set, and to incorporate a priori knowl- 
edge such as sparseness, non-negativity , and connectedness to 
regularize the reconstruction [ 161, [ 171. Though this method 
has the ability to (discretely) represent any arterial shape, ac- 
curate reconstruction seems to require several views. To reduce 
the number of views needed, p is often restricted to binary val- 
ues indicating the presence or absence of blood in each voxel. 
This implicitly assumes that the contrast uniformly fills the en- 
tire arterial tree, and that the contrast density is known. These 
assumptions are violated in MRA, due to variable “wash-in.’’ 
Other methods assume that only a single artery is imaged, or 
that the cross-sections are ellipses with axes aligned with two 
orthogonal projection angles. Often the restrictions on p are only 
made implicitly, such as when “diameter” is computed from a 
single view. 

To compensate for limited views and low SNR, stronger as- 
sumptions are necessary. The model-based approach of this pa- 
per is rooted in the work of Rossi [8], who analyzed reconstruc- 
tion of a circular object from projections, and of Shmueli [18], 
who developed a dynamic-programming algorithm for outlining 
a single cylindrical artery in one view. Pappas [19] demon- 

strated the accuracy of using elliptical cross-sections to repre- 
sent arteries, and Bresler [20] presented an optimal algorithm 
for reconstructing a single object with elliptical cross-sections 
from a few projections. In [21], Rossi further evaluated ellipse 
reconstruction accuracy. Kitamura et al. [9] presented an al- 
gorithm for computing the skeleton and transverse areas of an 
arterial network from a single view, assumed to be free of over- 
lapping arteries, and demonstrated 3-D reconstruction of a sin- 
gle artery from biplane angiogram. Their approach was also 
based on the generalized-cylinder object model, as was our work 
with Bresler [22], [23]. 

An ellipse can better approximate a wider class of cross-sec- 
tions than can a circle, but has the disadvantage that more than 
two views are required to obtain a unique reconstruction. Spears 
1241 has calculated the deterministic error in reconstructing el- 
lipses from just two views. For applications where very accu- 
rate quantification of stenosis geometry is critical, one can 
justify acquiring more views. Nevertheless, to maximize SNR 
with the MRSIR method, we would like to use as few views as 
is possible. Bresler [25] proved that an arbitrary set of ellipses 
can be reconstructed (with probability one) from only three 
(ideal) views. In the presence of measurement error, discreti- 
zation, and blurring, we conjecture that four views is the min- 
imum plausible number. 

With the exceptions of [18], [20], most of the model-based 
3-D reconstruction algorithms and many of the 2-D arterial 
tracking procedures have consisted of two steps: estimation of 
cross-sectional features on a slice-by-slice basis, followed by 
some sort of smoothing of those features [9], [15], [26]-[28]. 
The smoothing filter is usually chosen heuristically, with an 
empirically determined bandwidth. These two-step approaches 
are suboptimal, even if each step is optimal [22], but how much 
so is unclear. By using ellipses, we capture our a priori knowl- 
edge about the shape of arterial cross-sections in a simple 
parametric form. The equally important a priori knowledge that 
arteries are smooth, i.e., ellipse parameters vary slowly along 
an arterial segment, is more difficult to quantify. Shmueli [ 181 
and Bresler [20] used parametric Gauss-Markov models to 
quantify this smoothness parametrically. We have two objec- 
tions to this approach: 1) the parameters of a Gauss-Markov 
model are unknown and not easily determined, and 2) in gen- 
eral, these models imply that the a priori covariances of the 
cross-sections vary along the length of an artery. This implied 
variation is inconsistent with our intuition: prior to examining 
an angiogram, our uncertainty about cross-sectional shape is 
uniform along the arteries. We instead propose a nonparametric 
approach, described in Section V, that captures our a priori 
knowledge of arterial smoothness with minimal assumptions. 

111. MEASUREMENT MODEL 

Reconstruction from projections belongs to the mathematical 
class called inverse problems. Solutions to such problems de- 
pend heavily on the assumptions one makes about the corre- 
sponding forward processes. In this section, we present a 
statistical model for projection angiography that relates an un- 
known arterial tree to its acquired measurements. This model 
accounts for overlapping arterial projections, space-invariant 
blurring, and additive noise. In the next section, we will restrict 
our attention to a specific class of arterial tree descriptions, but 
for this section, we represent an arterial tree by an arbitrary 
three-dimensional density function. DSA images may also be 
corrupted by an unknown background field, and one could ex- 
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tend the model to account for an unknown background [9], [ 191, 
[29], [30]. This has not been necessary for MRA images. 

The density function for an arterial tree varies with time, and 
a reconstruction paradigm that requires multiple views must ac- 
count for this variation. Since the MRSIR readouts occur during 
diastole, we assume that the arteries’ positions are identical for 
each projection angle. Since each readout takes only 6 ms, 
“wash-in” effects during the readout are negligible. However, 
the contrast may still change between readouts, and we account 
for this variation in our measurement model. We assume P pro- 
jection images are acquired at time instants’ t , ,  , t ,  and at 
projection angles 6, ,  . . . , OP. For example, for a dual-biplane 
DSA system [29]: P = 4, t ,  = t* ,  t3 = f4.  6, = O”,  O2 = 90”, 
O3 = A,, and O4 = A, + 90”. 

A projection is a mapping of a 3-D density into a 2-D image, 
and that mapping is determined by the acquisition geometry. 
MR projection images emulate a parallel geometry, for which 
the projection mapping is expressed as line-integrals through 
the density [31] 

p ( s  cos 0, + U sin e,,, s sin 0, - U cos e,, 21; t,,) ds ( 1 ) 

where p ( x ,  y ,  z ;  t )  is the time-varying 3-D density and l o (  U ,  U ;  

p )  is the projection of p at angle 6. As shown in Fig. 1,  U and 
U are the local coordinates in the projection images, and the 
z-axis is the “rotational axis.” (The z and 21 coordinates are 
equivalent. ) The density function represents only the contri- 
bution of (lumens of) the arterial tree of interest, assuming any 
other tissues are removed by subtraction. The restriction to a 
geometry with a single axis of rotation is convenient for recon- 
struction, but a more sophisticated approach would utilize the 
ability of MR systems to acquire projections in any direction. 

As mentioned above, the density p is in general a complex 
quantity, as are the projection images. Unfortunately, the com- 
plex image data is typically corrupted by spurious phase, so we 
use a homodyning procedure [32], [33] to extract the desired 
in-phase component of the images. If p has significant dephas- 
ing, then there may be signal cancellation that is not modeled 
by (1). Our approach has been to minimize dephasing by using 
very short readouts (partial k-space) [4], by selectively project- 
ing only a slab containing the branches of interest [34], and by 
carefully shimming the main field [35]. The model used here 
(1) should be generalized for systems with poor homogeneity. 

Actual imaging systems produce noisy, discrete samples of a 
blurred version of the ideal projections, and accurate estimation 
requires accounting for these distortions. In MR, the point- 
spread function (PSF) is determined by the frequency-space 
sampling and weighting, and is spatially invariant. Although it 
is possible to estimate the point-spread function and the arterial 
tree [9], [ 191 simultaneously, Pappas [ 191 has observed that 
even “if we assumed that there is no blurring, we would still 
get good estimates of the parameters.” Here, we assume the 
PSF is known, spatially invariant, and denoted by h(u, U ) .  

Digital imaging systems acquire samples of the blurred pro- 
jections in the form of images. Let these images consist of N 
rows of W pixels each. If so,, ,, , ( p )  denotes the ideal mean ith 
pixel value in the nth row of the projection image at angle e,,, 

s 

‘These times are relative to the cardiac R-wave 

i z  

Fig. 1. Projection geometry, showing projections of a bifurcation. 

( 2 )  

where z,, ( N  - n ) A I . ,  the horizontal and vertical pixel di- 
mensions are Ab and A,,,  respectively, i,, is the distance (in pix- 
els) from the projection of the rotation axis to the left edge of 
a projection image, and ** denotes the 2-D convolution oper- 
ator. The offset ih may differ from its usual value of W/2 since 
any extra linear phase in an MR system leads to a shift in the 
reconstructed images. 

Blurring along the length of an artery’s projection is less im- 
portant for reconstruction than lateral blurring that smooths the 
artery’s edges. In the next section we will restrict our attention 
to arteries whose medial axes are roughly parallel to the z axis, 
so it is reasonable to ignore blurring along this axis. This ap- 
proximation simplifies the estimation algorithm discussed in 
Section VI. Furthermore, if we assume that the PSF is smooth, 
then we can approximate ( 2 )  by a discrete convolution that is 
more easily implemented. These approximations allow us to re- 
write (2) as 

so ,,,, ( P I  = h, * lo/, , ( zn ;  P I  ( 3 )  

where * now indicates discrete convolution with respect to i, 
and 

h, e h ( i A , , ) ,  
rial, 

Finally, the actual measured pixel values are corrupted by 
noise. If y,, , l , i  denotes the measurement corresponding to 
so,, ,,,,, then we assume 

Y p . n . i  = so,,,,, (CL) + E o , , , , ,  

where the additive measurement error E,,. ,,. , has a Gaussian dis- 
tribution with (possibly unknown) variance c ~ * .  In MR imaging, 
the “source of this noise is thermally generated, randomly fluc- 
tuating noise currents in the body which are picked up by the 
receiving antenna,” [36] so it is correct to assume that the mea- 
surement errors are Gaussian and independent. 

It is convenient to group the ideal projection and measure- 
ment samples in the different ways defined below. First, group 
the samples by rows 

Y,.,, e t Y / > . ! L ’ ~  * . . > Y / > . ” . W l ’ ,  
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where “ ’ ” denotes matrix transposition. Next, group the cor- 
responding rows of the P images 

Finally, let 

be the aggregates of all the samples. The vector y has length 
NPW. We similarly define E ,  yielding the final measurement 
model 

Y = S ( P )  + lz ( 5 )  

which simply says that the (known) measurements are equal to 
the sampled and blurred projection of the (unknown) arterial 
tree density plus noise. 

In summary, we have defined a statistical measurement model 
(3, using the following assumptions: 

negligible dephasing, 
linear projection of density function, 
uniform background (or presubtracted background), 
known, space-invariant PSF, 
parallel geometry, and 
independent, additive, Gaussian measurement errors. 

IV. OBJECT MODEL 
As discussed in the introduction, the information provided by 

only a few projections is insufficient for reconstructing a gen- 
eral three-dimensional function. Any solution therefore hinges 
on restricting consideration to a smaller class of descriptions. 
In this section, we introduce an extension of the generalized 
cylinder (GC) object model, tailored to the task of representing 
arterial trees (the terms “object” and “arterial segment” are 
interchangeable). In particular, our model is designed to rep- 
resent bifurcations accurately. This accuracy is essential since 
atherosclerotic lesions are prevalent near arterial branches [37], 
[38]. Binford [39], [40] introduced the GC model for computer 
vision applications. According to Agin [40], “a generalized 
cylinder consists of a space curve, or axis, and a cross-section 
function defined on that axis.” For this paper, we take that 
cross-section function to be an ellipse. 

A.  SGC Object Model 

A true GC would have arbitrarily oriented ellipses, as in Fig. 
2. Reconstruction of such general objects from projections is 
still an open problem; to our knowledge, the only work on this 
problem is a hierarchical algorithm proposed, but never imple- 
mented, by Bresler [25]. The comments of Marr [41, pp. 223- 
2241 suggest that GC reconstruction may be challenging to im- 
plement from projections acquired around a single rotation axis. 
We instead adopt the popular approach [9], [20], e.g., of par- 
ameterizing objects by their cross-sections parallel to the xy 
plane, an approach ideally suited to the cylindrical geometry. 
As argued in [9], a GC with slowly varying elliptical cross- 
sections can be approximated by a set of parallel ellipses as 
shown in Fig. 2.  Such a set of ellipses can be parameterized by 
z ,  hence we call the collection a single-valued generalized cyl- 
inder (SGC). Objects that wind back upon themselves (e.g., U 
shaped) must be represented by more than one SGC, and are 

Fig. 2.  A GC (left) and an approximating SGC (right). 

called “multivalued.” The further an object is tilted away from 
the rotational axis, the poorer its SGC representation. Thus, as 
in most imaging procedures, proper patient positioning is es- 
sential, and the arteries of interest should be aligned as close as 
possible to the rotational axis. The examples of Section VI1 
demonstrate successful reconstruction of objects with tilts ex- 
ceeding 45”.  Though we parameterize objects by parallel cross- 
sections, the cross-sections perpendicular to an artery’s medial 
axis are more important for quantitative diagnosis. Hence, we 
present formulae for converting between GC and SGC param- 
eters in Appendix C. 

Each SGC cross-section has three attributes: position, shape, 
and content. An ellipse’s position attribute is parameterized by 
the xy coordinates of its center, denoted by (ex, c y ) .  We pa- 
rameterize an ellipse’s shape attribute by its radius (geometric 
mean of long and short axes), eccentricity* (ratio of long to 
short axis)3, and orientation, denoted by r ,  X, and 4, respec- 
tively (see Fig. 3). The content attribute parameterizes the den- 
sity within an artery, and can have a profound, though often 
underestimated, impact on a reconstruction algorithm’s accu- 
racy and applicability. Some methods assume the content is 
known or is computable from “normal” sections of an artery, 
usually assumed to have a circular cross-section. Having more 
than two views allows us to relax these assumptions. We do not 
assume the contrast density is known, and we allow it to vary 
along the length of an artery, from artery to artery, and possibly 
even between projection images, as discussed next. 

Though the measurement model (5) allows a general time- 
varying density, we now consider only SGC’s whose position 

, tp,  but we and shape attributes are invariant at times t , ,  * * 

account for the time variation of the content a t t r i b ~ t e . ~  This 
approach is necessary since the contrast often varies between 
MRA projection images, and is approximately sufficient since 
cardiac gating can synchronize position and shape. We assume 
each particular arterial cross-section is uniformly filled with 
contrast agent, so we parameterize an ellipse’s content by a vec- 
tor denoted by p = [ p , ,  * - * , pp]’ where P is the number of 
projections. For some imaging techniques, we may be able to 

’The radius/eccentricity Parameterization is preferable to the long-axis/ 
short-axis parameterization for our approach, since independence of radius 
and eccentricity is a more realistic assumption, particularly in stenotic ar- 
teries. 

Another definition of ellipse eccentricity is m. 
4We could also account for lateral vessel motion between acquisitions 

1291. 
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Fig. 3. Predictions of an elliptical cross-section. I , :  ideal, so,,: blurred and 
sampled. 

equate some of the pp’s. For example, with biplane DSA, the 
contrast is identical for each pair of projection images, so we 
would assume p ,  = p2 and p3 = p4. Note that ideal data sets 
would have p ,  = = pp, since estimating additional param- 
eters often decreases estimation accuracy, but we have found 
the full generality presented here necessary for some MRA data. 

We now define notation for a hierarchy consisting of ellipses, 
objects, and trees. The symbol x will denote a particular set of 
5 + P ellipse parameters. In particular, 

denotes the (unknown) ellipse parameters of the kth object at 
vertical position z. An object is uniquely determined by speci- 
fying its starting plane zbr its ending plane z,, and the collection 
of parameters of its elliptical cross-sections between those 
planes. We use the symbol Ok to denote the kth object, i.e., 

Ok { Zk, Xk ) 
where 

z k  ’ [ Z h , k ,  Z e . k l  

denotes the vertical domain of the kth object, and 

Xk { Xk ( 2 ) :  z E Zk } 
denotes the collection of ellipse parameters. We will say more 
about Zk later in this section. 

An arterial tree is a collection of K objects, or “object-set,” 
denoted by the symbol Y 

P ’ { K ,  8 ! ,  * * * , O K }  

= { K ,  z , ,  TI, . . 9 2,. T,}. ( 6 )  
The notational hierarchy for Y directly corresponds to a hier- 
archical data structure [I31 that we used to implement the al- 
gorithm described in Section VI. Due to the simplicity of the 
ellipse parameterization, this representation for Y is consider- 
ably more compact than a discretized 3-D voxel set. More im- 

portantly, the significant factors for quantitative diagnosis, such 
as percent stenosis and stenosis eccentricity, are directly com- 
putable from Y. 

With these definitions, we have translated the problem of re- 
constructing a density p from projections into the problem of 
estimating an object-set Y from projections. That is, we must 
estimate the number of objects, the vertical extent of each ob- 
ject, and the parameters of the ellipse cross-sections for each 
object. 

B. Branching Arteries Model 

In earlier efforts [22], [23], we assumed that the K objects to 
be reconstructed were disjoint. Although convenient, this as- 
sumption precluded accurate modeling of branching vessels. 
Histological sections of bifurcations [37], [38] suggest that pairs 
of intersecting ellipses can approximate cross-sections of a bi- 
furcation accurately, even a diseased one. Therefore, we dis- 
card the disjointedness assumption by allowing SGC objects to 
intersect and by accounting5 for their intersections [42]. The 
importance of this accounting is clear from early GC-based vi- 
sion algorithms [40] that were prone to failure near the inter- 
section of GC’s. (For simplicity, we consider bifurcations only; 
the extension to trifurcations involves only additional notation.) 

When two SGC objects intersect, their position and shape 
attributes are unaffected, but we must specify their content at- 
tributes more carefully. Although it  may be reasonable to as- 
sume that two intersecting ellipses must share the same density, 
we can simplify our reconstruction algorithm by not enforcing 
this constraint. This also provides a self-test for the reconstruc- 
tion: if the estimated densities differ significantly for two arte- 
rial branches near a bifurcation, then something is clearly amiss. 
For mathematical consistency, we must specify a symmetrical 
definition for the content of two intersecting ellipses with dif- 
ferent densities. Our convention is described pictorially in Fig. 
4 where we define the density of the common area of two el- 
lipses to be the average of the two ellipse densities. If the two 
densities are the same, then the area of overlap will have that 
same density. 

With the above definitions, we can now specify the unique 
3-D density function generated by a given object-set. Let & ( x )  
be the set of points within the ellipse parameterized by x, i.e., 
i f x =  [ c , c , r X + p ’ ] ’ , t h e n  

(x - c,) cos 4 - ( y  - c,) sin 4 
r J X  ) &(x)  = i (  (x, Y ) :  

)2 5 1 1 .  ( 7 )  
( x  - c,) sin 4 + ( y  - c,) cos 4 

+ (  r / J i  

The relationship between an object-set Y and its density pcLyl is 
then 

CLcLyl(x, Y >  2;  t , )  = 
K 

[ P k . p ( Z )  l C ( X L ,  ,)k Y )  12, (41 
k =  I 

‘More perspiration than inspiration: compare Appendices A and B. 
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Fig. 4. Convention defining content attribute of a cross-section formed by 
two intersecting ellipses with different densities. 

where 

The first summation would suffice for a set of disjoint objects, 
and the second summation accounts for the areas of overlap. 

The reverse relationship to (8) is not unique because many 
different object-sets generate the same density function. One 
trivial reason for this nonuniqueness is that an ellipse’s shape 
is the same for orientations q5 and q5 + a, but the parameter 
vectors differ. Also, if one changed Y by adding objects with 
zero density, there would be no change in pv .  More signifi- 
cantly, the union of two identical ellipses is indistinguishable 
from a single ellipse. We will say two object-sets are equivalent 
if the density functions they generate from (8) are equal. For 
example, if the three objects shown in Fig. 5 all have the same 
density, then the object-set formed by combining (3, and O2 is 
equivalent to the object-set formed by combining (3, and (3?. 

Technically then, we will be reconstructing an equivalence class 
of object-sets from projections. 

Since a given object-set Y generates a unique density func- 
tion pv by (8), we can speak of the projection of an object-set, 
denoted by s( p v ) .  Although s is linear in p ,  it is not linear in 
Y since p is a nonlinear function of Y. In fact, since we are not 
assuming disjoint objects, s is not even additive in general, i.e., 
the projection of an object collection differs from the sum of 
each object’s projection. Nevertheless, we can write expres- 
sions for s( p v )  in closed form using the formulas derived in 
the appendices. 

The nonuniqueness of an object-set actually works to our ad- 
vantage since we need not estimate z,, or z ,  exactly for objects 
near bifurcations, as demonstrated by Fig. 5 .  What defines the 
endpoints of an arterial segment? There are four possibilities 
for SGC objects: 

an artery may leave the region of interest (ROI), 
an artery may “fade-out” due to incomplete filling by 

an artery may be occluded or taper down to a size below 

or an artery may connect to another artery (branching). 
These four possibilities are illustrated in Fig. 6. Of these, 

only the first possibility has a unique value of zb (or  z ~ , ) ,  and 
this value is easily determined. For the others, we can always 
conservatively make the object extra long, and let the density 
or radius become vanishingly small. For a multivalued GC ob- 
ject, the endpoints of its SGC approximation are poorly defined, 
and are determined in practice by the manual-entry described in 
Section VI. 

contrast agent, 

the effective resolution, 

- ’  4 

I.. . . . . . . . . . . . . . _g,. 1 

Fig. 5 .  Two equivalent object sets. Note that although Z z  # Z,, 
!J{ol.a2) = P{eI .e l )  

Fig. 6.  Example demonstrating the four ways arteries can terminate. 

We have described an extension of the generalized-cylinder 
object model based on elliptical cross-sections. By allowing ob- 
jects to intersect, the model can represent arterial trees accu- 
rately. This model defines the class of 3-D density functions 
considered, namely, those that can be expressed in the form (8). 

V .  OBJECT ESTIMATION 
Equipped with the measurement and object models of the pre- 

vious sections, we can define criteria for the problem of esti- 
mating an unknown object-set Y from noisy projection 
measurements y .  After presenting the maximum-likelihood cri- 
terion and noting its shortcomings, we introduce a nonpara- 
metric optimality criterion. Our approach is motivated by the 
success of nonparametric regression, especially cubic-spline 
smoothing, at estimating smooth curves from noisy data [43]. 

A.  Maximum Likelihood Criterion 
An obvious approach would be to find the object-set whose 

computed projections are the closest to the measurements in 
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some sense. Under the independent Gaussian noise model, the 
least-squares estimate is also the maximum-likelihood (ML) es- 
timate, defined by [cf. (6)]: 

This estimator is severely under-regularized; one can always 
add tiny objects whose parameters fit some bit of noise, thereby 
increasing the “likelihood,” but certainly not improving the 
estimate. Even if the number of objects is fixed so that K cannot 
grow without bound, the results will be unsatisfactory due to 
noise and the “threshold effect” of ML estimation [44], if the 
SNR is low. Indeed, many methods follow the ML estimation 
with a post-processing smoothing step. 

The principal shortcoming of ML estimation is that it ignores 
our a priori knowledge of arterial smoothness. The nonpara- 
metric optimality criterion presented below attempts to capture 
this knowledge realistically. 

B. Nonparametric Optimality Criterion 

Smoothing always involves a tradeoff between the conflicting 
goals of fit to the measurements and smoothness of the esti- 
mated functions. Nonparametric regression offers a solution to 
this tradeoff, and only requires an assumption of integrability 
of the square of the second derivative of the estimand. Most 
nonparametric regression literature has been concerned with es- 
timating scalar functions from linear, scalar measurements. The 
natural generalization of these “penalized-likelihood” [45] or 
“regularized” [46] methods to our nonlinear, multidimen- 
sional, object estimation problem is the following estimator and 
optimality criterion:6 

where x ( z )  is the ( 5 + P)-dimensional vector containing the 
second partial derivatives of the components of x ( z )  with re- 
spect to z. 

The smoothing tradeoff is controlled by the smoothing factor 
a = [ a I ,  . . . , a5 + for small a,  the estimate fits the data 
closely (approaching the ML estimate as a goes to zero), and 
for large a,  the estimate becomes very smooth. Intuitively, we 
would use the same fairly large value for cyI and a2 since ellipse 
position varies relatively slowly, very large identical values for 

. ’ ’ , as + p ,  since density typically varies very slowly, and 
smaller values for c y 3 ,  a4, and a5, to avoid oversmoothing the 
important shape features. These qualitative staements are un- 
satisfying theoretically. Fortunately, nonparametric regression 
offers a solution: we can estimate a from the data itself using 
cross-validation [47]-[49]. We conjecture that arterial disease 
will primarily effect aj and ad,  so that the other elements of a 
could be fixed for a given imaging technique. 

Why this criterion? The first term of (9) is the measurement 
negative-log-likelihood, which we would like to be small, but 
not at the expense of excessive object wiggliness. Functions 

6This criterion is nonparametric in the sense that we have avoided using 
a parametric (e .g . ,  Gauss-Markov) model for the evolution of cross-sec- 
tion parameters along an artery. 

that minimize, subject to specified constraints, the second term 
turn out to be splines, the smoothest functions (in curvature 
sense) satisfying those constraints. We argue that for maximum 
effectiveness, arteries attempt to be as smooth as possible, sub- 
ject to anatomic constraints. An example is carotid arteries, 
which make very smooth trajectories from their origins at the 
aorta to their destinations in the head. These arguments are heu- 
ristic, and the reader may disagree; we hope this discussion 
prompts proposals of other criteria. Our main point here is that 
(9) is a natural optimality criterion that globally encompasses 
the entire arterial tree, and therefore promises better results than 
local methods. 

Though we have assumed a parallel geometry in Section 111, 
the criterion (9) could apply to any geometry, with a different 
projection function s ( pV ). However, the particular algorithm 
for minimizing (9) we describe here relies heavily on the fact 
that, for a parallel (or cylindrical) imaging geometry, the pro- 
jections of an elliptical cross-section fall on the same row in 
each of the projection images. This fact is embodied in (1) and 
(4), which allows us to rewrite (9) as 

4 = arg min min min 
K 21: ’ ’  .ZK X I ( . ) . ’  ’ . . X K ( ’ )  

( 10) 

where [cf. (4)] the 2-D projection of an ellipse collection is 
given by 

s(xl(z,,)? * ’ ’ 9 x K ( Z , , ) )  = S , , ( ~ L ( & ( X ~ ( z , , ) ) , . ’ . . & ( X ~ ( ~ ~ , ) ) } ) ‘  

(11)  

By standard arguments [SO], [51], based on the Euler equa- 
tions for the functional (lo), the infimum of @ is achieved, and 
any object-set that achieves that infimum is composed of objects 
whose component functions are cubic-splines with knots at some 
subset of z I ,  . . , z,,,. A cubic-spline function is determined 
completely by its values at the knots (sample points). We use 
this fact to simplify the continuous variational problem (10) into 
a tractable discrete problem. Note that this discretization is a 
natural consequence of the form of (10). Define the sample 
points for the kth object by 

3 t k  

nh,l = min 3tk, nr,k = max 3 t k ,  

{ n :  z,, E ZA, n = 1, . . * , N } ,  

and the samples by 

where X, denotes the parameters of the kth object on those 
planes within its length. With these definitions, we can rewrite 
(10) as 

4 = arg min min min 
K 321.. . . . X K  XI. ’ . . .xK 

The matrix S,, defined in [48, eq. (23)], depends on ‘illtk and a, 
and serves to discretize the integral in (10). 
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Though many desirable properties of spline smoothen are 
known [43], [45], the nonlinearity of (12) limits how much we 
can say about its theoretical properties. There are probably local 
minima, and even the global minimum is not unique in general, 
due to the nonuniqueness discussed in Section IV. However, 
regularization methods have shown promise in other applica- 
tions [46], and the empirical results of Section VI1 likewise are 
encouraging. 

We have defined an optimality criterion for the object recon- 
struction problem. This criterion can be used to compare sub- 
optimal algorithms, or minimized to generate an arterial tree 
estimate. In the next section, we present an algorithm for such 
minimizations. 

VI. ESTIMATION ALGORITHM 
Having defined optimality criterion ( 12), the object estima- 

tion problem becomes simply the problem of designing an al- 
gorithm that can compute Y with a reasonable computational 
load. A general nonlinear minimization technique would be 
completely impractical, since there are thousands of parameters 
to estimate. Fortunately, we can exploit the sparseness of ar- 
terial trees and the special matrix structures of vector-spline 
smoothing to tailor an algorithm to this problem. 

The outer two minimizations in (12) can be thought of as a 
detection operation: estimating the number of arteries and their 
endpoints. In the remainder of this paper, we focus on the in- 
nermost minimization: the problem of estimating the objects’ 
cross-section parameters given the number of objects and an 
initial estimate. 

An initial estimate could come from the output of any of the 
suboptimal 3-D reconstruction schemes, but we currently use 
manual entry. A trained operator determines the number of ob- 
jects, and then enters coarse centerlines using a technique sim- 
ilar to [52]. After tracing a coarse piecewise-linear 
approximation of each object’s centerline on one view, the op- 
erator traces the centerline in the (e.g.) orthogonal view using 
auxiliary lines, observing the other views to confirm object cor- 
respondence. Since there are multiple views, the correspon- 
dence problem that confounds two-view reconstruction is 
alleviated. From cubic-spline interpolants of the 2-D center- 
lines, an initial 3-D skeleton is generated automatically by an- 
alytical back-projection. A typical arterial radius for the 
anatomy of interest is used as the radius for an initially circular 
cross-section. The result of this procedure is a crude estimate 
of Y that initializes the iterative algorithm presented below. 

If the objects were disjoint, and if their projections were 
overlap free, then the minimization of (12) would decompose 
into K independent minimizations-one for each object. This 
fact, combined with the sparseness of arterial trees, suggests 
that the alternating minimization (AM) algorithm [23], [53] is 
appropriate for this problem. Here, we use the AM algorithm 
on an object by object’ basis: the parameters of each object are 
estimated in turn, while holding the other objects fixed, and the 
procedure is iterated. For disjoint objects, convergence would 
occur in one iteration, but in general the number of iterations 
depends on the degree of overlap. That describes the “outer 
loop” of the algorithm: we now focus on the algorithm for es- 
timating the parameters of a particular object, holding the other 
objects fixed. 

’In [23], the A M  algorithm was applied on an ellipse by ellipse basis, 
and the sparseness argument was weaker. 

Suppose we are considering the kth object, and X, denote the 
current parameter estimates of the j th object. Then from the 
inner minimization of (12): 

( 1 3 )  

where 

y,* ’ YII - s(i l(zi i) ,  ’ * * > 2,- l(z,~), f,+ I(zn)> ‘ . ’ 7 i K ( z n ) ) ,  

x, 4 [ X k  (z,,,,,)’, . . . 7 X I  (Z,& L ) ’ ] ’ 3  

( 1 4 )  

and 

s,*(x) s(x~(z,z), . . 7 i ~ - I ( z n ) ,  x, i , + I ( z n ) ,  ’ ’ ’ 9 i K ( z ~ ~ ) )  

- s(xI(z,,), . . . 9 2,- i(z,I), 2,+ i(z,I)? . . . 3 i K ( z i 2 ) ) .  

(15)  

y,* is the difference between the measurements and the projec- 
tions of the fixed objects. By our restriction to bifurcations, the 
kth ellipse on slice n is either isolated, or it intersects one other 
ellipse, with index k,,, say. Thus, 

x, isolated 
(16)  Y9 s(x, xk,,) - s (xk , , ) .  xL and xk,, intersect 

s,T(x) = 

where s (x,  xL,<) is defined by (1  1). Formulas for sx ( x )  are given 
in Appendix B. Note that if the objects were disjoint then s,*(x) 
and s(x)  would be equivalent. 

We have finally reduced the original optimization problem 
(12) down to the form (13), which has been solved previously. 
In [48], [49], Fessler presented an algorithm for smoothing 
nonlinear measurements of vector-valued functions that is di- 
rectly applicable to (13). The computational requirement of that 
algorithm is only O ( N ) ,  due to the band matrix structure of 
spline smoothing. Source code is available through NETLIB 
[54]. That algorithm uses the nonlinear pseudomeasurement 
function sx(x) and its derivatives. 

One could use the cross-validation method described in [48], 
[49] to select the smoothing parameter a automatically in sev- 
eral different ways for this problem. A computationally efficient 
alternative to cross-validating the entire object-set is the follow- 
ing approach. First, estimate the objects using an educated guess 
for the smoothing parameter. Then, subtract the projections of 
all of the objects except one (e.g., the longest) from the mea- 
surements, leaving (approximately) only the selected object’s 
contribution. Next, apply the cross-validation method of [49] 
to choose a automatically for that single-object data set. Fi- 
nally, estimate the entire object-set using the smoothing factor 
chosen by cross-validation. The examples of Section VI1 were 
based on this approach. Unfortunately, the cross-validation 
score may have local minima, and a descent from the initial a 
may not yield the truly optimal a. A global search for a on a 
patient-by-patient basis would be too time consuming: a more 
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practical approach would be to search globally for the best a on 
a training set of images, and then to apply that value of a to 
subsequent patient studies. 

The essence of the estimation algorithm is described by (12), 
and more detail on the implementation can be found in [30]. 
The result of this estimation algorithm is a set of parametrically 
described SGC objects that are converted to GC parameters 
using Appendix C. One can use these parameters in several 
ways: 

generate 3-D shaded surface displays directly, 
generate synthetic projections at any angle, 
plot cross-sections, and 
graph parameters (especially radius) versus arterial axis to 

examine percent stenosis. 
Each of these uses is demonstrated in the next section. A 

bonus for this parametric method is that shaded surface displays 
are particularly easy to generate since the estimated ellipses are 
essentially a surface description. 

VII. EXPERIMENTAL RESULTS 
We applied the algorithm described above to three data sets: 

simulated projection images, MR projections of a branching 
flow phantom, and MR angiograms of a healthy volunteer's ca- 
rotid arteries. The SNR per view, defined by 2ph,r,,/a, and the 
important imaging parameters for these case studies are sum- 
marized in Table I .  

A.  Simulated Projections 

Fig. 7 shows four noisy projection images of a simulated ar- 
terial tree. These images were generated using the projection 
model of Section 111. Table I1 displays the convergence of the 
algorithm for the smoothing parameter chosen by cross-validat- 
ing the longest object. Each iteration through all five objects 
required about 35 s on a SUN Sparcserver. As expected, the 
first few iterations improve the estimates considerably, with lit- 
tle further improvement after the fourth iteration. The rms er- 
rors for ellipse orientation q5 are misleadingly large; many of 
the cross-sections are very close to circular, in which case the 
orientation is irrelevant. 

A more meaningful evaluation of the shape estimates can be 
made from Figs. 8-10. (The estimates are taken from the fourth 
iteration hereafter.) Fig. 8 compares the true and the estimated 
cross-sections of the main branch over the stenotic portion. The 
reconstruction has estimated this eccentric stenosis accurately. 
Similarly, Figs. 9 and 10 compare the true and the estimated 
cross-sections of two bifurcations. The overlapping ellipses with 
very different shapes are estimated accurately. 

For a more quantitative comparison, Fig. 1 1  compares the 
true and the estimated radii (both in SGC parameters) for this 
example, and shows the presence of a stenosis quite clearly. 
These parameters are translated into GC parameters using the 
formulas of Appendix C, and Fig. 12 displays the resulting ra- 
dius estimation errors for the five objects. The larger radius 
"errors" at the endpoints of some of the objects are artifacts 
that are explained by the object-set ambiguity discussed in Sec- 
tion IV: when one ellipse is almost completely inside another 
ellipse, it contributes very little to the cross-section. Figs. 9 and 
10 show that the cross-sections were in fact estimated accu- 
rately. 

Graphs such as Fig. 1 1  are useful for computing percent ste- 
nosis, but morphology is best viewed through an interactive 3-D 
display with cut-planes. Fig. 13 shows a shaded surface display 

TABLE I 
IMAGING PARAMETERS FOR THE DATA SETS USED TO EVALUATE THE 

RECONSTRUCTION METHOD 

Simulation MR Phantom MR Carotid 

K 5 2 4 
W 256 160 160 
N 256 128 128 
Ah["] 1 0.478 0.7 
4 [mm1 I 0.478 0.35 
P 4 4 4 
u 2  3 0.0025 0.015 
SNR 2.8-6.7 
e , ,  . . . , op 0 ,45 ,90 ,  135 22, 67, 112, 157 0 ,45 ,  108, 143 

2.8-20.2 6.3-40.6 

Fig. 7. Simulated angiograms; 8 = 8" .  45", 90", and 135". 

TABLE I1 
m l S  PARAMETER ESTIMATION ERRORS FOR EIGHT ITERATIONS 

rms Error 

Iteration c,  c, r A 6 P 

1.188 
0.2884 
0.1859 
0.1783 
0.1606 
0.1573 
0.1456 
0.1556 
0.1507 

0.9704 
0.2345 
0.1568 
0.1386 
0.1174 
0.1312 
0.1365 
0.1363 
0.1376 

1.528 
0.1943 
0.136 
0.1133 
0.1048 
0.104 
0.1081 
0.1055 
0.1031 

0.06325 
0.1352 
0.07881 
0.06639 
0.07071 
0.06435 
0.06774 
0.067 
0.06741 

23.05 
38.25 
34.66 
34.95 
34.94 
34.61 
35.2 
35.05 
36.76 

0.2044 
0.03376 
0.01879 
0.0145 
0.01396 
0.01451 
0.0138 
0.01354 
0.01365 

of the reconstruction, generated using the simplest aspects of 
the shading method presented in [%I. 

The results from this data set demonstrate the potential per- 
formance of object-based reconstruction, and highlight an im- 
portant advantage of the parametric approach: despite the low 
SNR, the estimates are of subpixel accuracy. Discrete voxel 
representations of p ,  on the other hand, are typically limited by 
the measurement resolution. 
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Fig. 1 1 .  True (solid) versus estimated (dashed) object radii. 
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e) versus estimated (below) bifurcation cross-sections; 
n = 130. . . . . 141 

1 :U 0 loo 200 300 3 0 100 200  300 
n " 

Fig. 8. True (above) versus estimated (below) stenosis cross-sections, 
?I = 160. . . . . 180 

0 

0 

# 
d 

0 

0 

0, 

0' 
Fig. I O .  True (above) versus estimated (below) bifurcation cross-sections; 

n = 80, . . . , 94. 

B. MR Branching Phantom 

The images in Fig. 14 are MR projections of a MnCl solution 
flowing through a plastic Y-shaped connector attached to Tygon 
tubing. We used the projection-reconstruction selective inver- 
sion-recovery (PRSIR) [56] ,  [57] method to collect the data. 
The inner diameter of the Y connector was 3.75 mm. Fig. 15 
displays a histogram of the radius estimation error over the Y 
section. The rms error in radius was only 0.04 mm. As a veri- 
fication of the geometric consistency of the estimates, Fig. 16 

Oblect 1 Oblecr 2 
0 4 

1 - 0 2 '  r '  
0 1" 200 300 0 100 200 300 

n n 

0 2 '  

Fig. 12. Radius estimation errors for the simulated objects. 

Fig. 13. 3-D surface display of reconstructed simulated arteries 

displays the outline of the projection of the estimates superim- 
posed on another view that was also acquired, but was not used 
for the reconstruction. The overall correspondence is quite good, 
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Fig. 14. MR tube-phantom projections: 19 = 22", 67". 112", and 157". 

Fig. 17. MR in vivo carotid angiograms; 0 = 0". 45". 108". and 143". 

millimeten 

Fig. 15. Histogram of radius estimation error for MR phantom 

Fig. 18. 3-D surface display of reconstructed carotid arteries. 

Fig. 16. Reprojection of estimates (solid line) on an unused view; 0 = 0" 

though the sharp transitions between the small branch and the 
larger tubes would be better modeled by a GC than a SGC, since 
some of the image rows intersect both the small tube and a cor- 
ner of the larger tube. 

C.  MR Carotid Angiograms 

Fig. 17 shows four MRSIR projections of a slab containing 
a healthy volunteer's right carotid artery. A surface coil was 
placed on the right side of the subject's neck, to maximize SNR. 
We have no means of making a quantitative evaluation of the 
results, but Fig. 18 shows a 3-D display of the estimated arter- 
ies. This example clearly motivates extending this work beyond 
single-valued objects, since this facial artery is clearly a mul- 
tivalued function of z .  

VIII. DISCUSSION 
We have described an object-based method for reconstructing 

arterial trees from a few projections. By exploiting a priori 
knowledge of arterial shape and smoothness, subpixel accu- 
racy reconstructions are achieved from only four noisy projec- 
tion images. The promise of this method is perhaps best dem- 
onstrated by Figs. 9 and 10, which show that accurate 
reconstruction of bifurcations is achievable with parametric 
models. Note that attempting to reconstruct intersecting ellipses 
on a local, slice-by-slice basis would be very sensitive to noise; 
it is the a priori knowledge of smoothness that makes this global 
approach effective. A possible disadvantage of this approach is 
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its complexity; our implementation consists of over ten thou- 
sand lines of C code. 

To make the approach useful clinically, the manual entry 
should be eliminated, perhaps by using a detection algorithm 
based on the outer two minimizations of (12). Brute force min- 
imization of (12) would be impractical computationally; one 
would need to exploit the structure of arterial trees, as done in 
Section VI. Automating the procedure should be easier in the 
high-SNR case, as with intra-arterial contrast studies [58 ] .  
Clinical utility would certainly be improved if true GC’s could 
be estimated. The ability of MR to acquire projections in arbi- 
trary directions should be useful for addressing this problem. 

Our approach has been to avoid enforcing plausible con- 
straints such as equality of the density of overlapping ellipses. 
Though such constraints could reduce the degrees of freedom 
and thereby decrease the estimate variance, they could also in- 
crease potential modeling error. Nevertheless, if the SNR is very 
low, it may be necessary to use even more a priori knowledge. 
The branching-spline method of Silverman 1591, originally ap- 
plied to agricultural data, may be a one useful approach to en- 
forcing tighter constraints between objects that branch. 

An open theoretical question is how to best choose the 
smoothing factor a. Should a be the same for every object, or, 
since smaller arteries tend to be more tortuous, should a scale 
with object size? Robust methods for choosing a should also be 
explored [60]. Having allowed intersecting ellipses, we could 
also combine ellipses to represent other cross-sections, such as 
crescent shapes [30]. Presently, only X-ray angiography is used 
routinely, and we are generalizing the algorithm of this paper 
to apply to cone-beam projections [30]. 

APPENDIX A 
PROJECTION OF AN ELLIPSE 

Consider a collection of ellipses in a given plane, some of 
which may intersect. Since we restrict our model to bifurca- 
tions, the collection’s projections are the superposition of the 
projections of those ellipses that are isolated, plus the sum of 
the projections of the pairs of intersecting ellipses. Thus, we 
need two types of formulas: projections of a single ellipse, and 
projections of intersecting ellipses [cf. (16)]. In this appendix 
and the next, we present expressions for these projections and 
their partial derivatives. These are needed by the nonlinear vec- 
tor-spline smoothing algorithm in [48], [49] since it is a gra- 
dient-descent optimization method. Specifically, we derive 
expressions fors* (x) ,  or equivalently, its components s&(x). 

Consider a single isolated ellipse with parameters x = [c, c, 
r A 4 p ] ‘ .  Since we consider projections only in the plane of 
this ellipse, we drop the dependence on z (and hence U and n). 
From ( l ) ,  (7), and (8), the ideal continuous line-integral of an 
ellipse is 

&(U; x)  = p l c ( x ) ( s  cos 8 + U sin 8, s sin 0 - U cos e )  ds s 
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U,, 6 c, sin 6 - c, cos 0, 

r,, !2 r &, h,, 2 a ; ’ ,  

and 

Then from (2) and (3), 

sd . i  = hi * Id,; 

where 
( i - ih ) A h  

&(U; x) du 

= ph,, [U d r ;  - (U - U,,? + r; arcsin 

( i - ih - I )Ah b . i ( x )  = s 
where 

for i in the range 

otherwise the values are 0. By the linearity of convolution, the 
partial derivatives of se.; ( x )  are the blurred partial derivatives 
of le,, (x ) ,  which are given below for i in the same range: 

-- ala,; ( x >  - 2pr  (arcsin (:) - arcsin (:)). 
ar 

s( pLy) could be implemented as a subroutine that accepts an 
object-set as its argument and returns a vector of length NPW. 
However, we achieve substantial memory and computational 
savings by exploiting the fact that projections of ellipses are 
semi-ellipse “bump” functions whose supports are only small 
fractions of the size of the projection vector. 

APPENDIX B 
PROJECTION OF INTERSECTING ELLIPSES 

The projection of two intersecting ellipses is more compli- 
cated due to the region of overlap. Consider two intersecting 
ellipses with parameters xI = [ c , . ~  r l  A, 4I p , ]  and x2 = 
[ c ~ , ~  c , , ~  r, A, 4, p 2 ] ,  and let G I  and G ,  denote the correspond- 
ing ellipse sets (7). From (16),  it suffices to derive an expres- 
sion for s* (x, I. or eauivalentlv its comuonents s,*; (x, ) where 
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.i J 

Fig. 19. Line integral through overlapping ellipses. 

x2 is held fixed. Combining (2 ) ,  (3), and (16), 

S Z i  ( X I )  = hi * lZi ( X I )  

where 

where 

length ( [ a ,  b ]  n [ c ,  d ] )  

( ( b  - a )  - ( d  - c ) ,  a i c ,  b h d 

a 2 c,  b 2 d , a  5 d 

a I c , b  5 d , b  L c 

othenvise \o, 
and 

length ( [ a ,  b ]  fl [c, d l )  

/ d  - c,  a I c , b  L d 

d - a ,  a L c , b  L d , a  5 d 

& b - c ,  a I c , b s d , b L c .  

b - a ,  a L c , b S d  1 0, otherwise 

Our implementation uses the following approximation, ob- 
tained by interchanging the order of the convolution and the 
''length'' (min/max) operations: 

where for j = 1, 2 :  

do(u; x,) cX,/ cos 0 + c, , sin 0 

- (U - U,,]) (A, - A;') -sin (2(+/ - e ) )  

where 

do.l ( x )  = d,((i  - ih - i) A,,; x ) .  1 

2a +,/ 

is the distance shown in Fig. 3. The path length functions shown 
in Fig. 19 are 

From these formulas, we see that the partial derivatives of 
s * ( x )  are combinations o f  those given for lo, ,  ( x )  in Appendix 
A, and those of do-, ( x ) ,  given below: 

f , ( d i ,  1 1 ,  d2, 1 2 )  A 

1 - -  - cos e + (sin e )  ( A  - A - ' )  - sin ( 2 ( +  - e)) ,  ado, I 
acX 2a+ 

ado. I 

ac, 2a+ 

ado, I 

ar 

length ( [ d ,  - l I / 2 ,  d ,  + 1 , /2]  

n Id2 - 12/2, d2 + 12/21)? 
1 

- sin e - (cos e) ( A  - A - ' )  - sin ( 2 ( +  - e)), ~- h(dlr 11, d2, 1 2 )  p 

length ( [ d ,  - 1, /2 ,  d ,  + 1 , /2]  

n [d2 - 12/27 d2 + 12/21) 
- -  

- 0, 
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APPENDIX C 
CONVERTING SGC TO GC PARAMETERS 

Our reconstruction algorithm provides estimates of the pa- 
rameters of the elliptical cross-sections of a SGC, as shown in 
Fig. 2. However, it is the variations in eccentricity, radius, and 
area perpendicular to an artery’s axis that are important diag- 
nostically. In this appendix, we present equations for convert- 
ing between the parameters of a GC and a SGC. These relations 
are derived by approximating a SGC locally by an elliptical 
cone. The position attribute is identical for the GC and SGC 
models. To first order, the content attribute is also the same, 
since density usually varies quite slowly. Suppose the estimated 
shape parameters are [ vs A, &,I, and that the- local slope of the 
StiC is p, and 6,. Let p = dl + f l :  + P t ,  then 

and 

x + x- ’  = p - ’ A ,  + pxg ’  + ( p  - p-1) 

Ellipse orientation is not well defined for an arbitrary GC axis 
[25] in general. 
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