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Nonparametric Fixed-Interval Smoothing of Nonlinear
Vector-Valued Measurements

Jeffrey A.

Abstract—This paper addresses the problem of estimating a smooth
vector-valued function given noisy nonlinear vector-valued measure-
ments of that function. We present a nonparametric optimality crite-
rion for this estimation problem, and develop a computationally effi-
cient iterative algorithm for its solution. The new criterion is the natural
generalization of our earlier work on vector splines with linear mea-
surement models. The new algorithm provides an alternative to the
extended Kalman filter, as it does not require a parametric state-space
model. We also present an automatic procedure that uses the mea-
surements to determine how much to smooth. The algorithm demon-
strates subpixel estimation accuracy on two examples: the estimation
of a curved edge in a noisy image, and a bi dical i
application.
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I. INTRODUCTION

HIS paper considers the problem of estimating a smooth

vector-valued function from noisy measurements observed
through a nonlinear mapping. We assume the following nonlin-
ear measurement model:

Y. = h,(x,) + g, n=1,: -

= » N (1)

where

£, V. € R, x, e ®RM,  and h,: ®RY —» ®".

We assume the additive measurement errors are independent
between samples and are normally distributed with mean zero.
Without loss of generality, we assume the covariance matrix of
g, is 0°I, where o> may be unknown.' The states {x, } are (pos-
sibly unequally spaced) samples of a smooth vector-valued
function g:

Xp = [gl(tn)’ T gM(tn)], é g(tn)’ (2)

where ““’’’ denotes matrix transposition. The goal is to esti- .-
mate g from the measurements { y, } = .

The prevalent approach to this estimation problem is the ex-
tended Kalman filter (EKF) [1]. The EKF hinges on an as-
sumption that the states adhere to a parametric Gauss-Markov
state-space model. However, in applications such as the edge-
estimation example given in Section VI, the parameters re-
quired by the EKF formulation (state evolution matrices and

tn < Ly vn
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'If the measurement error has the (positive definite) covariance matrix
02X, then we can premultiply y, and k, by I, '/?. Singular covariances
may be the result of linearly dependent measurements, indicating that other
constraints should be incorporated.
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covariances) are unknown and are difficult to determine. Fur-
thermore, the state-space formulae imply the a priori variance
of the function varies with 7. Although it is natural for tracking
applications, where one is given a starting state that evolves
with increasing uncertainty over time, this variation is counter-
intuitive for off-line applications such as image processing,
where ¢ often represents space rather than time. For example,
when detecting and estimating an edge in an image, the a priori
variance of the position of the edge (the uncertainty before ac-
tually seeing the image) is the same throughout the image. De-
spite these objectives to parametric methods, we must use our
a priori knowledge of the smoothness of the underlying func-
tions if we are to obtain accurate estimates. This necessity has
motivated nonparametric approaches to smoothing 2], [3], and
is the basis for the new algorithm presented in this paper.

In [4], we presented a computationally efficient algorithm for
nonparametric smoothing for the special case when &, is linear,
and we presented the rationale behind ‘‘penalized likehood’’
estimation. Here, just as in the linear case, we must compro-
mise between the agreement with the data and the smoothness
of the estimated functions. Thus we propose the following op-
timality criterion:

£ 2 arg min @,(g)
0u(2) & T |y, - m(gw)][ + Z | (a0

(3)
This criterion is the natural generalization of {4, eq. (11)].
O’Sullivan [5] considered this criterion for the case of scalar
measurements. For simplicity, we assume k = 2. The param-
eter @ = (ay, * * - , o) controls the influence of the penalty
term, and in Section IV we describe how to automatically es-
timate o from the measurements. Until then, we assume @ is
known.

By the ‘‘minimal property of splines’’ proven in [6, theorem
2], any function ¢ that achieves the minimum of ®, is a vector
spline with component functions that are cubic splines (for k =
2). (We restrict our attention here to natural cubic splines by
imposing the end conditions that g,,(¢) is linear for ¢ < #; and
t > ty.) However, unlike the linear case, in general, there may
be multiple minima.? Physical constraints will usually rule out
the irrelevant solutions. The EKF suffers the same ambiguity,
a fact usually ignored since the filter update equations are ini-
tialized at some (presumably meaningful) starting state. The it-
erative algorithms we present below also require an initial es-
timate.

Consider k,(x) = x2, then ®,(g(1)) = ®,(—g(1)).
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Since the component functions of ¢ are natural cubic splines,
we need only estimate the coefficients of their piecewise-poly-
nomial expansions (or, better numerical stability, their B-spline
expansion [7]). In fact, if we compute g(¢) att,, - - - , ty, then
we can compute all the coefficients from [4, eq. (6)]. From (2),
this is equivalent to estimating the states {x,}"_,. From Ap-
pendix A of [4]

M

3 a, S (82(1)) dt = x'Sox
where S, is defined in [4, eq. (23)], and
L xh)

Therefore, the variational problem (3) is equivalent to the fol-
lowing penalized nonlinear least squares problem:

£y

L [x,

arg min @, (x)
X

D, (x) = uy — h(x) ”z + x'Sex

where

yEDL ] R() A [R(x), - hy(xy)']

S., which also depends on k& in general, is the spline penalty
matrix that prohibits excessive local variation in g.

In Sections II and III, we develop an iterative method for
computing £,. This method is summarized as a computationally
efficient algorithm in Section V, after we discuss selection of a
in Section IV. We demonstrate the algorithm on a curved-edge
estimation problem and a biomedical image-processing appli-
‘cation in Section VI, and conclude with open problems in Sec-
tion VII. .

II. LINEARIZATION

We first consider estimating x by a linearization method sim-
ilar to the EKF approach. Assume x, £ [xg0, * -, xon] is

an initial estimate® of x. By the first-order Taylor’s expansion
of h, about x, ,,

hn(xn) = hn(xa,n) + Hn(xn - xo'n) (4)
where H,, is the L, X M Jacobian of h, evaluated at x,, ,. Sub-
stituting (4) into (1), we get

Yn = hn(xo,n) + Hn(xn - xo.n) t €,

Multiplying both sides by (H,H,) 'H, and rearranging yields
Z, = X, + v, (5)
where
20 £ X, + (HyH,)H,(y, — ho(x,.,)).

The transformed measurement error v, is normally distributed
with mean zero and covariance matrix I, = (H,H,) '. This
procedure requires* that ( H; H,) be invertible, or, equivalently,

3Obtaining an initial estimate is clearly application dependent. The trans-
form approach of Bresler and Macovski [8] is well suited for nonlinearities
that separate into ‘‘shift’’ and ‘‘shape’” parameters.

“It is not strictly necessary that all the Jacobians exist or have rank M.
Spline smoothing can be applied to nonuniformly spaced measurements,
so one could simply discard any measurements violating the existence or
rank conditions.
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that the Jacobians all have rank M. A necessary condition is
therefore that L, = M vn. (One special case is worth noting:
if the initial estimate is the (unpenalized) maximum-likelihood
estimate, i.e., X, , = arg min,, || y, — h,(x,) %, thenz, = x,_,,
and each covariance matrix I, is a corresponding Fisher infor-
mation matrix. )

We have transformed the nonlinear measurements (1) into a
set of linearized measurements (5) that are now in a form suit-
able for the linear vector-spline smoothing algorithm of [4]. The
resulting estimate, denoted £, ;, satisfies

£, = arg min ®,(x)

®,(x) =(z—x) T '(z — x) + x'S,x

where
220z, -+, z), I = diag (IL,).
®, is a quadratic form, and its minimizer (cf. [4, eq. (22)] is
£ = (I + 8) Mz, (6)

In the implementation of this algorithm, we compute £;, with
the O(M>N) algorithm of [4], rather than by direct evaluation
of (6).

A significant difference between this nonparametric approach
and the EKF approach is the timing of the linearization. Here,
we first independently linearize all the measurements, and then
smooth. For the EKF, the measurements are linearized about
the most recent estimate from the recursive update formulae [1].
Though our approach therefore requires more effort ‘‘up
front’’in obtaining initial estimates, it does avoid some of the
potential problems of EKF mistracking [8], [9].

Since the accuracy of £y ;, depends on the accuracy of (4), we
would usually iterate by using £, ;, as a new “‘initial’’ estimate
and repeating the above procedure. Unfortunately, there is no
guarantee such iterations will accomplish our original goal of
minimizing @ or will even converge. The most we can claim
is that the optimal estimate £, is a fixed point of the iterations,
i.e., if x, = £, then £;, = £,. The standard solution to this
dilemma is to introduce a relaxation parameter. It is not clear
how to do this from the above derivation, despite its intuitive
appeal. With an eye towards applying the Levenberg-Mar-
quardt relaxation method [10], in the next section we derive the
Hessian estimate of x.

III. HESSIAN APPROACH

The Hessian approach [11] is to locally approximate the func-
tional ®, by a quadratic

@, (x) = D (x,) — 2d'(x — x,) + (x — x,)'D(x — x,).
The estimate is then given as
PHess = X, + &
where 8 is the solution to
Dé =d. (7)

Neglecting second derivatives [11], one can easily compute d
and D:

_1,
2 ox

d= = H(y — k(x,)) = Sox,

X=X
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and

1 (o0, 30
p=-]T0%el_ g
2{ax,. ax,} (I + S.)

where
H 2 diag (H,).
Therefore, the Hessian estimate is:
R = %, + (7' + 8) 7 [H(y = h(x,) = Sux,]. (8)

The Levenberg-Marquardt (LM) approach [10] to relaxation
of the Hessian nonlinear least squares method is equally applic-
able to our penalized nonlinear least squares problem, since the
penalty is a quadratic. Instead of (7), the LM approach (see

discussion in [11, sec. 14.4]) is to compute the update as fol-
lows:

(D +NA)S, =d
yielding the estimate
fHess,)\ =X, + 6)\~

A is a diagonal matrix whose elements are a measure of scale;
we take A to be the diagonal elements of II”'. The LM algo-
rithm provides a procedure for choosing the relaxation param-
eter A to ensure that the new estimate is better than the previous
estimate, i.e., @y (Ryessn) < Pq(x,). This procedure guar-
antees convergence to a local minimum when one iterates the
Hessian method.

By applying (5), (6), and (8)
fro= (M7 + S, Mz
= (I + 8,) ' [MH (y = h(x,)) + x,]
(I + 8o) [H(y — h(x,)
+ 7%, + Sox, — Sax,]

X, + (7" + S) 7 [H(y — h(x,)) — Sax,]

= XHess

we see that the Hessian approach and the linearization approach
of Section II are equivalent, i.e., £;, = £y Using ths equiv-
alence, we can translate the relaxation parameter idea back into
the spline-smoothing formulation. By the same arguments as
above, if we define

R £ (I + 8,) T '
where
w £ MH(y — h(x,)) +x,
and
I 20" + AA

then £, » = £yegs, x- In words, rather than smoothing the pseu-
domeasurements z, (with covariances II,), we smooth z, )
(with covatiances II,, ). This estimation procedure is trans-
lated into an algorithm in Section V.

1V. CHOOSING THE SMOOTHING PARAMETER

As in the linear case, we want to choose the smoothing pa-
rameter « to provide good estimates of g. One method with
intuitive appeal and high (statistical) efficiency (as shown in

[4]) in the linear case is to choose the smoothing parameter that
minimizes the cross validation (CV) score, defined by

V@ 2y 2 |- mgaa @) ©
where
v 2
goiLagmin X |y, - h(g(1)|
n=ln#i

M
+ Z. Ol g (&n(1)) ar.

£, —; is the solution to the smoothing problem posed without
data point y;. Exact evaluation of (9) is impractical since it
would require N iterative smoothing problems for each value of
a. Motivated by the corresponding formula for the linear case
[4, eq. (17)], we propose the following approach: for a given
value of @, compute £,, and use £, to compute the linearized
measurement z, the Jacobian H, and the covariance II =
(H'H)™'. Then an approximation for CV (a) is

Vo (@) 2 1 2 Ity — An(@) (@ = £a)

;

1

Nn
(10)

where (cf. (6))

Afo) & (' + 8)"'m™!

and A(,,,(@) is the nth M X M block diagonal submatrix of
A (o). This approximation is based on the expectation that £,
will be close enough to g that the Taylor expansion (4) will be
accurate. Once £, is computed, (10) is evaluated in O(M 3N)
operations as discussed in [4]. The accuracy of the approxi-
mation used in deriving CV, is less important than whether or
not the minimum of CV,, occurs at a value of @ for which £, is
a good estimate. In Section VI we show an empirical result that
indicates the utility of CVj,.

V. ALGORITHM

The algorithm depicted in Table I iteratively computes £, for
a particular value of a. The computational complexity is only
O(M?N). We have borrowed ideas from [11, sec. 14.4], sub-
stituting in our optimality criteria. All operations containing
terms with the subscript n are repeated forn = 1, -+ , N.
Source code for this algorithm is available as VSPLINE from
NETLIB [12]. The dominant computational requirements are
the vector-spline smoothing and the computation of CV,. Since
these computations are required even in the linear measurement
case, the principal ‘‘penalty’’ incurred when considering non-
linear problems is the necessity of iteration.

The algorithm of Table I is implemented as a procedure that
returns CV, (). This procedure is typically called with several
different values of @ to minimize CV, (@). We use the subrou-
tine given in [11] for Powell’s method for this minimization.
We can make considerable computational savings by using the
smoothed estimates for one value of a as the initial state when
smoothing for a nearby value of a. Using this procedure, we
have found empirically that although the smoothing algorithm
may require six to ten iterations for the first value of a, on sub-
sequent calls the smoothing procedure typically converges to
within 0.1% of min, @, (x) in just one or two steps.
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TABLE I
ITERATIVE NONLINEAR ESTIMATION ALGORITHM AND COMPUTATIONAL
REQUIREMENTS
Computation Flops
Obtain initial estimate x, ?
£:=1x,
A= 0.001
In 1= h,(£,) ?
H, := Jacobian of h,, at £, ?
€ = Yo — Vu N(L)
w,:= Hje, N(2ML)
' := (H H,) N(2M3L)
oo 1= Do (#) N(14M)
A, := diagonal elements of I '
repeat {
= I+ MA, N(2M)
Invert IT; | N(M?)
S Zaai= &, + AW, N(2M?)
£Lin.» 1= vector-spline smooth [4] {z, , }, with N(EM?)
_ covariances {II,, , }
Jin = hn(‘eLLn.)\) ?
€, =Y, = ¥n N(L)
Jrew 1= @o(Rrin\) N(TM)
i (frew < foest)
LR TN
Soest :=Afncw
Ini= Iu
Jacobian of h, at £, ?
Hé, N(2ML)
I,' .= (H,H,) N(2M?L)
A, := diagonal elements of IT,, '
A:i=0.1A 1
else
A= 10N 1
} until @, (£) decreases insignificantly.
compute CV,, score [4] for £, N(EZM?)

In the examples of Section VI, the ‘‘else’” section of this
procedure was rarely executed, hence the iterations converged
nearly quadratically to the estimate £,.

VI. EXAMPLE APPLICATIONS
A. Edge Estimation

One simple application of the nonlinear smoothing algorithm
described above is to the problem of estimating the position of
edges in digital images. Consider Figs. 1 and 2; each of the (N
= 64) rows of these images contains (L = 64) samples of a
step function of unknown shift (M = 1). If the edge is known
to be straight, then high accuracy techniques exist for estimat-
ing the edge [13]. However, if the edge is smoothly varying
curve, the nonlinear estimation approach of this paper is appli-
cable.

An approximate model for the measurement function for this
problem is

2| N a (1)

i—1

where

with corresponding Jacobian:

ahi(T)_
ar = Yli—r—1/2|=1/2}-
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Fig. 1. Noisy image data for curved edge estimation example.

Fig. 2. Noisy image data for straight edge estimation example.

We generated the data displayed in Figs. 1 and 2 by using (11)
and adding Gaussian noise with variance ¢? = 0.25. The re-
sulting SNR (=1/0) is 2.

Assuming that the underlying edge is smoothly varying
(which Figs. 1 and 2 do seem to suggest), the only remaining
requirement for the nonlinear smoothing algorithm is to provide
an initial estimate. We used the following simple heuristic: a
temporary copy of each row of the image was convolved with
an approximate matched filter kernel {1, 1, 1, 1, 1, 1, 0, —1,
-1, =1, =1, —1, —1], and the index of the pixel with max-
imum value was stored. This set of N = 64 numbers was then
median filtered, and the result was the initial estimate of the
edge position.
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Fig. 3. Comparison of MSE and CV,, for curved edge example.
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Fig. 4. Comparison of MSE and CV,, for straight edge example.

We do not have any reason to stipulate a particular smoothing
parameter, so we use cross validation. To verify the CV, ap-
proximation, we show in Fig. 3 a plot of the mean-squared error
and the CV, score as a function of « for the data set shown in
Fig. 1, where ‘

i 2
MSE () £ 1+ % [l 8a(2,) — g(m) |-
N =1
The minimum of the CV, curve is very close to the minimum
of the MSE curve, thus our approximation for the CV score is
useful for achieving accurate estimates. The underlying curve
in Fig. 2 is truly a straight line. Hence, as shown in Fig. 4, the
MSE is monotonically decreasing with increasing «. Because
of the low signal-to-noise ratio, the CV, score decreases to a
certain point and then increases again. Nevertheless, the mini-
mum of CV,, does occur where the MSE is reasonably small.

Figs. 5 and 6 show a comparison of the true and the estimated
position functions for the optimal «’s. The algorithm adapted
itself to both the curved edge and the straight edge—choosing
a much larger value for the smoothing parameter in the latter
case. This example highlights the versatility of this nonpara-
metric paradigm. Fig. 7 shows plots of the estimation errors for
the above examples. The subpixel errors demonstrate the esti-
mation accuracy of this approach.

55 T T T

Pixels

70
t

Fig. 5. True (solid) and estimated (dashed) edge position from Fig. 1.

Pixels

200 10 20 30 40 50 60 70
t

Fig. 6. True (solid) and estimated (dashed) edge position from Fig. 2.

0.6

Pixels

--------- Straight Edge Location
-1r Curved Edge Location b

10 20 30 40 50 60 70
t

Fig. 7. Estimation errors for edge estimation examples.

B. Quantitative Angiography

In this section, we consider a medical image application: es-
timating the position and radius of a cylindrical blood vessel
from a noisy angiogram (line-integral projection measurement).
We simplify the problem considerably here, see [9], [14] for
thorough discussions. Fig. 8 is a simulated angiogram. Each of
the N = 64 rows of this image contains L = 64 samples of a
shifted semiellipse ‘‘bump’’ whose radius and position func-
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Fig. 8. Simulated angiogram measurements.

tions are to be estimated (M = 2). The following definition of
the measurement function is an accurate model:

Yni = hi(gl(")v gz(”)) + € i»
i=l L, n=1- N

where

hi(r,r) &2 Si_] Vr? = (s — ‘r)2 1{\s—1(sr} ds

= [rl(,,,+ V1 =y + arcsin p,)
— r¥{u_ m + arcsin p,_)]

: lui—r—l/z|s,+1/2} (12)
and

ts+ £ min {1, } g £ min {—1, }

The additive noise is independent normal with variance o 2. The
Jacobians are

Bln D) (NT= i - T )

i—7 i—1-7

>

r

ar {li—7—1/2|=r+1/2}
and
oh;(7, r) . '
= 2(arcsin (uy) ~ arcsin (1-)) 11 s 1/aj2re1/2)-

Equipped with a priori knowledge of the smoothness of blood
vessels, and having specified the measurement model, all that
we need to apply the smoothing algorithm to the measurements
of Fig. 8 is an initial estimate. We again used the matched filter/
median filter heuristic to compute the initial position, with a
“‘boxcar’’ kernel: [ 11111] for the matched filter. We arbitrarily
initialized the radius to be 5 pixels; in a typical clinical setting
the initial radius would be set to the normal size of the particular
artery being studied. The measurements shown in Fig. 8 were
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Fig. 9. True (solid) and estimated (dotted) position from Fig. 8.

Pixels

t

Fig. 10. True (solid) and estimated (dotted) radius from Fig. 8.

generated using (12) and adding pseudorandom white Gaussian
noise with variance 62 = 16. The resulting SNR (=2r/0)
ranges from 1.5 to 2.5.

Figs. 9 and 10 are plots of the true and the estimated position
and radius functions, where the smoothing parameter was cho-
sen by minimizing the CV,, score over both «; and «,. The rms
estimation errors for position and radius were 0.1 and 0.04 pix-
els, respectively. Such subpixel estimation accuracy justifies the
computational effort of this global approach.

VII. CONCLUSIONS

We have presented an iterative algorithm for nonlinear esti-
mation of a smooth vector-valued function, based on a nonpara-
metric optimality criterion. .This algorithm provides an alter-
native to the EKF that is useful for off-line processing. We have
suggested one approximate method for automatically choosing
the smoothing parameter. There are a plethora of methods in
use for the linear case, including robust choices [15]; a detailed
comparison of these methods in the nonlinear case is an open
problem.

That our algorithm requires an initial estimate for every state
is a mixed blessing. Recursive formulae have also been devel-
oped for linear spline smoothing [16], [17]. Perhaps an exten-
sion of this work would yield a recursive nonlinear smoother
that would only require a single initial state.

In this paper, we have demonstrated the potential of this al-
gorithm on two very simple applications. In other work, we



FESSLER: SMOOTHING OF NONLINEAR VECTOR-VALUED MEASUREMENTS 913

have used this algorithm extensively for the problem of recon-
structing three-dimensional arterial tree descriptions from lim-
ited projections [18]. Another useful application may be to the
field of biomechanics [19]. We look forward to hearing of other
problems for which the nonparametric approach may be more
suitable than parametric methods.
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