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Abstract
This paper describes an object-based approach to the problem of reconstructing three-dimensional descriptions of arterial trees

from a few angiographic projections. The method incorporatesa priori knowledge of the structure of branching arteries into
a natural optimality criterion that encompasses the entire arterial tree. This global approach enables reconstruction from a few
noisy projection images. We present an efficient optimization algorithm for object estimation, and demonstrate its performance on
simulated, phantom, andin vivomagnetic resonance angiograms.
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I. I NTRODUCTION

The inaccuracy of visual interpretation of angiograms has been well documented, and has motivated the development of au-
tomated methods for quantifying arterial morphology. Accurate descriptions of arterial trees would be useful for quantitative
diagnosis of atherosclerosis, for surgical or treatment planning, for monitoring disease progress or remission, and for compar-
ing efficacies of treatments [1]. This paper describes a new method for computing 3-D descriptions of arterial trees from a few
projection images.

A summary of recent studies [2] discussed “a fascinating but disturbing fact. ... asymptomatic subjects with normal results on
stress tests had a much lower mortality rate than asymptomatic subjects with abnormal results. However, the very large low-risk
group with normal responses to exercise testing ... contained, in absolute terms, the large majority of subjects who subsequently
died suddenly.” This observation highlights the importance of non-invasive quantitative angiography, since asymptomatic patients
do not qualify for invasive examinations such as intra-arterial angiography. To identify individuals at possible risk due to mild
plaque build-up, a non-invasive procedure is needed that can accurately quantify lumen size. Magnetic resonance angiography
(MRA), in conjunction with computed reconstruction of arterial trees, has potential to serve this need. The 3-D arterial reconstruc-
tion algorithm presented in this paper is particularly suited to MR data, though the approach is also applicable to digitally acquired
X-ray angiograms.

The projection model analyzed in this paper is based on the selective inversion-recovery (SIR) method [3] for MRA. “SIR bears
some similarities to X-ray digital subtraction angiography (DSA). While DSA involves the subtraction of two images, one with
and the other without contrast agent, SIR involves the subtraction of two images, one with and the other without inversion exci-
tation of blood prior to its entering the region of interest.” [4] By using a multiple-readout selective inversion-recovery (MRSIR)
sequence [5], we can acquire arterial views at a few projection angles without using invasive contrast agents or ionizing radiation.
A typical MRSIR sequence with 256 cardiac-gated phase-encode pairs lasts about four minutes. During each cardiac cycle, several
spatial-frequency space readouts occur - each corresponding to a different projection angle. For a multiple-readout sequence, if
the number of readouts is increased, then the tip-angles must be decreased. Thus, the signal-to-noise ratio per view is inversely
related to the number of projection angles, which necessitates optimal use of the projection data. (Flow-sensitive MR techniques
can acquire a 3-D data set directly [6, 7], but the large number of required excitations makes cardiac gating impractical. Ungated
sequences often suffer from sensitivity to non-uniform flow and vessel motion.)

Projection-reconstruction from only a few views is an ill-conditioned problem in general, but as observed by Rossi [8], “the ul-
timate goal of processing the projection measurements is typically far more modest than obtaining high resolution cross-sectional
imagery.” In fact, the goal is typically to obtain quantitative descriptions of arterial shape (perhaps as an intermediate step towards
the goal of evaluating hemodynamic properties). Therefore, rather than attempting to compute 3-D voxels, we use an elliptical
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model to approximate arterial cross-sections. This parametric approach exploits oura priori knowledge of the structure of arteries,
and translates the reconstruction problem into an object estimation problem. However, a single ellipse is inadequate for represent-
ing bifurcations, where stenoses frequently occur. This paper describes a new extension of the generalized-cylinder object model
to overcome this limitation, allowing the first application of our method to projection data acquiredin vivo.

The novel aspects of the method we present are: it is based on a global criterion - to maintain accuracy at the low SNR typical
of non-invasive methods; bifurcating arteries are explicitly modeled; there are no empirically determined thresholds; overlapping
vessel projections are accommodated; and the time-dependence of contrast density is modeled. The theory we present has the
potential of providing a fully automatic reconstruction algorithm. However, like many methods, the current implementation of our
algorithm requires some manual initialization. Automating this will be a necessary step towards making the algorithm clinically
useful.

The paper is organized as follows. In Section II, we briefly review other 3-D reconstruction methods. In Section III, we present
a statistical model relating the projection images to the unknown arterial tree. In Section IV, we describe a new object model,
tailored for representing arterial trees. In Section V, we propose a new optimality criterion for the problem of estimating an arterial
tree from noisy projections, which is optimized using the estimation algorithm presented in Section VI. In Section VII, we show
the results of applying this algorithm to simulated angiograms, to MR phantom data, and to MRA projections of carotid arteries.
We discuss the results and the future directions of this research in Section VIII.

II. BACKGROUND

Quantitative angiography has been studied for over two decades, and improvements in imaging technology and computer speed
continue to spur the development of various reconstruction approaches for the many different applications. In this section, we
review some of these methods; see also [9, 10] for more comprehensive reviews. To our knowledge, all previous methods have
been applied only to X-ray angiograms and have not addressed the unique aspects of MRA.

An arterial tree can be described with the most generality by a three-dimensional density functionµ(x, y, z; t). In general,µ
is also a function of time due to the motion of blood and of the arteries. In X-ray imaging,µ represents the linear attenuation
coefficient of iodinated blood, which is a real, positive quantity. In magnetic resonance angiography (MRA),µ represents the
density of inverted spins that have flowed into the readout region [3,5], and in general is a complex quantity due to spin dephasing.
This aspect is discussed further in the next section. We use “contrast” or “density” throughout to refer toµ, although no contrast
agent is used in MRA. Though specialized X-ray equipment [11,12] can acquire enough projection data to reconstruct a discretized
estimate ofµ, the time-variation of arteries limits acquisition to only a few (almost) simultaneous projection images with practical
equipment. For some applications, estimates of arterial position and area may be sufficient, and algorithms have been published for
obtaining those features from just two views [9,13,14]. However, computations of hemodynamic significance depend on stenosis
geometry, including entrance and exit angle [15], for which area alone is insufficient. To circumvent the ill-conditioned nature
of limited-view reconstruction, virtually all methods attempt to reduce the dimensionality by considering some special class of
densities.

Perhaps the most flexible approach is to considerµ to be a discretized 3-D voxel set, and to incorporatea priori knowledge such
as sparseness, non-negativity, and connectedness to regularize the reconstruction [16, 17]. Though this method has the ability to
(discretely) represent any arterial shape, accurate reconstruction seems to require several views. To reduce the number of views
needed,µ is often restricted to binary values indicating the presence or absence of blood in each voxel. This implicitly assumes the
contrast uniformly fills the entire arterial tree, and that the contrast density is known. These assumptions are violated in MRA, due
to variable “wash-in.” Other methods have assumed that only a single artery is imaged, or that the cross-sections are ellipses with
axes aligned with two orthogonal projection angles. Often the restrictions onµ are only made implicitly, such as when “diameter”
is computed from a single view.

To compensate for limited views and low SNR, stronger assumptions are necessary. The model-based approach of this paper
is rooted in the work of Rossi [8], who analyzed reconstruction of a circular object from projections, and of Shmueli [18], who
developed a dynamic-programming algorithm for outlining a single cylindrical artery in one view. Pappas [19] demonstrated the
accuracy of using elliptical cross-sections to represent arteries, and Bresler [20] presented an optimal algorithm for reconstructing a
single object with elliptical cross-sections from a few projections. In [21], Rossi further evaluated ellipse reconstruction accuracy.
Kitamura et. al. [9] presented an algorithm for computing the skeleton and transverse areas of an arterial network from a single
view, assumed to be free of overlapping arteries, and demonstrated 3-D reconstruction of a single artery from bi-plane angiograms.
Their approach was also based on the generalized-cylinder object model, as was our work with Bresler [22,23].

An ellipse can better approximate a wider class of cross-sections than can a circle, but has the disadvantage that more than
two views are required to obtain a unique reconstruction. Spears [24] has calculated the deterministic error in reconstructing
ellipses from just two views. For applications where very accurate quantification of stenosis geometry is critical, one can justify
acquiring more views. Nevertheless, to maximize SNR with the MRSIR method, we would like to use as few views as is possible.
Bresler [25] proved that an arbitrary set of ellipses can be reconstructed (with probability one) from only three (ideal) views. In
the presence of measurement error, discretization, and blurring, we conjecture that four views is the minimum plausible number.

With the exceptions of [18, 20], most of the model-based 3-D reconstruction algorithms and many of the 2-D arterial tracking
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procedures have consisted of two steps: estimation of cross-sectional features on a slice-by-slice basis, followed by some sort of
smoothing of those features [9, 15, 26–28]. The smoothing filter is usually chosen heuristically, with an empirically determined
bandwidth. These two-step approaches are suboptimal, even if each step is optimal [22], but how much so is unclear. By using
ellipses, we capture oura priori knowledge about the shape of arterial cross-sections in a simple parametric form. The equally
importanta priori knowledge that arteries are smooth, i.e., ellipse parameters vary slowly along an arterial segment, is more diffi-
cult to quantify. Shmueli [18] and Bresler [20] used parametric Gauss-Markov models to quantify this smoothness parametrically.
We have two objections to this approach: 1) the parameters of a Gauss-Markov model are unknown and not easily determined,
and 2) in general, these models imply that thea priori covariances of the cross-sections vary along the length of an artery. This
implied variation is inconsistent with our intuition: prior to examining an angiogram, our uncertainty about cross-sectional shape
is uniform along the arteries. We instead propose a nonparametric approach, described in Section V, that captures oura priori
knowledge of arterial smoothness with minimal assumptions.

III. M EASUREMENTMODEL

Reconstruction from projections belongs to the mathematical class calledinverseproblems. Solutions to such problems depend
heavily on the assumptions one makes about the correspondingforward processes. In this section, we present a statistical model
for projection angiography that relates an unknown arterial tree to its acquired measurements. This model accounts for overlapping
arterial projections, space-invariant blurring, and additive noise. In the next section we will restrict our attention to a specific class
of arterial tree descriptions, but for this section we represent an arterial tree by an arbitrary three-dimensional density function.
DSA images may also be corrupted by an unknown background field, and one could extend the model to account for an unknown
background [9,19,29,30]. These efforts have not been necessary for MRA images.

The density function for an arterial tree varies with time, and a reconstruction paradigm that requires multiple views must
account for this variation. Since the MRSIR readouts occur during diastole, we assume that the arteries’ positions are identical
for each projection angle. Since each readout takes only 6 ms., “wash-in” effects during the readout are negligible. However,
the contrast may still change between readouts, and we account for this variation in our measurement model. We assumeP
projection images are acquired at time instants1 t1, . . . , tP and at projection anglesθ1, . . . , θP . For example, for a dual-biplane
DSA system [29]:P = 4, t1 = t2, t3 = t4, θ1 = 0◦, θ2 = 90◦, θ3 = ∆θ, andθ4 = ∆θ + 90◦.

A projection is a mapping of a 3-D density into a 2-D image, and that mapping is determined by the acquisition geometry.
MR projection images emulate a parallel geometry, for which the projection mapping is expressed as line-integrals through the
density [31]:

lθp(u, v;µ) =

∫
µ(s cos θp + u sin θp, s sin θp − u cos θp, v; tp) ds, (1)

whereµ(x, y, z; t) is the time-varying 3-D density, andlθ(u, v;µ) is the projection ofµ at angleθ. As shown in Figure Appendix
C, u andv are the local coordinates in the projection images, and thez-axis is the “rotational axis.” (Thez andv coordinates are
equivalent.) The density function represents only the contribution of (lumens of) the arterial tree of interest, assuming any other
tissues are removed by subtraction. The restriction to a geometry with a single axis of rotation is convenient for reconstruction,
but a more sophisticated approach would utilize the ability of MR systems to acquire projections in any direction.

As mentioned above, the densityµ is in general a complex quantity, as are the projection images. Unfortunately, the complex
image data is typically corrupted by spurious phase, so we use a homodyning procedure [32, 33] to extract the desired in-phase
component of the images. Ifµ has significant dephasing, then there may be signal cancellation that is not modeled by (1). Our
approach has been to minimize dephasing by using very short readouts (partialk-space) [4], by selectively projecting only a slab
containing the branches of interest [34], and by carefully shimming the main field [35]. The model used in this paper (1) should
be generalized for systems with poor homogeneity.

Actual imaging systems produce noisy, discrete samples of a blurred version of the ideal projections, and accurate estimation
requires accounting for these distortions. In MR, the point-spread function (PSF) is determined by the frequency-space sampling
and weighting, and is spatially invariant. Although it is possible to estimate the point-spread function and the arterial tree [9, 19]
simultaneously, Pappas [19] has observed that even “if we assumed that there is no blurring, we would still get good estimates of
the parameters.” Here, we assume the PSF is known, spatially invariant, and denoted byh(u, v).

Digital imaging systems acquire samples of the blurred projections in the form of images. Let these images consist ofN rows
ofW pixels each. Ifsθp,n,i(µ) denotes the ideal (mean)ith pixel value in thenth row of the projection image at angleθp, then for
i = 1, . . . ,W ; n = 1, . . . , N ; andp = 1, . . . , P :

sθp,n,i(µ)
4
=
[
h(u, v) ∗ ∗ lθp(u, v;µ)

]∣∣
u=(i−ih−

1
2 )∆h,v=zn

, (2)

wherezn
4
= (N − n)∆v, the horizontal and vertical pixel dimensions are∆h and∆v respectively,ih is the distance (in pixels)

from the projection of the rotation axis to the left edge of a projection image, and∗∗ denotes the 2-D convolution operator. The
1These times are relative to the cardiac R-wave.
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offsetih may differ from its usual value ofW/2 since any extra linear phase in an MR system leads to a shift in the reconstructed
images.

Blurring along the length of an artery’s projection is less important for reconstruction than lateral blurring that smooths the
artery’s edges. In the next section we will restrict our attention to arteries whose medial axes are roughly parallel to thez axis, so
it is reasonable to ignore blurring along this axis. This approximation simplifies the estimation algorithm discussed in Section VI.
Furthermore, if we assume that the PSF is smooth, then we can approximate (2) by a discrete convolution that is more easily
implemented. These approximations allow us to rewrite (2) as:

sθp,n,i(µ) ≈ hi ∗ lθp,i(zn;µ), (3)

where∗ now indicates discrete convolution with respect toi, and

hi
4
= h(i∆h), lθp,i(v;µ)

4
=

∫ i∆h
(i−1)∆h

lθp(u − ih∆h, v;µ) du.

Finally, the actual measured pixel values are corrupted by noise. Ifyp,n,i denotes the measurement corresponding tosθp,n,i,
then we assume

yp,n,i = sθp,n,i(µ) + εp,n,i,

where the additive measurement errorεp,n,i has a Gaussian distribution with (possibly unknown) varianceσ2. In MR imaging, the
“source of this noise is thermally generated, randomly fluctuating noise currents in the body which are picked up by the receiving
antenna,” [36] so it is correct to assume that the measurement errors are Gaussian and independent.

It is convenient to group the ideal projection and measurement samples in the different ways defined below. First group the
samples by rows:

yp,n
4
= [yp,n,1, . . . , yp,n,W ]

′,

sθp,n(µ)
4
= [sθp,n,1(µ), . . . , sθp,n,W (µ)]

′,

where “′” denotes matrix transposition. Next group the corresponding rows of theP images:

yn
4
= [y′1,n, . . . , y

′
P,n]

′,

sn(µ)
4
= [sθ1,n(µ)

′, . . . , sθP ,n(µ)
′]′. (4)

Finally, let

y
4
= [y′1, . . . , y

′
N ]
′, s(µ)

4
= [s1(µ)

′, . . . , sN (µ)
′]′

be the aggregates of all the samples. The vectory has lengthNPW . We similarly defineε, yielding the final measurement model:

y = s(µ) + ε, (5)

which simply says that the (known) measurements are equal to the sampled and blurred projection of the (unknown) arterial tree
density plus noise.

In summary, we have defined a statistical measurement model (5), using the following assumptions:

• negligible dephasing,

• linear projection of density function,

• uniform background (or background removed by preprocessing),

• known, space-invariant PSF,

• parallel geometry, and

• independent, additive, Gaussian measurement errors.

IV. OBJECT MODEL

As discussed in the introduction, the information provided by only a few projections is insufficient for reconstructing a general
three-dimensional function. Any solution therefore hinges on restricting consideration to a smaller class of descriptions. In this
section, we introduce an extension of the generalized cylinder (GC) object model, tailored to the task of representing arterial
trees (the terms ‘object’ and ‘arterial segment’ are interchangeable). In particular, our model is designed to represent bifurcations
accurately. This accuracy is essential since atherosclerotic lesions are prevalent near arterial branches [37, 38]. Binford [39, 40]
introduced the GC model for computer vision applications. According to Agin [40], “A generalized cylinder consists of a space
curve, or axis, and a cross-section function defined on that axis.” For this paper, we take that cross-section function to be an ellipse.
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A. SGC object model

A true GC would have arbitrarily oriented ellipses, as in Figure Appendix C. Reconstruction of such general objects from
projections is still an open problem; to our knowledge, the only work on this problem is a hierarchical algorithm proposed, but
never implemented, by Bresler [25]. The comments of Marr [41, pp. 223–224] suggest that GC reconstruction may be challenging
to implement from projections acquired around a single rotation axis. We instead adopt the popular approach [9, 20, e.g.] of
parameterizing objects by their cross-sections parallel to thexy plane, an approach ideally suited to the cylindrical geometry. As
argued in [9], a GC with slowly varying elliptical cross-sections can be approximated by a set of parallel ellipses as shown in
Figure Appendix C. Such a set of ellipses can be parameterized byz, hence we call the collection a single-valued generalized
cylinder (SGC). Objects that wind back upon themselves (e.g. U shaped) must be represented by more than one SGC, and are
called ‘multi-valued.’ The further an object is tilted away from the rotational axis, the poorer its SGC representation. Thus, as in
most imaging procedures, proper patient positioning is essential, and the arteries of interest should be aligned as close as possible
to the rotational axis. The examples of Section VII demonstrate successful reconstruction of objects with tilts exceeding45◦.
Though we parameterize objects by parallel cross-sections, the cross-sections perpendicular to an artery’s medial axis are more
important for quantitative diagnosis. Hence, we present formulae for converting between GC and SGC parameters in Appendix C.

Each SGC cross-section has three attributes: position, shape, and content. An ellipse’s position attribute is parameterized by
thexy coordinates of its center, denoted by(cx, cy). We parameterize an ellipse’s shape attribute by its radius (geometric mean
of long and short axes), eccentricity2 (ratio of long to short axis3), and orientation, denoted byr, λ, andφ respectively (see
Figure Appendix C). The content attribute parameterizes the density within an artery, and can have a profound, though often
underestimated, impact on a reconstruction algorithm’s accuracy and applicability. Some methods assume the content is known or
is computable from “normal” sections of an artery, usually assumed to have a circular cross-section. Having more than two views
allows us to relax these assumptions. We do not assume the contrast density is known, and we allow it to vary along the length of
an artery, from artery to artery, and possibly even between projection images, as discussed next.

Though the measurement model (5) allows a general time-varying density, we now consider only SGCs whose position and
shape attributes are invariant at timest1, . . . , tP , but we account for the time variation of the content attribute4. This approach
is necessary since the contrast often varies between MRA projection images, and is approximately sufficient since cardiac gating
can synchronize position and shape. We assume each particular arterial cross-section is uniformly filled with contrast agent, so
we parameterize an ellipse’s content by a vector denoted byρ = [ρ1, . . . , ρP ]

′, whereP is the number of projections. For some
imaging techniques, we may be able to equate some of theρp’s. For example, with bi-plane DSA, the contrast is identical for
each pair of projection images, so we would assumeρ1 = ρ2 andρ3 = ρ4. Note that ideal data sets would haveρ1 = · · · = ρP ,
since estimating additional parameters often decreases estimation accuracy, but we have found the full generality presented here
necessary for some MRA data.

We now define notation for a hierarchy consisting of ellipses, objects, and trees. The symbolx will denote a particular set of
5 + P ellipse parameters. In particular,

xk(z) =


cx(z)
cy(z)
r(z)
λ(z)
φ(z)
ρ(z)


denotes the (unknown) ellipse parameters of thekth object at vertical positionz. An object is uniquely determined by specifying
its starting planezb, its ending planeze, and the collection of parameters of its elliptical cross-sections between those planes. We
use the symbolOk to denote thekth object, i.e.,

Ok
4
= {Zk, Xk},

where

Zk
4
= [zb,k, ze,k]

denotes the vertical domain of thekth object, and

Xk
4
= {xk(z) : z ∈ Zk}

denotes the collection of ellipse parameters. We will say more aboutZk later in this section.

2The radius/eccentricity parameterization is preferable to the long-axis/short-axis parameterization for our approach, since independence of radius and eccen-
tricity is a more realistic assumption, particularly in stenotic arteries.

3Another definition of ellipse eccentricity is
√
1− λ−2.

4We could also account for lateral vessel motion between acquisitions [29].
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An arterial tree is a collection ofK objects, or ‘object-set,’ denoted by the symbolΨ:

Ψ
4
= {K, O1, . . . ,OK} = {K, Z1, X1, . . . , ZK , XK}. (6)

The notational hierarchy forΨ directly corresponds to a hierarchical data structure [13] that we used to implement the algorithm
described in Section VI. Due to the simplicity of the ellipse parameterization, this representation forΨ is considerably more
compact than a discretized 3-D voxel set. More importantly, the significant factors for quantitative diagnosis, such as percent
stenosis and stenosis eccentricity, are directly computable fromΨ.

With these definitions, we have translated the problem of reconstructing a densityµ from projections into the problem of
estimating an object-setΨ from projections. That is, we must estimate the number of objects, the vertical extent of each object,
and the parameters of the ellipse cross-sections for each object.

B. Branching arteries model

In earlier efforts [22,23], we assumed that theK objects to be reconstructed were disjoint. Although convenient, this assumption
precluded accurate modeling of branching vessels. Histological sections of bifurcations [37, 38] suggest that pairs of intersecting
ellipses can approximate cross-sections of a bifurcation accurately, even a diseased one. Therefore, we discard the disjointedness
assumption by allowing SGC objects to intersect and by accounting5 for their intersections [42]. The importance of this accounting
is clear from early GC-based vision algorithms [40] that were prone to failure near the intersection of GCs. (For simplicity, we
consider bifurcations only; the extension to trifurcations involves only additional notation.)

When two SGC objects intersect, their position and shape attributes are unaffected, but we must specify their content attributes
more carefully. Although it may be reasonable to assume that two intersecting ellipses must share the same density, we can
simplify our reconstruction algorithm by not enforcing this constraint. This also provides a self-test for the reconstruction: if
the estimated densities differ significantly for two arterial branches near a bifurcation, then something is clearly amiss. For
mathematical consistency, we must specify a symmetrical definition for the content of two intersecting ellipses with different
densities. Our convention is described pictorially in Figure Appendix C, where we define the density of the common area of two
ellipses to be the average of the two ellipse densities. If the two densities are the same, then the area of overlap will have that same
density.

With the above definitions, we can now specify the unique 3-D density function generated by a given object-set. LetE(x) be
the set of points within the ellipse parameterized byx, i.e., if x = [cx cy r λ φ ρ′]′, then

E(x) =

{
(x, y) :

(
(x − cx) cosφ− (y − cy) sinφ

r
√
λ

)2
(7)

+

(
(x− cx) sinφ+ (y − cy) cosφ

r/
√
λ

)2
≤ 1

}
.

The relationship between an object-setΨ and its densityµΨ is then:

µΨ(x, y, z; tp) =

K∑
k=1

ρk,p(z) 1E(xk(z))(x, y) 1Zk(z) (8)

−
K∑
k1=1

K∑
k2=1

ρk1,p(z) + ρk2,p(z)

2
·

1E(xk1(z))(x, y) 1E(xk2(z))(x, y) 1Zk1 (z) 1Zk2 (z),
where

1Z(z) =
{
1, z ∈ Z
0, z /∈ Z

.

The first summation would suffice for a set of disjoint objects, and the second summation accounts for the areas of overlap.
The reverse relationship to (8) is not unique because many different object-sets generate the same density function. One trivial

reason for this non-uniqueness is that an ellipse’s shape is the same for orientationsφ andφ+ π, but the parameter vectors differ.
Also, if one changedΨ by adding objects with zero density, there would be no change inµΨ. More significantly, the union of
two identical ellipses is indistinguishable from a single ellipse. We will say two object-sets areequivalentif the density functions
they generate from (8) are equal. For example, if the three objects shown in Figure Appendix C all have the same density, then the

5More perspiration than inspiration: compare Appendix A and Appendix B.



7

object-set formed by combiningO1 andO2 is equivalent to the object-set formed by combiningO1 andO3. Technically then, we
will be reconstructing anequivalence classof object-sets from projections.

Since a given object-setΨ generates a unique density functionµΨ by (8), we can speak of the projection of an object-set,
denoted bys(µΨ). Althoughs is linear inµ, it is not linear inΨ sinceµ is a nonlinear function ofΨ. In fact, since we are not
assuming disjoint objects,s is not even additive in general, i.e., the projection of an object collection differs from the sum of each
object’s projection. Nevertheless, we can write expressions fors(µΨ) in closed form using the formulae derived in the appendices.

The non-uniqueness of an object-set actually works to our advantage since we need not estimatezb or ze exactly for objects
near bifurcations, as demonstrated by Figure Appendix C. What defines the endpoints of an arterial segment? There are four
possibilities for SGC objects:

• an artery may leave the region of interest (ROI),

• an artery may ‘fade-out’ due to incomplete filling by contrast agent,

• an artery may be occluded or taper down to a size below the effective resolution,

• or an artery may connect to another artery (branching).

These four possibilities are illustrated in Figure Appendix C. Of these, only the first possibility has a unique value ofzb (or ze),
and this value is easily determined. For the others, we can always conservatively make the object extra long, and let the density or
radius become vanishingly small. For a multi-valued GC object, the endpoints of its SGC approximation are poorly defined, and
are determined in practice by the manual-entry described in Section VI.

We have described an extension of the generalized-cylinder object model based on elliptical cross-sections. By allowing objects
to intersect, the model can represent arterial trees accurately. This model defines the class of 3-D density functions considered,
namely those that can be expressed in the form (8).

V. OBJECT ESTIMATION

Equipped with the measurement and object models of the previous sections, we can define criteria for the problem of estimating
an unknown object-setΨ from noisy projection measurementsy. After presenting the maximum-likelihood criterion and noting
its shortcomings, we introduce a nonparametric optimality criterion. Our approach is motivated by the success of nonparametric
regression, especially cubic-spline smoothing, at estimating smooth curves from noisy data [43].

A. Maximum Likelihood Criterion

An obvious approach would be to find the object-set whose computed projections are the closest to the measurements in some
sense. Under the independent Gaussian noise model, the least-squares estimate is also the maximum-likelihood (ML) estimate,
defined by (cf. (6)):

Ψ̂ML
4
= argmin

K
min

Z1,...,ZK
min

X1,...,XK
‖y− s(µΨ)‖

2.

This estimator is severely under-regularized; one can always add tiny objects whose parameters fit some bit of noise, thereby
increasing the “likelihood,” but certainly not improving the estimate. Even if the number of objects is fixed so thatK cannot grow
without bound, the results will be unsatisfactory due to noise and the “threshold effect” of ML estimation [44], if the SNR is low.
Indeed, many methods follow the ML estimation with a post-processing smoothing step.

The principal shortcoming of ML estimation is that it ignores oura priori knowledge of arterial smoothness. The nonparametric
optimality criterion presented below attempts to capture this knowledge realistically.

B. Nonparametric Optimality Criterion

Smoothing always involves a tradeoff between the conflicting goals of fit to the measurements and smoothness of the estimated
functions. Nonparametric regression offers a solution to this tradeoff, and only requires an assumption of integrability of the square
of the second derivative of the estimand. Most nonparametric regression literature has been concerned with estimating scalar
functions from linear, scalar measurements. The natural generalization of these “penalized-likelihood” [45] or “regularized” [46]
methods to our nonlinear, multi-dimensional, object estimation problem is the following estimator and optimality criterion6:

Ψ̂
4
= argmin

K
min

Z1,...,ZK
min

x1(·),...,xK(·)
Φ(Ψ),

Φ(Ψ)
4
= ‖y − s(µΨ)‖

2 +α′
K∑
k=1

∫
Zk

ẍ2k(z) dz, (9)

6This criterion is nonparametric in the sense that we have avoided using a parametric (e.g. Gauss-Markov) model for the evolution of cross-section parameters
along an artery.
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whereẍ(z) is the(5 + P )-dimensional vector containing the second partial derivatives of the components ofx(z) with respect to
z.

The smoothing tradeoff is controlled by the smoothing factorα = [α1, . . . , α5+P ]′; for smallα, the estimate fits the data
closely (approaching the ML estimate asα goes to zero), and for largeα, the estimate becomes very smooth. Intuitively, we
would use the same fairly large value forα1 andα2 since ellipse position varies relatively slowly, very large identical values
for α6, . . . , α5+P , since density typically varies very slowly, and smaller values forα3, α4, andα5, to avoid oversmoothing the
important shape features. These qualitative statements are unsatisfying theoretically. Fortunately, nonparametric regression offers
a solution: we can estimateα from the data itself using cross-validation [47–49]. We conjecture that arterial disease will primarily
effectα3 andα4, so that the other elements ofα could be fixed for a given imaging technique.

Why this criterion? The first term of (9) is the measurement negative-log-likelihood, which we would like to be small, but not
at the expense of excessive object wiggliness. Functions that minimize, subject to specified constraints, the second term turn out
to be splines, the smoothest functions (in curvature sense) satisfying those constraints. We argue that for maximum effectiveness,
arteries attempt to be as smooth as possible, subject to anatomic constraints. An example is carotid arteries, which make very
smooth trajectories from their origins at the aorta to their destinations in the head. These arguments are heuristic, and the reader
may disagree; we hope this discussion prompts proposals of other criteria. Our main point here is that (9) is a natural optimality
criterion that globally encompasses the entire arterial tree, and therefore promises better results than local methods.

Though we have assumed a parallel geometry in Section III, the criterion (9) could apply to any geometry, with a different
projection functions(Ψ). However, the particular algorithm for minimizing (9) we describe here relies heavily on the fact that,
for a parallel (or cylindrical) imaging geometry, the projections of an elliptical cross-section fall on the same row in each of the
projection images. This fact is embodied in (1) and (4), which allows us to rewrite (9) as:

Ψ̂ = argmin
K

min
Z1,...,ZK

min
x1(·),...,xK(·)

[
N∑
n=1

‖yn − s(x1(zn), . . . ,xK(zn))‖
2 +α′

K∑
k=1

∫
ẍ2k(z) dz

]
, (10)

where (cf. (4)) the 2-D projection of an ellipse collection is given by:

s(x1(zn), . . . ,xK(zn)) = sn(µ{E(x1(zn)),...,E(xK(zn))}). (11)

By standard arguments [50, 51] based on the Euler equations for the functional (10), the infimum ofΦ is achieved, and any
object-set that achieves that infimum is composed of objects whose component functions are cubic-splines with knots at some
subset ofz1, . . . , zN . A cubic-spline function is determined completely by its values at the knots (sample points). We use this
fact to simplify the continuous variational problem (10) into a tractable discrete problem. Note that this discretization is a natural
consequence of the form of (10). Define the sample points for thekth object by:

Nk
4
= {n : zn ∈ Zk, n = 1, . . . , N},

nb,k = minNk, ne,k = maxNk,

and the samples by:

Xk
4
= [xk(znb,k)

′, . . . ,xk(zne,k)
′]′,

whereXk denotes the parameters of thekth object on those planes within its length. With these definitions, we can rewrite (10)
as:

Ψ̂ = argmin
K

min
N1,...,NK

min
X1,...,XK[

N∑
n=1

‖yn − s(x1(zn), . . . ,xK(zn))‖
2 +

K∑
k=1

X′kSkXk

]
. (12)

The matrixSk, defined in [48, eqn. (23)], depends onNk andα, and serves to discretize the integral in (10).
Though many desirable properties of spline smoothers are known [43,45], the nonlinearity of (12) limits how much we can say

about its theoretical properties. There are probably local minima, and even the global minimum is not unique in general, due to
the non-uniqueness discussed in Section IV. However, regularization methods have shown promise in other applications [46], and
the empirical results of Section VII likewise are encouraging.

We have defined an optimality criterion for the object reconstruction problem. This criterion can be used to compare suboptimal
algorithms, or minimized to generate an arterial tree estimate. In the next section, we present an algorithm for such minimizations.
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VI. ESTIMATION ALGORITHM

Having defined optimality criterion (12), the object estimation problem becomes simply the problem of designing an algorithm
that can computêΨ with a reasonable computational load. A general nonlinear minimization technique would be completely
impractical, since there are thousands of parameters to estimate. Fortunately, we can exploit the sparseness of arterial trees and
the special matrix structures of vector-spline smoothing to tailor an algorithm to this problem.

The outer two minimizations in (12) can be thought of as a detection operation: estimating the number of arteries and their
endpoints. In the remainder of this paper, we focus on the innermost minimization: the problem of estimating the objects’ cross-
section parameters given the number of objects and an initial estimate.

An initial estimate could come from the output of any of the sub-optimal 3-D reconstruction schemes, but we currently use
manual entry. A trained operator determines the number of objects, and then enters coarse centerlines using a technique similar
to [52]. After tracing a coarse piecewise-linear approximation of each object’s centerline on one view, the operator traces the
centerline in the (e.g.) orthogonal view using auxiliary lines, observing the other views to confirm object correspondence. Since
there are multiple views, the correspondence problem that confounds two view reconstruction is alleviated. From cubic-spline
interpolants of the 2-D centerlines, an initial 3-D skeleton is generated automatically by analytical back-projection. A typical
arterial radius for the anatomy of interest is used as the radius for an initially circular cross-section. The result of this procedure is
a crude estimate ofΨ that initializes the iterative algorithm presented below.

If the objects were disjoint, and if their projections were overlap free, then the minimization of (12) would decompose into
K independent minimizations - one for each object. This fact, combined with the sparseness of arterial trees, suggests that the
alternating minimization (AM) algorithm [23, 53] is appropriate for this problem. Here, we use the AM algorithm on an object
by object7 basis: the parameters of each object are estimated in turn, while holding the other objects fixed, and the procedure is
iterated. If there was no overlap, convergence would occur in one iteration, but in general the number of iterations depends on the
degree of overlap. That describes the “outer loop” of the algorithm; we now focus on the algorithm for estimating the parameters
of a particular object, holding the other objects fixed.

Suppose we are considering thekth object, and let̂Xj denote the current parameter estimates of thejth object. Then from the
inner minimization of (12):

X̂k = argmin
Xk ne,k∑

n=nb,k

‖yn − s(x̂1(zn), . . . , x̂k−1(zn),xk(zn), x̂k+1(zn), . . . , x̂K(zn))‖
2 +X′kSkXk


= argmin

Xk

 ne,k∑
n=nb,k

‖y∗n − s
∗
n(xk(zn))‖

2 +X′kSkXk

 , (13)

where

Xk
4
= [xk(znb,k)

′, . . . ,xk(zne,k)
′]′,

y∗n
4
= yn − s(x̂1(zn), . . . , x̂j−1(zn), x̂j+1(zn), . . . , x̂K(zn)), (14)

and

s∗n(x)
4
= s(x̂1(zn), . . . , x̂j−1(zn),x, x̂j+1(zn), . . . , x̂K(zn))

− s(x̂1(zn), . . . , x̂j−1(zn), x̂j+1(zn), . . . , x̂K(zn)). (15)

y∗n is the difference between the measurements and the projections of the fixed objects. By our restriction to bifurcations, thekth

ellipse on slicen is either isolated, or it intersects one other ellipse, with indexkn, say. Thus,

s∗n(x) =

{
s(x), xk isolated
s(x,xkn)− s(xkn), xk and xkn intersect

, (16)

wheres(x,xkn) is defined by (11). Formulas fors∗n(x) are given in Appendix B. Note that if the objects were disjoint thens∗n(x)
ands(x) would be equivalent.

We have finally reduced the original optimization problem (12) down to the form (13), which has been solved previously.
In [48, 49], Fessler presented an algorithm for smoothing nonlinear measurements of vector-valued functions that is directly
applicable to (13). The computational requirement of that algorithm is onlyO(N), due to the band matrix structure of spline

7In [23], the AM algorithm was applied on an ellipse by ellipse basis, and the sparseness argument was weaker.



10 VII EXPERIMENTAL RESULTS

smoothing. Source code is available through NETLIB [54]. That algorithm uses the nonlinear pseudo-measurement function
s∗n(x) and its derivatives.

The cross-validation method described in [48, 49] could be used to select the smoothing parameterα automatically in several
different ways for this problem. A computationally efficient alternative to cross-validating the entire object-set is the following
approach. First, estimate the objects using an educated guess for the smoothing parameter. Then, subtract the projections of all of
the objects except one (e.g. the longest) from the measurements, leaving (approximately) only the selected object’s contribution.
Next, apply the cross-validation method of [49] to chooseα automatically for that single-object data set. Finally, estimate the
entire object-set using the smoothing factor chosen by cross-validation. The examples of Section VII, were based on this approach.
Unfortunately, the cross-validation score may have local minima, and a descent from the initialα may not yield the truly optimal
α. A global search forα on a patient-by-patient basis would be too time consuming; a more practical approach would be to search
globally for the bestα on a training set of images, and then to apply that value ofα to subsequent patient studies.

The essence of the estimation algorithm is described by (12), and more detail on the implementation can be found in [30]. The
result of this estimation algorithm is a set of parametrically described SGC objects that are converted to GC parameters using
Appendix C. One can use these parameters in several ways:

• generate 3-D shaded surface displays directly,

• generate synthetic projections at any angle,

• plot cross-sections, and

• graph parameters (especially radius) versus arterial axis to examine percent stenosis.

Each of these uses is demonstrated in the next section. A bonus for this parametric method is that shaded surface displays are
particularly easy to generate since the estimated ellipses are essentially surface descriptions.

VII. E XPERIMENTAL RESULTS

We applied the algorithm described above to three data sets: simulated projection images, MR projections of a branching flow
phantom, and MR angiograms of a healthy volunteer’s carotid arteries. The SNR per view, defined by2ρhprp/σ, and the important
imaging parameters for these case studies are summarized in Table 1.

A. Simulated projections

Figure Appendix C shows four noisy projection images of a simulated arterial tree. These images were generated using the
projection model of Section III. Table 2 displays the convergence of the algorithm for the smoothing parameter chosen by cross-
validating the longest object. Each iteration through all five objects required about 35 seconds on a SUN Sparcserver. As expected,
the first few iterations improve the estimates considerably, with little further improvement after the fourth iteration. The RMS errors
for ellipse orientationφ are misleadingly large; many of the cross-sections are very close to circular, in which case the orientation
is irrelevant.

A more meaningful evaluation of the shape estimates can be made from Figure Appendix C, Figures Appendix C and Appendix
C. (The estimates are taken from the fourth iteration hereafter.) Figure Appendix C compares the true and the estimated cross-
sections of the main branch over the stenotic portion. The reconstruction has estimated this eccentric stenosis accurately. Similarly,
Figures Appendix C and Appendix C compare the true and the estimated cross-sections of two bifurcations. The overlapping
ellipses with very different shapes are estimated accurately.

For a more quantitative comparison, Figure Appendix C compares the true and the estimated radii (both in SGC parameters) for
this example, and shows the presence of a stenosis quite clearly. These parameters are translated into GC parameters using the for-
mulae of Appendix C, and Figure Appendix C displays the resulting radius estimation errors for the five objects. The larger radius
“errors” at the endpoints of some of the objects are artifacts that are explained by object-set ambiguity discussed in Section IV:
when one ellipse is almost completely inside another ellipse, it contributes very little to the cross-section. Figures Appendix C
and Appendix C show that the cross-sections were in fact estimated accurately.

Graphs such as Figure Appendix C are useful for computing percent stenosis, but morphology is best viewed through an
interactive 3-D display with cut-planes. Figure Appendix C shows a shaded surface display of the reconstruction, generated using
the simplest aspects of the shading method presented in [55].

The results from this data set demonstrate the potential performance of object-based reconstruction, and highlight an important
advantage of the parametric approach: despite the low SNR, the estimates are of sub-pixel accuracy. Discrete voxel representations
of µ, on the other hand, are typically limited by the measurement resolution.
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B. MR branching phantom

The images in Figure Appendix C are MR projections of a MnCl solution flowing through a plastic Y-shaped connector attached
to Tygon tubing. We used the projection-reconstruction selective inversion-recovery (PRSIR) [56, 57] method to collect the data.
The inner diameter of the Y connector was 3.75mm. Figure Appendix C displays a histogram of the radius estimation error over
the Y section. The RMS error in radius was only 0.04 mm. As a verification of the geometric consistency of the estimates,
Figure Appendix C displays the outline of the projection of the estimates superimposed on another view that was also acquired,
but was not used for the reconstruction. The overall correspondence is quite good, though the sharp transitions between the small
branch and the larger tubes would be better modeled by a GC than a SGC, since some of the image rows intersect both the small
tube and a corner of the larger tube.

C. MR carotid angiograms

Figure Appendix C shows four MRSIR projections of a slab containing a healthy volunteer’s right carotid artery. A surface coil
was placed on the right side of the subject’s neck, to maximize SNR. We have no means of making a quantitative evaluation of the
results, but Figure Appendix C shows a 3-D display of the estimated arteries. This example clearly motivates extending this work
beyond single-valued objects, since this facial artery is clearly a multi-valued function ofz.

VIII. D ISCUSSION

We have described an object-based method for reconstructing arterial trees from a few projections. By exploitinga priori
knowledge of arterial shape and smoothness, sub-pixel accuracy reconstructions are achieved from only four noisy projection
images. The promise of this method is perhaps best demonstrated by Figures Appendix C and Appendix C, which show that
accurate reconstruction of bifurcations is achievable with parametric models. Note that attempting to reconstruct intersecting
ellipses on a local, slice-by-slice basis would be very sensitive to noise; it is thea priori knowledge of smoothness that makes
this global approach effective. A possible disadvantage of this approach is its complexity; our implementation consists of over ten
thousand lines of C code.

To make the approach useful clinically, the manual entry should be eliminated, perhaps by using a detection algorithm based on
the outer two minimizations of (12). Brute force minimization of (12) would be impractical computationally; one would need to
exploit the structure of arterial trees, as done in Section VI. Automating the procedure should be easier in the high-SNR case, as
with intra-arterial contrast studies [58]. Clinical utility would certainly be improved if true GCs could be estimated. The ability of
MR to acquire projections in arbitrary directions should be useful for addressing this problem.

Our approach has been to avoid enforcing plausible constraints such as equality of the density of overlapping ellipses. Though
such constraints could reduce the degrees of freedom and thereby decrease the estimate variance, they could also increase po-
tential modeling error. Nevertheless, if the SNR is very low, it may be necessary to use even morea priori knowledge. The
branching-spline method of Silverman [59], originally applied to agricultural data, may be a one useful approach to enforcing
tighter constraints between objects that branch.

An open theoretical question is how to best choose the smoothing factorα. Shouldα be the same for every object, or, since
smaller arteries tend to be more tortuous, shouldα scale with object size? Robust methods for choosingα should also be
explored [60]. Having allowed intersecting ellipses, we could also combine ellipses to represent other cross-sections, such as
crescent shapes [30]. Presently, only X-ray angiography is used routinely, and we are generalizing the algorithm of this paper to
apply to cone-beam projections [30].
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I. PROJECTION OF AN ELLIPSE

Consider a collection of ellipses in a given plane, some of which may intersect. Since we restrict our model to bifurcations, the
collection’s projections are the superposition of the projections of those ellipses that are isolated, plus the sum of the projections of
the pairs of intersecting ellipses. Thus we need two types of formulae: projections of a single ellipse, and projections of intersecting
ellipses (cf. (16)). In this appendix and the next, we present expressions for these projections and their partial derivatives. These
are needed by the nonlinear vector-spline smoothing algorithm in [48, 49] since it is a gradient-descent optimization method.
Specifically, we derive expressions fors∗(x), or equivalently, its componentss∗θ,i(x).

Consider a single isolated ellipse with parametersx = [cx cy r λ φ ρ]′. Since we consider projections only in the plane of this
ellipse, we drop the dependence onz (and hencev andn). From (1), (7), and (8), the ideal continuous line-integral of an ellipse is:

lθ(u;x) =

∫
ρ 1E(x)(s cos θ + u sin θ, s sin θ − u cos θ) ds

= 2ρhp

√
r2p − (u− up)

2 1|u−up|≤rp ,

where

up
4
= cx sin θ − cy cos θ, (17)

rp
4
= r ·

√
a+, hp

4
= a−1+ ,

and

a± =
1

2

(
(λ± λ−1)− (λ∓ λ−1) cos(2(φ− θ))

)
.

Then from (2) and (3),
sθ,i(x) = hi ∗ lθ,i(x),

where

lθ,i(x) =

∫ (i−ih)∆h
(i−ih−1)∆h

lθ(u;x) du

= ρhp

[
u
√
r2p − (u − up)

2 + r2p arcsin

(
u

rp

)]∣∣∣∣u=uR
u=uL

,

where

uL
4
= max

{
(i− ih − 1)∆h

rp
,−1

}
, uR

4
= min

{
(i− ih)∆h
rp

, 1

}
,

for i in the range
{i : |(i− ih − 1

2 )∆h − up| ≤ rp + 1
2∆h} ,

otherwise the values are 0. By the linearity of convolution, the partial derivatives ofsθ,i(x) are the blurred partial derivatives of
lθ,i(x), which are given below fori in the same range:

∂lθ,i(x)

∂cx
= −(sin θ)(lθ(uR;x)− lθ(uL;x)),

∂lθ,i(x)

∂cy
= (cos θ)(lθ(uR;x)− lθ(uL;x)),

∂lθ,i(x)

∂r
= 2ρ r

(
arcsin

(
uR

rp

)
− arcsin

(
uL

rp

))
,

∂lθ,i(x)

∂λ
= ρ

−a−
λa2+

(√
r2p − (uR − up)

2 −
√
r2p − (uL − up)

2
)
,

∂lθ,i(x)

∂φ
= ρ

−(λ− λ−1) sin(2(φ− θ))

a2+

(√
r2p − (uR − up)

2 −
√
r2p − (uL − up)

2
)
,

∂lθ,i(x)

∂ρ
= lθ,i(x)/ρ.

s(µΨ) could be implemented as a subroutine that accepts an object-set as its argument and returns a vector of lengthNPW .
However, we achieve substantial memory and computational savings by exploiting the fact that projections of ellipses are semi-
ellipse ‘bump’ functions whose supports are only small fractions of the size of the projection vector.



13

II. PROJECTION OF INTERSECTING ELLIPSES

The projection of two intersecting ellipses is more complicated due to the region of overlap. Consider two intersecting ellipses
with parametersx1 = [cx,1 cy,1 r1 λ1 φ1 ρ1] andx2 = [cx,2 cy,2 r2 λ2 φ2 ρ2], and letE1 andE2 denote the corresponding ellipse
sets (7). From (16), it suffices to derive an expression fors∗(x1), or equivalently its componentss∗θ,i(x1), wherex2 is held fixed.
Combining (2), (3) and (16),

s∗θ,i(x1) = hi ∗ l
∗
θ,i(x1),

where

l∗θ,i(x1)
4
=

∫ (i−ih)∆h
(i−ih−1)∆h

l∗θ(u;x1) du,

and

l∗θ(u;x1)
4
= lθ(u;x1,x2)− lθ(u;x2).

Applying (1) and (8) and using an overline to represent set complements:

l∗θ(u;x1) =∫
{(x,y):x sin θ−y cos θ=u}

[(
ρ1 1E1 + ρ2 1E2 −

ρ1 + ρ2
2

1E1⋂ E2)− (ρ2 1E2
)]
dl

=

∫
{(x,y):x sin θ−y cos θ=u}

[
ρ1 1E1 1E2 +

ρ1 − ρ2
2

1E1 1E2
]
dl

= (ρ1) f1(dθ(u;x1), lθ(u;x1)/ρ1, dθ(u;x2), lθ(u;x2)/ρ2)

+
(
ρ1−ρ2
2

)
f2(dθ(u;x1), lθ(u;x1)/ρ1, dθ(u;x2), lθ(u;x2)/ρ2),

where forj = 1, 2:

dθ(u;xj)
4
= cx,j cos θ + cy,j sin θ − (u− up,j)(λj − λ

−1
j )

1

2a+,j
sin(2(φj − θ))

is the distance shown in Figure Appendix C. The path length functions shown in Figure Appendix C are:

f1(d1, l1, d2, l2)
4
= length([d1 − l1/2, d1 + l1/2]

⋂
[d2 − l2/2, d2 + l2/2]),

f2(d1, l1, d2, l2)
4
= length([d1 − l1/2, d1 + l1/2]

⋂
[d2 − l2/2, d2 + l2/2]),

where

length([a, b]
⋂
[c, d])

4
=


(b − a)− (d− c), a ≤ c, b ≥ d
b− d, a ≥ c, b ≥ d, a ≤ d
c− a, a ≤ c, b ≤ d, b ≥ c
0, otherwise

,

and

length([a, b]
⋂
[c, d])

4
=


d− c, a ≤ c, b ≥ d
d− a, a ≥ c, b ≥ d, a ≤ d
b− c, a ≤ c, b ≤ d, b ≥ c
b− a, a ≥ c, b ≤ d
0, otherwise

.

Our implementation uses the following approximation, obtained by interchanging the order of the convolution and the ‘length’
(min/max) operations:

l∗θ,i(x1) ≈ ( ρ1 ) f1(dθ,i(x1), lθ,i(x1)/ρ1, dθ,i(x2), lθ,i(x2)/ρ2)

+
(
ρ1−ρ2
2

)
f2(dθ,i(x1), lθ,i(x1)/ρ1, dθ,i(x2), lθ,i(x2)/ρ2),

where
dθ,i(x) = dθ ((i− ih − 1

2 )∆h;x) .
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From these formulae, we see that the partial derivatives ofs∗(x) are combinations of those given forlθ,i(x) in Appendix A, and
those ofdθ,i(x), given below:

∂dθ,i

∂cx
= cos θ + (sin θ)(λ− λ−1)

1

2a+
sin(2(φ− θ)),

∂dθ,i

∂cy
= sin θ − (cos θ)(λ− λ−1)

1

2a+
sin(2(φ− θ)),

∂dθ,i

∂r
= 0,

∂dθ,i

∂λ
= −((i− ih − 1

2 )∆h − up) sin(2(φ− θ))/(λa+),

∂dθ,i

∂φ
= ((i− ih − 1

2 )∆h − up)(λ− λ
−1)
a−

a2+
,

∂dθ,i

∂ρ
= 0.

III. C ONVERTING SGCTO GC PARAMETERS

Our reconstruction algorithm provides estimates of the parameters of the elliptical cross-sections of a SGC, as shown in Fig-
ure Appendix C. However, it is the variations in eccentricity, radius, and area perpendicular to an artery’s axis that are important
diagnostically. In this appendix, we present equations for converting between the parameters of a GC and a SGC. These relations
are derived by approximating a SGC locally by an elliptical cone. The position attribute is identical for the GC and SGC mod-
els. To first order, the content attribute is also the same, since density usually varies quite slowly. Suppose the estimated shape

parameters are[rS λS φS], and that the local slope of the SGC isβx andβy. Letβ =
√
1 + β2x + β

2
y , then

r =
rS√
β

and
λ+ λ−1 = β−1λS + βλ

−1
S + (β − β

−1)(λS − λ
−1
S ) sin

2(φS − arctan(βy/βx)).

Ellipse orientation is not well defined for an arbitrary GC axis [25] in general.
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Simulation MR phantom MR carotid
K 5 2 4
W 256 160 160
N 256 128 128
∆h [mm] 1 0.478 0.7
∆v [mm] 1 0.478 0.35
P 4 4 4
σ2 3 0.0025 0.015
SNR 2.8–6.7 6.3–40.6 2.8–20.2
θ1, . . . , θP 0,45,90,135 22,67,112,1570, 45, 108, 143

Table 1: Imaging parameters for the data sets used to evaluate the reconstruction method.

RMS error
Iteration cx cy r λ φ ρ

0 1.188 0.9704 1.528 0.06325 23.05 0.2044
1 0.2884 0.2345 0.1943 0.1352 38.25 0.03376
2 0.1859 0.1568 0.136 0.07881 34.66 0.01879
3 0.1783 0.1386 0.1133 0.06639 34.95 0.0145
4 0.1606 0.1174 0.1048 0.07071 34.94 0.01396
5 0.1573 0.1312 0.104 0.06435 34.61 0.01451
6 0.1456 0.1365 0.1081 0.06774 35.2 0.0138
7 0.1556 0.1363 0.1055 0.067 35.05 0.01354
8 0.1507 0.1376 0.1031 0.06741 36.76 0.01365

Table 2: RMS parameter estimation errors for eight iterations.
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